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Abstract: In this article, the finite element method is used to build the analytical model of a traditional
Chinese timber frame with straight mortise-tenon joints. The analytical model is then subjected to the
lateral cyclic loading and verified based on the results of an experiment. Three types of damage in the
straight mortise-tenon joint, including the gap between the mortise and tenon, damage in the top and
the end of tenon, are proposed and idealized so that the analytical model can be modified accordingly.
The hysteresis curve, stiffness and energy dissipation capacity derived from these damaged models
with different damage extents are analyzed. The results indicate that the proposed damages of the
joints have adverse influences on the lateral behavior of the timber frame. Both stiffness and energy
dissipation capacity of the timber frame are weakened by these damages.

Keywords: traditional Chinese timber frame; damage of mortise-tenon joint; finite element method;
cyclic performance

1. Introduction

Timber structures have been widely used in the construction of palaces, temples, and civil
dwellings in ancient China because timber is very easy to obtain and process. The famous Buddha
Tower, also known as YingXian Timber Tower, is a typical traditional Chinese timber structure as shown
in Figure 1. It can be seen that the tower was erected by columns, beams, and bracket sets [1]. Timber
frame, consisting of beams and columns, is the basic structural component and also the structural
skeleton of the timber structures. The columns and beams are connected by the mortise-tenon joints,
and two typical types of the joints are presented in Figure 2.
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Figure 2. Timber frame with mortise-tenon joints: (a) Straight joint; (b) dovetail joint. 

Timber frame is the main component of resisting the lateral force such as earthquake actions and 
strong winds. Therefore, the mechanical properties of the timber frame, especially the mortise-tenon 
joints, have prominent effects on the seismic performance of the whole structures [2]. Xue et al. [3,4] 
carried out some pseudo-static tests and shaking table tests on timber structures with mortise-tenon 
joints and found that most of the input energy is dissipated by the mortise-tenon joints. Shi et al. [5] 
used a synchronous loading technique to study the hysteresis behavior of a full-scale Chinese timber 
structure and revealed the effects of vertical loads and gaps in the mortise-tenon joint. Some tests on 
the timber frame with straight mortise-tenon joints [6,7] or with dovetail joints [8–11] have been 
conducted and the pulling-out of the tenon were frequently observed. Zhang [12] studied the seismic 
and lateral resistance of column-and-tie wooden buildings, the global slip of the framework and the 
slip of the column footing were observed. Jiang et al. [13] used multi-scale modelling method to 
simulate a timber frame with mortise-tenon joints and received good results. Some analytical models 
were proposed [6,7] and can predict the hysteresis behavior of the timber frame. Xiong et al. [14] 
studied the moment-rotation angle curve of aluminum alloy mortise-and-tenon joints, and proposed 
a hybrid beam element model which can well reflect the semi-rigid characteristics of the joints. 

Most of these experiments and numerical simulations are based on the intact timber structure 
specimens or models. However, in real situation, the damage of the mortise-tenon joint is often 
encountered in timber frame, especially in the ancient structures. Two typical damages of the mortise-
tenon joint are shown as follows: (1) Gap between the mortise and tenon (Figure 3a); (2) defect in the 
tenon (Figure 3b). Traditional timber frames often undergo lateral displacement during the action of 
earthquake or strong wind [15,16], which will lead to a gap between mortise and tenon in the 
longitudinal direction of the beam. Besides, in some moist districts, the tenon may suffer from fungi 
or termites and eventually become incomplete. These adverse influences are likely to weaken the 
connection between the beam and the column and hence reduce the seismic resistance of the frame. 
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Figure 3. Damages of the mortise-tenon joint: (a) Gap between the mortise and tenon; (b) bamage in 
the tenon. 

Figure 2. Timber frame with mortise-tenon joints: (a) Straight joint; (b) dovetail joint.

Timber frame is the main component of resisting the lateral force such as earthquake actions and
strong winds. Therefore, the mechanical properties of the timber frame, especially the mortise-tenon
joints, have prominent effects on the seismic performance of the whole structures [2]. Xue et al. [3,4]
carried out some pseudo-static tests and shaking table tests on timber structures with mortise-tenon
joints and found that most of the input energy is dissipated by the mortise-tenon joints. Shi et al. [5]
used a synchronous loading technique to study the hysteresis behavior of a full-scale Chinese timber
structure and revealed the effects of vertical loads and gaps in the mortise-tenon joint. Some tests
on the timber frame with straight mortise-tenon joints [6,7] or with dovetail joints [8–11] have been
conducted and the pulling-out of the tenon were frequently observed. Zhang [12] studied the seismic
and lateral resistance of column-and-tie wooden buildings, the global slip of the framework and the
slip of the column footing were observed. Jiang et al. [13] used multi-scale modelling method to
simulate a timber frame with mortise-tenon joints and received good results. Some analytical models
were proposed [6,7] and can predict the hysteresis behavior of the timber frame. Xiong et al. [14]
studied the moment-rotation angle curve of aluminum alloy mortise-and-tenon joints, and proposed a
hybrid beam element model which can well reflect the semi-rigid characteristics of the joints.

Most of these experiments and numerical simulations are based on the intact timber structure
specimens or models. However, in real situation, the damage of the mortise-tenon joint is often
encountered in timber frame, especially in the ancient structures. Two typical damages of the
mortise-tenon joint are shown as follows: (1) Gap between the mortise and tenon (Figure 3a); (2) defect
in the tenon (Figure 3b). Traditional timber frames often undergo lateral displacement during the
action of earthquake or strong wind [15,16], which will lead to a gap between mortise and tenon in
the longitudinal direction of the beam. Besides, in some moist districts, the tenon may suffer from
fungi or termites and eventually become incomplete. These adverse influences are likely to weaken
the connection between the beam and the column and hence reduce the seismic resistance of the frame.

To study the influence of damage caused by termites and fungi, different types of holes were
drilled in the dovetail and straight mortise-tenon joints, and the results compared with the intact joints
revealed that these damages can significantly influence the seismic performance of these joint [17,18].
Xue et al. [19,20] carried out some tests on the through-tenon joints and dovetail joints by cutting the
tenon size to simulate looseness, and the hysteresis behavior of these joints was remarkably affected.
Li et al. [21] conducted the low-cycle reciprocating load test on the straight-tenon joint wood frame
with column foot damage, the results showed that this damage can decrease the fullness and peak of
the hysteresis curves as well as the energy dissipation ability of the frame.
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the tenon.

In this study, a timber frame with straight mortise-tenon joint is built in ABAQUS v6.13 (Dassault
Sys Simulia Corp, Providence, RI, USA) based on an experiment conducted by Lin [22]. The finite
element (FE) model is then verified by comparing the analytical result with that of the experiment.
Three different types of damage of the mortise-tenon joint are idealized and the FE model is modified
accordingly. The influences of these damages on the seismic performance of the timber frame are then
derived and discussed.

2. Finite Element (FE) Model and Verification

2.1. Test Model

The analytic model is derived from the quasi-static test of a traditional timber frame with straight
mortise-tenon joints conducted by Lin [22]. The timber frame was designed based on Yingzaofashi [23],
which is a technical code of practice for the construction of traditional timber buildings of the pre-Ming
dynasty. The 1/3.52-scaled timber frame consists of two columns and a beam as shown in Figure 4.
The columns are round with a diameter of 180 mm. The beam has a rectangular section of 120 mm ×
180 mm, while the width of the tenon is only half of the beam, namely 60 mm. The bottom sides of
both columns are hinged on the ground, which is consistent with the real situation that the columns
are directly placed on the ground in most traditional timber structures. The vertical load of 10 kN
is applied to the top of the columns through hydraulic jack to simulate the load transferred from
the roof. The columns are driven by the MTS actuator through anchor bolt so that the columns can
simultaneously move back and forth. More details of the test can be found in Lin [22].

The horizontal loading of the MTS actuator is controlled by displacement. A total of nine levels of
displacement are taken in the test and each level consists of three cycles. The displacement amplitude
is increased by 20 mm after each level of loading and the maximum displacement amplitude is 180 mm.
Since the main purpose of the work is to study the influences of different types of damages on the
seismic behavior of the timber frame, the loading cycle of each displacement amplitude is changed to
one in the numerical simulation as shown in Figure 5 so as to reduce the calculation cost.

2.2. FE Model

To simulate the cyclic behavior of the timber frame with straight mortise-tenon joints, a 3D finite
element model is built based on ABAQUS as shown in Figure 6. The columns and the beam are all
modelled by 8-node reduced-integration solid element (C3D8R).
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element model is built based on ABAQUS as shown in Figure 6. The columns and the beam are all 
modelled by 8-node reduced-integration solid element (C3D8R). 
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Timber is regarded as orthotropic material and the elastic behavior can be modelled through nine
engineering constants, namely E1, E2, E3, G12, G13, G23, υ12, υ13, υ23, which are Young’s moduli, Shear
moduli, and Poisson’s ratios of three perpendicular directions. These elastic material parameters of the
FE model are given in Table 1 according to [13]. Here, subscript 1 means the direction of the grain,
subscript 2 and 3 mean the radial and tangential direction in the plane perpendicular to the grain.
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Table 1. Elastic material parameters of the finite element (FE) mode.

E1/MPa E2/MPa E3/MPa G12/MPa G13/MPa G23/MPa υ12 υ13 υ23

4720 378 236 337 33.7 317 0.37 0.47 0.42

The post-yield behavior of timber is simulated through Hill’s potential function, which is a
simple extension of the Mises function and can be expressed in terms of rectangular Cartesian stress
components as follows:

f (σ) =
√

F(σ22 − σ33)
2 + G(σ33 − σ11)

2 + H(σ11 − σ22)
2 + 2Lσ232 + 2Mσ31

2 + 2Nσ12
2 (1)

where F, G, H, L, M, N are constants obtained by tests of the material in different orientations,
σi j(i, j = 1, 2, 3) are different stress components. For simplicity, the post-yield moduli are set as zero in
this study. The plastic material parameters of the FE model are presented in Table 2.

Table 2. Plastic material parameters of the FE mode.

Direction σcy
1 /MPa σty

2 /MPa τy
3 /MPa

1 21 30 4.2
2 2.1 2.1 4.2
3 2.1 2.1 4.2

1 The yield compressive stress; 2 The yield tensile stress; 3 The yield shear stress.

The interaction between the mortise and the tenon plays a significant role in the seismic performance
of traditional timber structures since it can dissipate a vast amount of energy through friction between
these two parts. In ABAQUS, the interaction between two surfaces is simulated by surface-to-surface
contact which includes the normal and the tangential behaviors. The normal behavior is set as ‘HARD’
contact which can transfer the normal stress between the two surfaces and allow these two surfaces to



Appl. Sci. 2019, 9, 3429 6 of 20

separate after contact. The tangential behavior is realized by Coulomb friction to simulate the lateral
sliding behavior at the interface of the mortise and tenon.

2.3. Verification

To verify the accuracy of the FE model, the mesh sensitivity analysis is first carried out so as to
eliminate the adverse influence of element size on the calculation results. The element size of the FE
model are set to be 40 mm, 30 mm, 20 mm and 12 mm, which results in the total element number of
3240, 6320, 21,666 and 90,720, respectively. The numerical simulation is run by a workstation installed
with an Intel Xeon Gold 6154 CPU. The calculation time for each model is 35 min, 40 min, 72 min and
333 min.

The hysteresis curves of three models are plotted in Figure 7. It can be seen from the figure that the
hysteresis curve of 20 mm model is nearly identical to that of 12 mm model, while the curve of 40 mm
model is quite different from that of the model with the finest mesh. Therefore, the model with element
size of 20 mm can be regarded as a preferable one and used in the following section since it provides
almost the same results with the finest model and takes only 22% calculation time of the latter model.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 21 
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The experimental hysteresis curves from Lin [22] and from the model with element size of 20 mm
are plotted in Figure 8 for clearly comparison. It can be seen from Figure 8a that the hysteresis curve
of this study is reversed Z-shaped and well reflect the pinch effect of the timber frame. However,
the unloading stiffness is about 35% smaller than the experimental results, which is also seen in [24].
Figure 8b presents the skeleton curves of both experiment and simulation, and both of the curves
show the nonlinear behavior when the displacement amplitude is larger than 20 mm. At the positive
loading process, when the displacement reaches +120 mm, both skeleton curves begin to slightly
decrease. While the descending displacements at the negative loading process of the experiment and
the simulation are −140 mm and −120 mm, respectively.

During each cycle of loading, the stiffness is calculated according to Equation (2), in which Fimax

is the force corresponding to the maximum positive displacement ∆imax in the ith cycle, and Fimin is
the force corresponding to the maximum negative displacement ∆imin in ith cycle.

K(∆i) =
|Fimax|+ |Fimin|

|∆imax|+ |∆imin|
(2)

For a given cycle i, the dissipated energy due to plastic deformation and friction equals to the area
enveloped by the hysteresis curve.
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Figure 9 shows the stiffness and dissipated energy of each cycle derived from both the experiment
and the numerical results of this study. In Figure 9a, the two curves have the identical changing trend
except the points of the first cycle. The error of 0.381 between the two points can be attributed to the
tightness between the mortise and tenon during installation in the experiment, which exerts some
pre-stress on the joints and leads to the increase of rotational stiffness of the experimental model. With
the first point excluded, the numerical results well reflect the stiffness degradation of the timber frame.
The dissipated energy of each cycle is plotted in Figure 9b, and it shows that the two curves have
similar variation tendency, although the energy dissipation capacity of FE model is lower than the
experiment. The hysteresis curves of the experiment when the displacement amplitude is less than
80 mm are full as can be seen in Figure 8a, while the enveloped curves of the simulation are reversed
Z-shaped, which leads to the errors larger than 0.2. When the displacement amplitude reaches 100 mm,
the errors are all within 0.15. Therefore, to a large extent, the FE model of this study can well simulate
the hysteresis properties of the real timber frame with straight mortise-tenon joints.
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Figure 9. Results from the experiment and the simulation: (a) Stiffness; (b) dissipated energy.

3. Stress Analysis

To clearly understand the deformative characteristics of the timber frame subjected to lateral
cyclic loading, the deformed models and the minimum principal stress at the middle plane are plotted
in Figure 10. Figure 10a,b show the compressive state of the frame under the displacement amplitude
of +180 mm and −180 mm, respectively. It can be seen that since the frame is symmetrical, the two
deformed models are also symmetrical.
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The detailed deformed state of the mortise-tenon joints in Figure 10a is given in Figure 11. It
can be seen that when the top of the columns are moving right at the displacement of +180 mm, the
columns and the beam are in contact at the intersection points of 2, 3, 6 and 7. The largest value of
compressive principal stress is 15.4 MPa at intersection point 2. When the displacement amplitude is
−180 mm, the columns and the beam compress each other at the intersection points of 1, 4, 5 and 8,
inversely, as shown in Figure 10b.
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Figure 11. The minimum principal stress of the joints when the displacement = +180 mm.

The vertical compressive stress in the beam, denoted as S33 in Figure 12, is vertical to the direction
of the timber grain and is caused by the contact between the columns and the beam. Larger value of
S33 in the beam means greater contact force derived from the column. If the contact forces exerted
around the two intersection points of a mortise-tenon joint (for example intersection points 2 and 3) get
larger, the bending moment caused by the two forces will also be greater, which then leads to more
demand for the lateral loadings on the top of the columns.
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Figure 13 shows the vertical compressive stresses S33 at the intersection points 2 and 3 with respect
to the lateral loading displacement. It can be seen from the figure that when the timber frame moves
left, the vertical compressive stresses are close to zero, which means the contact at these intersection
points makes almost no contribution to the stiffness and strength of the timber frame. This is consistent
with the phenomenon seen in Figure 10b. However, when the displacement amplitude increases from
0 mm to +180 mm, the envelope curve of S33 is similar to that of the reaction force of the timber frame,
which confirms that larger values of S33 in the intersection points will demand greater lateral loadings
on the top of the columns. Therefore, the envelope curves of S33 at all the eight intersection points are
plotted in Figure 14. The symmetrical intersection points, for example 1 and 6, in the beam have the
symmetrical envelope curves. At different displacement magnitudes, the vertical compressive stresses
of intersection points 4 and 7 have larger values than those of other points.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 21 
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4. Damage of Mortise-Tenon Joint

To study the influences of mortise-tenon joint damages on the seismic performance of the timber
frame. Three different types of damages are presented and idealized, so that the FE model can be
modified accordingly.

4.1. Gap between Mortise and Tenon

In this section, the beam and column are initially assembled with a gap in the left mortise-tenon
joint of the frame or in both joints as illustrated in Figure 15. The preset gaps are 10 mm, 20 mm, 30 mm,
40 mm and 50 mm, which means 10 different models are analyzed herein. Different models are named
by the length of the gap and a letter S (single joint damaged) or B (both joints damaged). For example,
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40 mm-S model means the gap between the mortise and tenon of the left joint is 40 mm while the right
joint is intact.
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Figure 16 gives the hysteresis curves of the undamaged model and the damaged models when
the displacement amplitude is 180 mm. It can be seen that the gap between the mortise and the tenon
can decrease the maximum force and the stiffness of the timber frame. However, when the gap is
larger than 20 mm, the maximum force and the stiffness will not change a lot with the increase of the
gap. This is also clearly demonstrated in the normalized stiffness as shown in Figure 17. Here, the
normalized stiffness is derived by dividing the stiffness of the damaged model by the stiffness of the
undamaged model at the same displacement amplitude.
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Figure 16. Hysteresis curves of the last cycle: (a) Single joint damaged models; (b) both joints
damaged models.

As is shown in Figure 17, when the displacement amplitude is small, the normalized stiffnesses of
all damaged models are larger than 0.9. The normalized stiffness almost decreases linearly with the
enlargement of the gap when the displacement amplitude is greater than 60 mm. From the comparison
between these two figures, it can be concluded that when the length of the gap remains the same, the
stiffness of the model with both joints damaged is slightly smaller than that of the model with only one
joint damaged. When the gap reaches 20 mm, the normalized stiffness of these damaged models will
become quite similar. This phenomenon can be attributed to the lack of contact between the external
surface of the column and the vertical surface of the beam, which is marked by red in Figure 15. For
the undamaged model, when the columns move back and forth, the external surfaces of the columns
and the vertical surfaces of the beam will be in contact. The compressive stress of the vertical surface of
the beam marked in Figure 15 is presented in Figure 18a when the displacement is +180 mm. If there is
a gap between the column and the beam, the compressive stress between these surfaces will be smaller
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and even become zero, thus the maximum force and the stiffness of the frame will decrease. Figure 18b
gives the compressive stress of the 10 mm-S model at the displacement of +180 mm, in which the
maximum compressive stress is much smaller than that of the undamaged model. When the gap is
larger than 10 mm, these surfaces will no longer squeeze with each other, therefore no compressive
stress in the vertical surface of the beam is detected and the maximum force and the stiffness of these
models are very close.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 21 
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Figure 17. Normalized stiffness: (a) Single joint damaged models; (b) both joints damaged models.
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Figure 18. Compressive stress of the vertical surface of the beam when the displacement is +180 mm:
(a) Undamaged model; (b) 10 mm-S model.

Similarly, the normalized dissipated energy is calculated by dividing the dissipated energy of the
damaged model by that of the undamaged model at the same displacement, as is plotted in Figure 19.
When the displacement amplitude is 20 mm, the total dissipated energy of each model is also very
small, so that the lack of contact mentioned above has a great effect on the normalized dissipated
energy and makes these values much bigger than the values of other displacement amplitudes. When
the displacement amplitude is greater than 40 mm, the normalized dissipated energies of all damaged
models are closely around a unit and the most reduction of the dissipated energy is about 9% at the
displacement of 180 mm for single tenon damaged model and 160 mm for both tenon damaged model.
Besides, the normalized dissipated energy slightly decreases with the increase of the displacement
amplitude although some fluctuations are observed. This is because that in the loading process the
reaction force of the undamaged model is larger than those of the damaged models, which makes
the enveloped area of the undamaged model larger than the others; while in the unloading process,
the reaction force of the undamaged model is still greater than the damaged models, which leads
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to the smaller enveloped area of the undamaged model, as can be seen in Figure 16. Therefore, the
normalized dissipated energies of the damaged models are close to one when the displacement is
larger than 40 mm.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 21 
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4.2. Damage in the Top of the Tenon

As can be seen in Figure 3b, the tenon part is often damaged and the cross-section of this part
decreases a lot, especially in the upper place where the tenon and the mortise are in contact. In this
section, this type of damage is simplified by reducing the height of the tenon of the left joint, with the
length and width of the tenon remain unchanged, while the tenon of the right joint is not damaged,
as shown in Figure 20. The original height of the tenon is 180 mm, and the reduction of the height is
5 mm, 10 mm, 15 mm and 20 mm.
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Figure 20. Damage in the top of the tenon.

The hysteresis curves of the damaged models as well as the undamaged one are plotted in
Figure 21a, and the results of the last loading cycle are also given in Figure 21b for better comparison.
It can be seen from both figures that the reaction forces at different displacement amplitudes of the
damaged models are far smaller than those of the undamaged model, which indicates the smaller
stiffness of the damaged models. Besides, the areas enveloped by the curves, which are known as
dissipated energy, decrease with the increase of the reduction of the tenon.
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Figure 21. Hysteresis curves: (a) All cycles; (b) last cycle.

The stiffnesses of each models are demonstrated in Figure 22a. For clear comparison between the
stiffnesses of the undamaged model and the damaged models, the normalized stiffnesses are plotted in
Figure 22b by dividing the stiffness of the damaged models by that of the undamaged model at the
same displacement amplitude.
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From these two figures, it can be concluded that the height reduction of the tenon can significantly
decrease the stiffness of the damaged models, especially when the displacement amplitude is small.
When the tenon is intact, it is initially in contact with the mortise, so that the interaction between the
two parts works from the beginning. However, in the damaged models with a height reduction of the
tenon, there is an empty space between the tenon and the mortise of the left joint, which indicates
that the two parts are not in contact with each other at the very beginning. Therefore, the interaction
between them takes effect when the columns moves laterally to different displacements for different
height reductions of the tenon. Once the tenon and the mortise begin to squeeze each other, there
will be a sudden increase in both the hysteresis curves and the stiffness curves, which can be seen in
Figures 21 and 22. It is clear in Figure 22b that the normalized stiffnesses of the damaged models with
height reductions of 5 mm, 10 mm, 15 mm and 20 mm get larger prominently at the displacements
of 40 mm, 100 mm, 140 mm and 140 mm, respectively. When these displacements are not reached
by the corresponding models, the normalized stiffnesses of the damaged models are very close. For
example, the normalized stiffnesses of the four damaged models at the displacement of 20 mm and
40 mm are around 0.2 and 0.3 respectively. Then, with the displacement increasing from 40 mm to
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100 mm, the normalized stiffness of the 5mm-reduction model is much larger than those of other three
models, while these three models have the similar normalized stiffness.

This phenomenon can be seen more directly from the vertical compressive stresses S33 plotted in
Figure 23. Points 1–4 are the intersection points of the left mortise-tenon joint, while points 5–8 are
related to the right joint, as can be seen in Figure 12. Since only the left joint is damaged, the envelope
curves of S33 at points 1–4 of the damaged models are quite different from the curves of the undamaged
model. When the displacement is small, the vertical compressive stresses S33 of the damaged models
at these four points are nearly 0, which are far smaller than those of the undamaged model. When the
tenon and the mortise of the left joint begin to squeeze each other, S33 at these four points will increase
rapidly. For instance, from the envelope curve of S33 at point 1 of the 5 mm-reduction model, it can be
inferred that the interaction between the tenon and the mortise starts to work when the displacement
is up to 40 mm, which is identical with Figure 22.
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The normalized dissipated energy is plotted in Figure 24 by dividing the dissipated energy of
the damaged models at each displacement amplitude by the dissipated energy of the undamaged
model at the same displacement amplitude. It can be seen from the figure that this type of damage
can greatly reduce the energy dissipation capacity of the frame. When the displacement is small, the
energy dissipation capacity of the damaged models can be only 1/5 of the undamaged one. The frame
loses more energy dissipation capacity when the tenon suffers more reduction of the height. However,
the normalized dissipated energy are similar for the damaged models with 10 mm, 15 mm, and
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20 mm reduction, especially at the displacement of 180 mm. Unlike what is found in the normalized
stiffness of the damaged models, the normalized dissipated energy increases almost linearly with the
enlargement of the displacement without any sudden changes. As well, at the displacement of 180 mm,
the reductions of the dissipated energy are 0.6 for the models with 10 mm, 15 mm, and 20 mm length
reduction and 0.75 for the model with 5 length reduction.
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4.3. Damage in the End of the Tenon

In this section, the tenon is simplified to be cut off perpendicular to the longitudinal direction
of the beam, as is seen in Figure 25. This cutoff damage is designated to happen in the left tenon or
in both tenons. The damage length of the tenon is from 40 mm to 200 mm with intervals of 20 mm.
Therefore, there are 18 damaged models generated in this section. Here, the damage length along with
the letter S (for single tenon damaged) or B (for both tenons damaged) are used to denote the damaged
models. For example, 40 mm-S model means that the damage length of the tenon is 40 mm and only
the left tenon of the model is damaged. It should be noted that the length of the tenon exceeding the
column is 100 mm, as seen in Figure 4. Therefore, when the damage length is bigger than 100 mm, the
remaining part of the tenon is all inside the column.
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The hysteresis curves of the last loading cycle of the damaged models as well as the undamaged
model are given in Figure 26. It should be noted that not all curves derived from the damaged models
are given in the figure since they share the similar varying trend. Figure 26a shows the results of the
models that only have their left tenon damaged (labelled with S), while Figure 26b are related to the
models with both tenons damaged (labelled with B). It can be seen from both figures that the 40 mm-S
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model and the 40 mm-B model have identical hysteresis curves with the undamaged model, which
means this cutoff part contributes little to the strength and stiffness of the frame. This is consistent with
the stress diagram in Figure 10 since the stress in that cutoff part is almost zero. Besides, the strength
and the dissipated energy of the last cycle both reduce with the increase of the damage length of the
tenon. From the comparison between these two figures, when the damage lengths are the same, the
strength and the dissipated energy of the single tenon damaged model are greater than the model with
two damaged tenons.
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To better understand the influence of this cutoff damage on the stiffness of the model, the 
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Figure 26. Hysteresis curves of last cycle: (a) Single tenon damaged; (b) both tenons damaged.

Figure 27 demonstrates the varying trend of the stiffness of the damaged and undamaged models.
It can be seen from both figures that, at the same displacement amplitude, the stiffness of the damaged
models gets smaller with the enlargement of the cutoff part. For the 200 mm-B model, negative stiffness
is observed when the displacement amplitude reaches 140 mm, which is also seen in Figure 26b.
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To better understand the influence of this cutoff damage on the stiffness of the model, the
normalized stiffnesses of the damaged models are given in Figure 28. Although the normalized stiffness
of different damaged models changes with respect to the displacement amplitude, the changing range
of each curve is very limited. Therefore, the normalized stiffness of each model is regarded as a constant
value, which is derived by averaging the normalized stiffnesses of the model at different displacement
amplitudes, and is labelled as Averaged normalized stiffness (ANS) in Table 3.
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Figure 28. Normalized stiffness of damaged models: (a) Single tenon damaged; (b) both
tenons damaged.

Table 3. Averaged normalized stiffness (ANS) of damaged models.

Damage Length (mm) 0 40 60 80 100 120 140 160 180 200

ANS
Single 1 0.997 0.988 0.959 0.911 0.840 0.756 0.667 0.584 0.507
Both 1 0.994 0.975 0.917 0.822 0.684 0.519 0.353 0.174 0.016

2Single-1 1 1 0.994 0.976 0.917 0.823 0.680 0.512 0.334 0.167 0.014
1 2Single-1 means twice the values in the row of ‘Single’ and then subtract 1.

When the damage length is smaller than 100 mm, there is still some remaining part of the tenon
outside the column. Therefore, the tenon of the damaged model contacts with the mortise at the
abovementioned intersection points as the undamaged model. However, when the damage length
exceeds 100 mm, the remaining part of the tenon is all surrounded by the column, which leads to the
contact points between the tenon and the mortise moving to the inner of the column. Therefore, the
varying trends of the averaged normalized stiffness with the damage length before and after 100 mm
are quite different as plotted in Figure 29. When the damage length is 100 mm, the averaged normalized
stiffnesses of the single tenon damaged model and the both tenons damaged model are 0.91 and 0.82,
respectively. When the damage length is greater than 100 mm, the two curves are almost linear, and
the slopes of the two curves are −0.00404 mm−1 and −0.00806 mm−1. The former value is nearly half of
the latter one. This is because the slope can be regarded as the reduction of the stiffness of the damaged
model. If a given damage length l causes a reduction dS(l) on the averaged normalized stiffness of the
single damaged model, then the averaged normalized stiffness NKS(l) of this model can be derived by

NKS(l) = 1− dS(l) (3)

When both of the tenons are damaged with the same damage length l, and the damages at the two
tenons are not supposed to affect each other, thus the reduction on the averaged normalized stiffness
will be 2dS(l), and the averaged normalized stiffness NKB(l) will be

NKB(l) = 1− 2dS(l) = 1− 2(1−NKS(l)) = 2NKS(l) − 1 (4)

The right part of Equation (4) 2NKS(l) − 1 is calculated and listed in the last row of Table 3 and is
also plotted in Figure 29 labelled by 2Single-1. It can be seen that the 2NKS(l) − 1 is almost identical
with NKB(l).
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Figure 30. Normalized dissipated energy: (a) Single tenon damaged; (b) both tenons damaged. 

Table 4. Averaged normalized dissipated energy (ANDE) of damaged models. 

Damage Length (mm) 0 40 60 80 100 120 140 160 180 200 

ANDE 
Single 1 0.995 0.985 0.979 0.975 0.930 0.850 0.764 0.682 0.612 
Both 1 0.991 0.975 0.960 0.946 0.866 0.714 0.549 0.406 0.268 
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Figure 29. Averaged normalized stiffness of damaged models.

Figure 30 presents the normalized dissipated energy of the models, and these curves share the
similar characteristics with the normalized stiffness. The normalized dissipated energy has a slight
rising trend, especially for the models with large damage length, although the slopes of these curves
are negligible. Therefore, the averaged normalized dissipated energy is achieved through the same
way as the averaged normalized stiffness and is given in Table 4 and Figure 31.
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Table 4. Averaged normalized dissipated energy (ANDE) of damaged models. 
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Figure 30. Normalized dissipated energy: (a) Single tenon damaged; (b) both tenons damaged.

Table 4. Averaged normalized dissipated energy (ANDE) of damaged models.

Damage Length (mm) 0 40 60 80 100 120 140 160 180 200

ANDE
Single 1 0.995 0.985 0.979 0.975 0.930 0.850 0.764 0.682 0.612
Both 1 0.991 0.975 0.960 0.946 0.866 0.714 0.549 0.406 0.268

2Single-1 1 0.990 0.970 0.958 0.950 0.861 0.699 0.528 0.364 0.225

Just as the averaged normalized stiffness, the changing trends of the averaged normalized
dissipated energy with the damage length smaller and bigger than 100 mm are significantly different.
The averaged normalized dissipated energy can be regarded as a bilinear curve with the two straight
lines intersecting at the damage length of 100 mm, which is remarked by the dash line in Figure 31.
The slopes of the left part of the curves are prominently smaller than those of the right part. When
the damage length is 100 mm, the averaged normalized energy of both models are 0.975 and 0.946,
respectively, which are greater than the averaged normalized stiffnesses with the same damage length.
When the damage length is smaller than 100 mm, the reductions on the dissipated energy are all greater
than 0.95, which means the damage length smaller than 100 mm has little effect on the frame. When
the damage length reaches 180 mm, the reductions on dissipated energy of single and both damaged
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models are 0.612 and 0.268, respectively. Similarly, a curve labelled with 2Single-1 is also plotted in the
figure, and it is very close to the curve representing the averaged normalized dissipated energy of the
both tenons damaged models, although the difference between the two curves gets larger with the
increase of the damage length.Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 21 
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Figure 31. Averaged normalized dissipated energy of damaged models. 
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5. Conclusions

In this study, a FE model of a timber frame with straight mortise-tenon joints is built and verified.
The stress state of the model subjected to the lateral cyclic loading is then analyzed. Three damage
types of the mortise-tenon joint are proposed and included in the FE model to study the influence of
these damages on the cyclic performance of the timber frame. The conclusions are as follows.

(1). The vertical compressive stress at the contact surface of the mortise-tenon joint is a reasonable
variable that can represent the reaction force of the whole model. Larger value of this stress
corresponds to more demand for the lateral loadings exerted on the columns.

(2). The gap between the mortise and the tenon can reduce the stiffness of the timber frame because
of the lack of contact between the external surface of the column and the vertical surface of the
beam, while the dissipated energy remains almost unchanged. When the gap reaches a certain
value, 20 mm in this study, the stiffness will become stable.

(3). The damage in the top of the tenon can lead to the reduction in the maximum force and stiffness of
the model followed by a sudden increase when some lateral displacement is reached. This certain
lateral displacement can be derived from both the stiffness curves and the vertical compressive
stresses at the contact surfaces.

(4). Damage in the end of the tenon has two types of influences on the stiffness and dissipated energy
of the model according to the length of the cutoff part. When the length is small, the stiffness and
dissipated energy decrease slowly with the increase of the length. When this length is larger than
100 mm in this study, the stiffness and dissipated energy will decrease dramatically.
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