

Supplementary materials

Ion Channel Properties of a Cation Channelrhodopsin, *Gt*_CCR4

Shunta Shigemura ¹, Shoko Hososhima ¹, Hideki Kandori ^{1,2} and Satoshi P. Tsunoda ^{1,3,*}

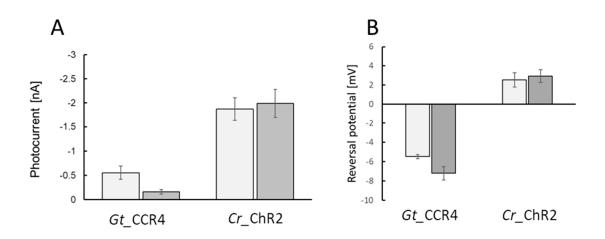

- ¹ Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- ² OptoBio Technology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- ³ PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- * Correspondence: tsunoda.satoshi@nitech.ac.jp; Tel.: +81-52-735-5218

Table S1. Amino acid alignments of bacteriorhodopsin (BR), *Cr*_ChR2 and *Gt*_CCR4. The characteristic amino acids were detected in BR and *Cr*_ChR2. In addition, amino acid numbers of each protein and transmembrane helix (TM) numbers are indicated.

No. in BR	44	45	52	59	63	85	89	90	96	118	214	216
No. in Cr_ChR2	82	83	90	97	101	123	127	128	134	156	253	257
No. in Gt CCR4	75	76	84	90	94	116	120	121	127	149	242	246
TM number	2	2	2	2	2	3	3	3	3	4	7	7
BR (H ⁺ pump)	Α			S	G	D	Т	Н	D	Μ	D	K
Cr_ChR2	E	E	E	E	E	E	Т	С	Н	D	D	K
Gt CCR4	E	E	N	Т	R	D	Т	С	D	Α	D	K

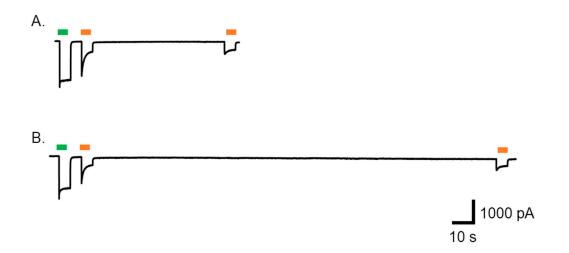


Figure S1. Ca²⁺ photocurrents of *Gt*_CCR4 and *Cr*_ChR2. **A**, Comparison of current amplitude of *Gt*_CCR4 and *Cr*_ChR2 in the presence of two Ca²⁺ concentrations at -60 mV. Each channelrhodopsin expressed in ND7/23 cells was stimulated by 530 nm (*Gt*_CCR4) and 480 nm (*Cr*_ChR2) LED light (6.8 mW/mm²). A standard pipette solution was used. The bath solution contained (in mM) 60 NaCl, 1 KCl, 2 (white bar) or 40 (grey bar) CaCl₂, 2 MgCl₂, 76 (white bar) or 0 (grey bar) *N*-methyl D-glucamine, 10 HEPES, at pH 7.2. **B**, Comparison of reversal potentials of *Gt*_CCR4 and *Cr*_ChR2 in the presence of two Ca²⁺ concentrations. Solution in each condition is the same as in **A**. (n = 3-6 cells).

Figure S2. *Gt*_CCR4 has a long-lived and long wavelength-absorbing inactivated state. Standard solutions were used. Photocurrents at -60 mV are shown. **A**, After activation by 530 nm light shown in a green bar, 590 nm light (in yellow bar) reduced the current amplitude. After a 60 s dark period, the second 590 nm was applied. **B**, Dark period was prolonged to 3 min. The second 590 nm light still reduced the current, indicating a very stable inactivated state.