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Abstract: Sexual assault can cause great societal damage, with negative socio-economic, mental,
sexual, physical and reproductive consequences. According to the Eurostat, the number of crimes
increased in the European Union between 2008 and 2016. However, despite the increase in security
tools such as cameras, it is usually difficult to know if an individual is subject to an assault
based on his or her posture. Hand gestures are seen by many as the natural means of nonverbal
communication when interacting with a computer, and a considerable amount of research has
been performed. In addition, the identifiable hand placement characteristics provided by modern
inexpensive commercial depth cameras can be used in a variety of gesture recognition-based systems,
particularly for human-machine interactions. This paper introduces a novel gesture alert system that
uses a combination of Convolution Neural Networks (CNNs). The overall system can be subdivided
into three main parts: firstly, the human detection in the image using a pretrained “You Only Look
Once (YOLO)” method, which extracts the related bounding boxes containing his/her hands; secondly,
the gesture detection/classification stage, which processes the bounding box images; and thirdly,
we introduced a module called “counterGesture”, which triggers the alert.

Keywords: sexual assault; CNN; gesture-recognition-based systems

1. Introduction

In a sexual assault, the assailant assaults the victim quickly and brutally, without any prior contact,
usually at night in a public place. This can be done by physical force or threats of force, or by the abuser
giving the victim alcohol as part of the crime. Sexual assault includes rape and sexual coercion [1].
In the United States, a significant number of women face sexual assault every day, and about one in
three women have been victims of this crime [2]. Similarly, the number of sexual assaults in Europe
increased between 2008 and 2016 [3] despite the tremendous increase in security tools such as cameras,
which require special human attention to analyze the scene [4–6]. Most of the studies proposed in
the past few years tend to answer the question: was it a sexual assault? However, few of them
focus on the early detection of this crime [7,8]. Indeed, this is a difficult task, as the posture of both
individuals (the rapist and the victim) might be both on the same abscissa of the camera, as shown in
Figure 1. Regardless of the victim’s position, a part of his/her body may be visible most of the time,
especially the hands, which may describe a specific pattern if the victim is aware of what is known
as the “security-gestures” described in this article. This article aims to present a new hand gesture
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alert system, which takes advantage of a defined set of gestures that can trigger a warning when the
described computer vision system detects them.

Figure 1. The body of the aggressor prevents the ability to see the entire body of the victim.

To achieve this aim, the system uses human detection, hand extraction, and Convolution Neural
Networks (CNNs) [9–12]. It detects human bodies in a video, extracts the region of interest (hands)
and detects the hand gesture that will be processed and will trigger the alert, if the hand gesture
corresponds to one of the predefined hand gestures. The remaining part of this article is structured as
follows: first of all, the related work will be presented; secondly, the proposed architecture will be
addressed; thirdly, experiments, results, and discussion will be presented; lastly, a summary of the
proposed work and further perspectives are offered in the conclusion.

2. Related Work

Several researchers focus on human detection and surveillance; in addition, the detection of
gestures is attracting increasing interest, as is the classification of gestures. The following section gives
the reader an overview of the state-of-the-art work in these areas.

2.1. Human Detection

In today’s frameworks, the extraction of Regions of Interest (ROIs) and the representation of
characteristics are the two main factors under study [13–18]. In [19], the difference in intensity
of an individual pixel is incorporated into shape-oriented features to capture salient features.
However, the framework has selected significant thresholds based on assumptions. In [20],
the foregrounds are separated by subtracting the background and are then sorted by a Support Vector
Machine (SVM). However, the frame only detects the upper part of the human body, and Histogram of
Oriented Gradients (HOG) [21] features [22] are combined into a composite local feature. Nevertheless,
the extended dimension of the composite function increases the processing costs of the system, and the
other commonly used feature descriptors are shapelet, Edge Orientation Histogram (EOH) feature and
Haar wavelet function. In the case of partial occlusion, it is more effective to partially detect the human
body [23] rather than the whole body. However, improved accuracy also increases treatment costs.
The system proposed in [24] requires about several seconds to process a single frame.

Researchers are also interested in setting up a tracking algorithm using RGB (Red Green Blue)
video streams. A tracking algorithm typically consists of two different components: a local component,
which includes the characteristics extracted from the target being tracked; and global characteristics,
which determine the probability of locating the target. The use of a CNN to extract the characteristics of
the target being tracked is a prevalent and effective method. This approach focuses primarily on object
detection and local features of the target to be used for monitoring purposes [6–9]. Qi et al. [23] used two
different CNN structures to distinguish the target from other distractors in the scene. Wang et al. [24]
devised a structure composed of two distinct parts: a shared part shared by all the training videos
and a multi-domain part that classified different videos in the training set. The first part extracted the
common features to be used for tracking. Fu et al. [25] designed a CNN-based discriminant filter to
obtain local characteristics.
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2.2. Hand Gesture Recognition (Detection and Classification)

Looking at the previous work, we can see that various studies are dealing differently with the
classification and location issues related to gestures. Regarding the location of the hand, also known
as the hand detection, the authors of [26–28] extract the hand from the body using depth indices
and by setting a threshold, estimated at a specific moment. The authors of [29,30] used skin color
maps, and the authors of [31,32] achieved better segmentation results using both depth thresholding
and skin detection (using color). In terms of classification, several CNN-based approaches relied on
hand-crafted features [33,34], which can capture information about the silhouette, shape, and structure.

In [35], the authors presented a 3D dynamic system that helps to recognize gestures using hand
pose information. More precisely, the authors used the natural structure of the topology of the
hand—called the skeletal data of the hand—to extract kinematic descriptors from the actual hand
of the sequence of gestures. Using a Fisher kernel and a multilevel temporal pyramid, respectively,
the descriptors were encoded in a temporal and statistical representation. Considering a feature vector
calculated over the entire pre-segmented gesture, an improvement in the recognition can be achieved
by associating a linear SVM classifier directly at the end (see Figure 2).

Figure 2. Improvement in the recognition by adding a Support Vector Machine (SVM) as the final component.

In terms of social factors, while browsing the literature, the need to acquire statistical data
appeared. Indeed, many databases are available in the United States and offer real visibility on the
increasing crime rate in general and in relation to sexual assault. Based on the data collection in [33],
Figure 3 presents a forecast that reveals the areas with a high risk of experiencing a significant amount
of sexual assault in the United States over the next three years.

Figure 3. An estimation of future sexual assault cases in the USA [33].
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3. Proposed Model

In this part, the alert system based on a hierarchical convolution neural network is described.
Its architecture is composed of three main parts: the extractions of the related bounding boxes
containing subject hands, the gesture detection/classification stage, and the counterGesture. After the
presentation of the architecture, we will describe each component and move to the experiment section.

For the architecture, we envision an environment where many people walk on the streets.
The system below takes as its input the video stream of the scene and processes it to identify if a subject
is facing sexual assault. To do this, the video stream will be segmented into several frames that will
be processed continuously. Based on Figure 4, we can distinguish the extraction of the regions of
interest, which are the hands of everyone present in the scene. It is essential to specify that each hand
is associated with its owner so that we know which subject triggers the alert.

Figure 4. Multiple object tracking and extraction of the regions of interest (ROIs) or tracks. In these
images, pedestrians are detected, and an identification number is assigned to each track.

3.1. Human Detector and Regions of Interest (ROIs)

Researchers are addressing the problem of multiple object tracking (MOT) with neural networks.
They are doing this primarily by building robust models that capture information about movement,
appearance, and interactions between objects. Considering the issue of MOT, we adopt a conventional
methodology to follow different hypotheses with Kalman recursive filtering and image-by-image
association. To further illustrate our idea, consider the following situation: when an object is obstructed
for a more extended period, the following Kalman filter predictions increase the uncertainty associated
with the position of the object (see Figure 4). We use a standard Kalman filter with a constant velocity
motion and a linear observation model, where we take the delimitation coordinates (u, v, and h) as the
direct observation of the state of the object.

For each track k (bounding boxes associated to the same identifier ID), we count the number
of frames since the last successful measurement association ak. This counter is incremented when
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previewing the Kalman filter and reset to 0 when the track has been associated with a measure.
Besides, Algorithm 1 describes how bounding boxes associated to IDs are processed in the human
detector module. Furthermore, tracks that exceed a predefined maximum age Amax are considered to
have left the scene and are removed from the set of tracks. New track assumptions are initiated for each
detection that cannot be associated with an existing track. These new tracks are classified as tentative
during their first three frames. In the meantime, we expect a successful metric association at each time
step. Tracks that are not successfully associated with the measure in their first three frames are deleted.

As a result, the mass probability propagates in the state space, and the probability of observation
decreases. Intuitively, the association metric should take into account this dispersion of the probability
mass by increasing the measurement distance of the track. Counter-intuitively, when two tracks
compete for the same detection, the Mahalanobis calculation should be used:

θ1
i, j=

(
d j − yi

)T
Si
−1

(
d j − yi

)T
(1)

where we note the projection of the ith track distribution in the measuring space by (yi ; Si) and the j-th
terminal box detection by d j .

Distance promotes more considerable uncertainty because it effectively reduces the standard
deviation distance of any detection relative to the projected runway average.

This behavior is undesirable because it can lead to increased fragmentation of unstable tracks and
tracks in general. Therefore, we used a pairing cascade that gives priority to the most frequently seen
objects in order to encode our notion of distributed probability in the association probability.

The human detector presented in this article is based on the “You Only Look Once (YOLO)” [36–39]
method, which discretizes the output space of selected images into a set of default images of different
formats and scales per map location. At the time of the prediction, the network generates scores for the
presence of each object category in each default zone and produces adjustments to the area to better
match the shape of the object. Also, the network combines the predictions of several feature maps
with different resolutions to handle objects of various sizes naturally. The following human detector
algorithm can be given:

Algorithm 1: Human detector.

Input: max age (Amax), Indices
I = {1, . . . , N}, indices per Detection (ID) = {n|n ∈ N}
Output: matchMc and unmatch

1 Cost Co = [ Coi, j ] ← θdi, j + (1− θ)d2
i, j

2 Gate G←
2∏

m = 1
bm

i, j

3 M← { }, ← ID
4
5 For z = 1 to Amax, do
6 Iz ← {i ∈ I|ai = n}
7 xi, j ←Mincost (Co, I, )

8 Mc←Mc∪
{{

i, j
}∣∣∣bi, j.xi, j >0

}
9 ← ∪

{{
i, j

}∣∣∣∑ bi, j.xi, j > 0
}

10 End

Our pre-trained human detector YOLOv3 [36,40,41] (Table 1) is configured to obtain for almost
everyone (human) in the image (Ii) a bounding box that surrounds him. Considering a video V
subdivided into n frames as

V =
n∑

i=1

Ii , (2)
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each Ii frame might contain multiple subjects present in Ii+1 frame. It will be interesting to keep track
of all these subjects, so we use a so-called object tracking, which uses multiple detections to identify a
specific object over time. To address this requirement, the model uses an easy and fast algorithm called
SORT (Simple Online and Real-time Tracking) [42], which obtains references for the objects in the
image. Therefore, instead of the regular detections, which include the coordinates of the bounding box
and a class prediction, we obtain tracked subjects. These also include an object ID, which is associated
with the ROI, so that for each frame, we know which hand belongs to which subject in the frame.

Table 1. The human detector takes advantage of the YOLOv3 model, which extracts the related
bounding boxes containing the ROI (hands).

Layers Filters Stride Output

Conv 32 3× 3 224× 224
Maxpool 1

2 × 2× 2 112× 112
Conv 64 3× 3 112× 112

Maxpool 1
2 × 2× 2 28× 28

Conv 128 3× 3 28× 28
Conv 64 1× 1 28× 28
Conv 128 3× 3 28× 28

Maxpool 1
2 × 2× 2 28× 28

Conv 256 3× 3 28× 28
Conv 128 1× 1 28× 28
Conv 256 3× 3 28× 28

Maxpool 1
2 × 2× 2 14× 14

Conv 512 3× 3 14× 14
Conv 256 1× 1 14× 14
Conv 512 3× 3 14× 14
Conv 256 1× 1 14× 14
Conv 512 3× 3 14× 14

Maxpool 1
2 × 2× 2 7× 7

Conv 1024 3× 3 7× 7
Conv 512 1× 1 7× 7
Conv 1024 3× 3 7× 7
Conv 512 1× 1 7× 7
Conv 1024 3× 3 7× 7
Conv 1000 1× 1 7× 7

AveragPool Global 1000
Softmax

Each bounding box area AFi of the hands is further extracted as an individual frame Fi, so that

G =
n∑

i=1

AFi � AIi , (3)

which will be concatenated (time-wise, t) to those of the same subject from the primary image (I).
The simulation of one video recording for each submitted video will be combined with another
individual video as input Vc for the next module, as:

Vc =
m∑

j=1

n∑
i=1

AFi j or
m∑

j=1

G j (4)

3.2. Detector and Classifier

Over the past few years, CNN-based models have shown impressive results when they are
performing gesture and action recognition tasks. CNN 3D architectures are distinguished mainly by
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video analysis because they use temporal relationships between images. A new frame is described in
the following section, whose goal is the detection and recognition of a specific hand gesture that will
trigger the alarm.

Detector: Since we have no limitations regarding the size of the model, another architecture,
with excellent classification performance, can be selected by a classifier. This leads us to use two recent
3D CNN architectures [43], the previously described YOLOv3 as the detector and a custom 3D CNN
with a novelty, the introduction of “counterGesture”, which is activated once a gesture is classified as
belonging to our specific set. Given the context of this paper, the detector can be described as a tool
responsible for processing sequential frames (video) and activating the classifier if there is a potential
gesture in the video. It is worth mentioning that the human detector module mentioned above will
have as its output a collection of hand images describing a gesture and associated to each subject.
An algorithm (Algorithm 2) is given below.

Algorithm 2: Gesture Recognition

Input: Vc

Output: Specific Gesture
1 For j = 1 to m, do
2 For each “frame window” G j, do
3 Process a batch of hand images
4 classifierIsActivated ← True
5 alpha ← Probability(i−1) × (i− 1)
6 meanProbaility =

(
alpha + G j × probabilityi

)
/i

7 (max1, max2) =
max

gesture
[meanProbaility]2

8 If (max1 −max2) ≥ tearly, then
9 isEarlyDetect ← ”True”
10 Return gesture (max1)

11 i ← i + 1
12 j← j + 1

Classifier: Depending on the proposed model, any classifier with good accuracy can be used.
As shown in Table 2, we have listed the parameters of the classifier used in this article, which is a 3D
convolutional neural network. Besides, we designed the model so that the number of parameters,
P(3D), is greater than the number of parameters, P(2D), of a conventional 2D convolutional neural
network. It should be mentioned that 3D CNNs require more training data to avoid overfitting. For this
reason, we first trained our classifier on a well-known dataset, “Jester” [24], which is the largest hand
gesture dataset (public dataset); then, the model was fine-tuned on nvGesture datasets with direct
consequences, namely, accuracy and training time.

Table 2. The model parameters of the proposed 3D Convolution Neural Network (CNN) classifier.

Layers Filters Stride Output

Conv 3D 84 (1, 2, 2) 64× 64
Maxpool 3D (1, 2, 2), 64× 64

Conv 3D 64 (2, 2, 2) 128× 128
Maxpool 3D (2, 2, 2), 128× 128

Conv 3D 128 (2, 2, 2) 256× 256
Maxpool 3D (2, 2, 2), 256× 256

Conv 3D 128 (2, 2, 2) 256× 256
Maxpool 3D (2, 2, 2), 256× 256

FC (12800, 512)
FC (512, 25)
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CounterGesture: the system comes with a novel module, which describes the counterGesture as a
module responsible for counting the occurrences of gestures similar to the predefined set of gestures
(Figure 5). As mentioned in the description of Figure 6, the counterGesture comes with two operators
in its architecture: the first one sets the flag to 1, and the listener 1 starts the timer; the second operator
is responsible for checking the time spent already and the value contained in the incrementor, and for
triggering the alert if the condition below is respected.

getTime < n and Counter == 3 (5)

where n represents a predefined maximum duration allowed to collect the three gestures.

Figure 5. A video is submitted to a module called the human detector, which extracts images containing
a human. These frames are processed using scrolling sliding windows in which the detection queue
is placed at the very beginning of the classifier assignment queue. If the detector recognizes an
action/gesture, the classifier is activated via the Post Processing Service (PPS) [44] and, if it corresponds
to one of the gestures contained in our specific set, the alert is triggered.
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Figure 6. (A) Set of predefined images that the counterGesture considers. (B) In case the classifier
identifies one of these gestures, the counterGesture will increment its counter up to 3 and trigger the
alert, if there are at least three occurrences of the predefined gestures.

4. Experiments

The overall system can be divided into three parts: first, the extraction of the ROI as an output
of the human detection module; second, the image classification, which categorizes all of the hand
frames into one possible gesture; and third, a match that will trigger the alert. During the training
part, we trained these three components separately. Furthermore, the counterGesture counts only the
number of correspondences between the predicted gesture and an element of the predefined set of
gestures. The latter is shown in Figure 6.

The EgoGesture dataset is a new multimodal dataset for the egocentric recognition of hand
gestures [45], and it was created not only for the detection of gestures in continuous data but also
for the classification of segmented gestures. This dataset contains eighty-three classes of dynamic
and static gestures collected from six outdoor and indoor scenes. We organized the training set,
validation and test set by separating topics with a 3:1:1 ratio, which gave respectively: 1239 elements,
411 validation videos, and 431 test videos, with 14,416, 4768, and 4977 gesture samples. All models
were first pre-trained on the Jester dataset [45]. For test set evaluations, we used both the training and
the validation games for the training.

To perform our experiments, we used a specific device as described in the table (Table 3). We were
able to extract the ROI (Figures 7 and 8) and classify the gesture (Figure 7). In addition, Figure 9 shows
the accuracy of our classifier after 350 epochs.
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Table 3. Characteristics of the testing environment containing a graphic card “GeForce GTX 1070”.

Station Characteristics

CPU Intel(R) Core™ i7-3.20 GHz
RAM 4096 MB × 2

Device 0: “GeForce GTX 1070”

Components Specifications
CUDA Driver Version/ Runtime Version 10.1/10.1

CUDA Capability Major/Minor Version Number 6.1
Total Amount of Global Memory 8118 MB

(15) Multiprocessors (MP), (128) CUDA Cores/MP 1920 CUDA Cores
GPU Max Clock Rate: 1721 MHz
Memory Bus Width 256 bits

Figure 7. YouTube video containing a sexual assault attempt [46]. (a) We can see the victim being
assault by an individual. (b) Our system performs an analysis of the scene, extracts the zone of interest
and returns the response (triggering the alert or not).

Figure 8. Considering the simplified chart, from left to right, we see how our model extracts the region
of interest, processes the cropped images and classifies the gesture using the classifier. Nevertheless,
the counterGesture integrated into the classifier block will trigger the alert if the specific gesture is
identified three times.
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Figure 9. Performance of the classifier, where (a) represent the loss graph, where our classifier shows a
decrease in the loss during the training phase; (b) represent the validation graph, which shows the
reduction of the loss and the increase in the confidence of our classifier during the validation phase;
and (c) show the accuracy graph, which shows an increase in accuracy of up to 91% after 350 epochs.

5. Results and Discussion

During the experiment, we firstly studied the performance of various versions of the neural
network VGG-16 and a custom 3D CNN architecture on the classification task. In addition to this,
we paid attention to the performance result of the number of input frames submitted to our gesture
classification. Figure 9 provides an overview of how well our classifier performs, and the results in
Table 4 show that we achieve a better performance by increasing the size of entries for all modalities.
This depends strongly on the characteristics of the datasets used, especially the average duration of
the gestures.
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Table 4. Improvement of the custom 3D CNN by increasing the input size and comparison to
state-of-the-art techniques applied on the EgoGesture dataset [45].

Model Number of Input
Frames

% Accuracy on
RGB

% Accuracy on
Depth

VGG-16 [47] 16 62.5 62.30
VGG-16 + LSTM [47] 16 74.60 77.69

Custom 3D CNN 16 85.1 87.9
Custom 3D CNN 24 90.3 90.6
Custom 3D CNN 32 91 91.3

Considering the video used in our experiment, let us have a close look at the portion of the video
where the sexual assault is happening. Table 5 shows how Algorithm 1 (human detector) is applied on
the video to detect a human, and it also gives an idea of when Algorithm 2 (hand gesture) detects the
gesture. The hand gesture will activate the CounterGesture every time a specific gesture is identified.
However, it is worth mentioning that in the case of a total occlusion of the hands of the victim, it is not
possible for the system to detect the gesture and hence trigger the alert. As future work, we will explore
the possibility of adding other factors to the decision making. Also, as shown in Table 5, the alarm is
triggered after the counterGesture = 3.

Table 5. Step-by-step application of our algorithms on a sexual assault video.

Frames Algorithm 1 Algorithm 2 CounterGesture Alarm

Human detected
Specific
gesture
detected

+1
Alarm triggered as
CounterGesture= 3

Human detected
Specific
gesture
detected

+1

Human detected NA 0

Human detected
Specific
gesture
detected

+1
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Table 5. Cont.

Frames Algorithm 1 Algorithm 2 CounterGesture Alarm

Human detected
Normal
gesture
detected

0 NA

Human detected NA 0 NA

When processing images from video surveillance, material quality (poor quality of image data,
low light level, blur, pixelation of small objects) can be an obstacle; to address it, we propose enhancing
the images (Figure 10) before submitting them to the human detector module (Figure 5).

Figure 10. Preprocessing of the images to ensure a better quality of input images in our system.
(a) The original image, (b) the image on which we apply a normalization function to distribute the
pixel intensities from 0 to 255; this will enhance the image without losing information.

Besides, the RGB-D (Depth sensor) frames are examined for different input sizes. Over the course
of the experiment, the depth modality has proven to be essential to increase the performance, rather than
a simple RGB input. Indeed, the depth component allowed the filtering of the movement from the
background and helped to focus more on the movement of the hand, resulting in the discrimination of
the features with the depth modality.
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6. Conclusions

Considering sexual assault, this paper proposes a solution via the use of a new hierarchical
architecture with three models for hand gesture alert systems. The proposed architecture enables
efficient resource utilization and early detection for essential hand gesture alert applications.
We obtained approximate results for both datasets when we evaluated our proposed model.

We defined a set of hands gestures that were identified by our classifier, and we introduced
a module called “counterGesture”. The latter allowed us to count the number of occurrences of a
predefined gesture and trigger the alert. Besides, we found that the training time was far too long
on the Jest dataset at a learning rate varying between 0.0001 and 0.001. We anticipate that in our
future work, we will associate the facial expression with the alert decision in order to investigate
ResNext [48–51] or a faster impact of the CNN-Region mode, at the same time as the detector and
classifier [52,53]. Further study should consider the combination of lighter Deep neural networks
(DNNs) to maintain accuracy and improve speed.
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