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Abstract: The vibro-acoustic performance of a sandwich plate with periodic locally resonant (LR)
units is examined in this paper, with specific focus on the effect of periodic resonators on the average
radiation efficiency and the acoustic radiation to the far field. In order to assess the radiation
performance, the band-gap properties of an infinite periodic structure and the vibrational response of
a finite periodic structure are first studied with closed-form solutions. Subsequently, the acoustic
radiation efficiency of the LR sandwich plate is obtained using the concepts of modal radiation. It is
shown that the acoustic radiation power can be reduced significantly, not only in the band-gap but
also at frequencies close below the band-gap, due to either the decrease in radiation efficiency or the
decrease in the vibration response. Thus, the periodic resonators provide a broader attenuation band
for the purposes of noise reduction than for vibration reduction. However, for frequencies close above
the band-gap, the acoustic performance became worse, owing to the increase in acoustic radiation
efficiency. Fortunately, the increased sound radiation above the band-gap can be reduced by adding a
small damping to the resonator, which further broadens the attenuation frequency band. The reason
for the variation of acoustic radiation efficiency is also studied and can be physically explained by
the effective mass of an LR unit, where increased mass corresponds to decreased radiation efficiency
and decreased mass corresponds to increased radiation efficiency. Thus, the effective mass can be a
useful parameter for designers to estimate which frequency component will be acoustically reduced
or acoustically enhanced in a practical design.

Keywords: periodic sandwich plate; periodically inserted resonators; radiation efficiency;
vibro-acoustic reduction; local-resonance band-gap

1. Introduction

Sandwich structures have been researched for centuries and are one of the most used structures
in industry, including but not limited to airplane [1], automobile [2], underwater vehicle [3],
and architecture [4]. In general, a sandwich structure usually consists of two high-strength surfaces
and one low-strength and also low-density core. Configured by this, sandwich structures can provide
an increased stiffness-to-mass ratio compared with both stiffened plates and homogeneous plates when
they have the same mass, owing to the increased rotational inertia and bending rigidity for sandwich
structures. The stiffness-to-mass ratio plays a very important role in engineering design when the goal
of design optimization is reducing weight.

As sandwich structures have great potential in application, a quite number of researches can
be obtained from the public literatures, with various focus on building theoretical models [5–8],
researching dynamic properties [9–11], configuring structures with various types of cores [12–18],
and also realizing the engineering applications [1–4]. In practice, sandwich structures have various
configurations for various specific focus, with the main difference lying on the cores. In the aircrafts,
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honeycomb cores [13,18] are usually used in order to obtain both enough strength and also light weight.
When the core is designed with heat-insulating material [19,20], the sandwich structures can not only
be used in the building walls to maintain temperature of the inner space but also can be applied in a
missile to protect the internal precision equipment. Another example is that a sandwich plate with a
porous core [15] can be used for noise-isolation purpose.

As seen in the above, sandwich structures have many attractive characteristics in the engineering.
However, some light-weight sandwich structures may induce acoustic problem, as these light-weight
structures vibrate and radiate annoying noise easily. Efforts have been made to improve the poor
acoustical performance by using a viscoelastic material core [14], by optimal sandwich design [21–23],
by applying a magnetorheological core or electrorheological core [12,16], and also by introducing an
active surface panel [24,25].

In recent decades, numerical researches about periodic structures including both phononic
crystals [26–28] and metamaterials [29–31] have been conducted, as they can effectively attenuate
vibration and then reduce noise radiation. Owing to spatial periodicity of periodic structures, waves
of some specific frequencies cannot propagate without attenuation while other waves can propagate
successfully. In this wave-filtering phenomenon, the frequency band where waves cannot propagate
forms a band-gap. In the band-gap, no wave can propagate and thus the vibration can be significantly
attenuated. Therefore, periodic structures have steadily come to be considered as a new method to
improve vibro-acoustic performance.

Researches have shown that Bragg scattering mechanism [32] and locally resonant mechanism [27]
are two main mechanisms for the formation of a band-gap. For a locally resonant (LR) periodic
structure, the resonance of the resonators is the main cause of the band-gap, and it has been found
that the working wavelength of an LR periodic structure can be far greater than the lattice constant
(the dimensions of a unit in the periodic structure). Therefore, the LR periodic structure has the ability
to reduce lower frequency than a Bragg-scattering structure. Liu et al. [27] first proposed the concept
of an LR phononic crystal and verified this type of band-gap with a carefully designed specimen,
where lead balls are coated with silicon rubber and they are embedded in an epoxy-matrix plate.
By doing this, they obtained an LR band-gap far lower than traditional Bragg band-gap frequencies.
Attracted by its low-frequency band-gap performance, the LR periodic structure has been widely
studied by researchers in recent years and various configurations of plate-type structures have been
proposed. As summarized by Wu et al. [33], several types of configurations have been proposed to
meet the requirements of practical applications, including periodic resonators inserted in the periodic
openings of a plate [34–38], mounted at the surface of a homogeneous plate [39–41], and also embedded
in a close plate with great thickness [42].

Most studies in the available literature about LR structures are related to a single-layer plate,
while very few are related to composite laminate structures, owing to their complexity. As the core of a
sandwich panel typically has great thickness, it is possible to insert resonators into the core. With the
urgent need for vibration control in sandwich panels, Chen and Sun [43] were the first to introduce
spring–mass resonators to a sandwich beam in order to study its unusual dynamic behavior with
two proposed theoretical continuum models. The initial work was followed and extended by their
research group [44–49] with a specific focus on new theories, practical experiments, the combined
effects of periodic resonators and periodic cores, and also the improvement from a single resonator to
multiple resonators. These studies were limited to vibrational dynamic behavior and one-dimensional
sandwich structures, where acoustic radiation was not considered and cross-stream mode induced by
multi-dimension was also not involved. However, in practical applications, most sandwich panels
are designed in two dimensions, and sometimes the vibration-induced sound radiation is the major
concern except vibration response.

Thus, in this paper, the LR sandwich beam is extended to a sandwich plate to meet the practical
needs of applications. In addition, the main purpose of this paper is to study the acoustic radiation
behavior. For an LR periodic structure, most studies have focused on the effects of the band-gap on
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vibrational dynamic behavior. However, the effects of the band-gap on sound radiation cannot be
represented by or inferred from the effects on vibration, as the sound radiation is not only dependent
on vibration response, but also dependent on radiation efficiency. Thus, the study of vibro-acoustic
performance of a sandwich plate with periodically inserted resonators has practical meaning.

In this paper, the vibro-acoustic performance of an LR sandwich plate is examined, with specific
focus on sound radiation performance caused by periodic resonators. A closed-form solution for
an LR sandwich plate is theoretically derived. The dispersion curve and the band-gap are obtained
by using governing equations for a sandwich plate and Bloch boundary conditions. Then the
vibrational response of a finite LR sandwich plate is given to examine the effects of periodic resonators
on vibrational performance. In the following, the vibration-induced sound radiation power and
corresponding radiation efficiency are studied to examine the acoustic performance of an LR sandwich
plate. The variation of acoustic performance is physically explained by the effective mass, and the
effect of damping of the resonator to provide more beneficial acoustic performance is also discussed.
The findings in this paper provide guidance for band-gap design in an LR sandwich plate when the
purpose is not only on the reduction of vibration but also on the reduction of sound radiation.

2. Formulations

2.1. Structure Model and Governing Equations

A unit element of a periodic LR sandwich plate is shown in Figure 1, where a resonator consisting
of a mass block and two linear springs is mounted in a cylindrical hollow in the core layer of a
symmetric sandwich plate. In this coupled system, the mass block is connected to the top and bottom
surface layers with two identical linear springs. Thus, in the LR band-gap, the vibration energy of the
surface panels can be transmitted to the inner mass and most of the system energy will be stored in
the periodic resonators. The change in vibration distribution and the change in radiation efficiency
induced by coupling between the sandwich panel and its inserted periodic resonators will lead to a
change in the corresponding acoustic radiation.
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The unit element of the LR sandwich plate has the dimensions of length a1, width b1, surface-layer
thickness h f , and core thickness hc. The material parameters of the surface layer are the Young’s
modulus E f , density ρ f , and Poisson’s ratio υ f , while the material parameters of the core layer are the
shear modulus Gc and density ρc0. Each linear spring has identical stiffness kR/2 and the mass of the
resonator is denoted as mR. In addition, the radius of the inner cylindrical hollow is ro.

In the following theoretical model, an inhomogeneous sandwich plate with periodic cylindrical
hollows is modeled as a homogeneous sandwich plate with an equivalent density of the core expressed
as ρc = ρc0

(
1−πr2

o/a1b1
)

and the resonator is assumed to be attached under the homogeneous
sandwich plate with a mass mR and a spring stiffness kR. In addition, the shear moduli of the surface
layers are dramatically larger than that of the inner core. Thus, the surface layers are assumed to
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suffer longitudinal strain but no transverse shear strain, while the core layer suffers shear strain but no
normal strain. In addition, the surface layers and the core layer are configured in perfect continuity
and at the interfaces between each layer no slip occurs. The transverse displacements in each layer
keep identical at the same in-plane position. Harmonic motion with a time-dependence term e jωt is
considered throughout the paper.

Following the above assumptions, the strain energy of the surface layer and the core layer can be
expressed respectively as

U f = 1
2 B

∫ ∫ [
u2

x + 2υ f uxvy + v2
y + υa

(
uy + vx

)2
]
dxdy

+ 1
2 D

∫ ∫ [
w2

xx + 2υ f wxxwyy + w2
yy + 2

(
1− υ f

)
w2

xy

]
dxdy

, (1)

and

Uc =
1
2

Gh

∫ ∫ (
γ2

x + γ2
y

)
, (2)

where u, v, and w are the x-wise, y-wise, and z-wise surface displacements, respectively. The terms γx

and γy are the shear strains of the sandwich core and are expressed, respectively, as γx = (2u− dwx)/hc

and γy =
(
2v− dwy

)
/hc, where d = hc + h f . In addition, B = E f h f /1− υ2

f , D = E f h3
f /12

(
1− υ2

f

)
,

υa =
(
1− υ f

)
/2, and Gh = Gc/hc.

The kinetic energies of the surface and core layers are expressed, respectively, as

T f =
1
2

∫ ∫ [
m f

( .
u2

+
.
v2

+
.

w2)
+ I f

( .
w2

x +
.

w2
y

)]
dxdy (3)

and

Tc =
1
2

∫ ∫ {
mc

( .
u2

c +
.
v2

c +
.

w2)
+ Ic

[( .
θc

)2
+

( .
ϕc

)2
]}

dxdy, (4)

where m f = ρ f h f , mc = ρchc, I f = ρ f h3
f /12, Ic = ρch3

c /12, θc =
(
2u− h f wx

)
/hc,

and ϕc =
(
2v− h f wy

)
/hc. Thus, the total strain energy and the total kinetic energy can be expressed

as U = 2U f + Uc and T = 2T f + Tc, respectively. By using Hamilton’s principle, δ
∫ t1

t0
(T −U)dt = 0,

the governing equations of a sandwich plate can be obtained as

Lu = f, (5)

where u =
[

u v w
]T

is a displacement vector and L is a 3 × 3 operator matrix, which is defined in

Equations (A1)–(A9) in Appendix A. The term f =
[

0 0 fe + fRd
]T

is a force vector, where fe is an
external transverse force and fRd = fRδ(x− xR)δ(y− yR) is the force from the resonator, in which fR is
the force amplitude applied at the resonator position (xR, yR). Force analysis on a resonator coupling
with a sandwich unit shows that {

− fR = mR
..
wR0

fR = −kR[w(xR, yR) −wR0]
, (6)

where w(xR, yR) and wR0 are the transverse displacement of the sandwich plate at position (xR, yR)

and the displacement of the mass block of the resonator, respectively.

2.2. Band-Gap of, and Sound Radiation from, an Infinite Periodic Structure

2.2.1. Band-Gap

The plane-wave-expansion (PWE) method is used to study the band-gap properties of the LR
sandwich plate. For an infinite sandwich plate, there are infinite resonators located periodically in the
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x and y directions. Thus, the total force generated by the periodic resonators on the sandwich plate can
be expressed as

fRd =
∞∑

s=−∞

∞∑
t=−∞

fRstδ(x− xs)δ(y− yt), (7)

where (xs = sa1, yt = ta2) is the position of the stth resonator and fRst is the force applied on the
sandwich plate by the stth resonator. According to the PWE method, the displacements of the LR
sandwich plate can be written as

u(x, y) =
∞∑

m=−∞

∞∑
n=−∞

Umne− j(Gm+α)xe− j(Gn+β)y

v(x, y) =
∞∑

m=−∞

∞∑
n=−∞

Vmne− j(Gm+α)xe− j(Gn+β)y

w(x, y) =
∞∑

m=−∞

∞∑
n=−∞

Wmne− j(Gm+α)xe− j(Gn+β)y

, (8)

where (α, β) is a Bloch wave vector and Gmn = (Gm, Gn) is the reciprocal-lattice vector of the mnth

plane wave, in which Gm = 2mπ/a1 and Gn = 2nπ/b1. Substitution of Equations (6)–(8) into
Equation (5) yields

(K11Umn + K12Vmn + K13Wmn) −ω2(M11Umn + M12Vmn + M13Wmn) = 0
(K21Umn + K22Vmn + K23Wmn) −ω2(M21Umn + M22Vmn + M23Wmn) = 0K31Umn + K32Vmn + K33Wmn +

kR
S

M∑
p=−M

N∑
q=−N

Wpq −
kR
S wR0


−ω2(M31Umn + M32Vmn + M33Wmn) = 0−kR

M∑
p=−M

N∑
q=−N

Wpq + kRwR0

−ω2(mRwR0) = 0

, (9)

where S = a1b1 is the element area and the infinite series in Equations (7) and (8) are truncated
to −M ≤ m, s ≤ M and −N ≤ n, t ≤ N. The term wR0 is the displacement of the mass block of
the resonator located at (x = 0, y = 0). The expressions of Ki j and Mi j (i, j = 1, 2, 3) are defined in
Equations (A10)–(A27) in Appendix A. After some manipulations, Equation (9) can be written in matrix
form as [

K(α, β) −ω2M(α, β)
]
Φ = 0, (10)

where Φ =
[

U V W wR0
]T

, U = [Umn]1×[(2M+1)×(2N+1)], V = [Vmn]1×[(2M+1)×(2N+1)],
and W = [Wmn]1×[(2M+1)×(2N+1)]. For each given Bloch wave vector k = (α, β), the characteristic
frequencies can be determined by Equation (10). By sweeping k in the directions of
ΓX (α : 0→ π/a1 , β : 0), XM (α : π/a1, β : 0→ π/a2 ), and MΓ (α : π/a1 → 0 , β : π/a2 → 0) in the
first Brillouin zone (see Figure 1b), the dispersion relationship between wave number and frequency
can be obtained, from which the band-gap is then identified.

2.2.2. Sound Radiation

In an infinite LR sandwich plate with wave vector k =
(
kx, ky

)
, the displacement functions can be

assumed as [
u v w

]
=

[
U V W

]
e− jkxxe− jky y, (11)
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where kx = kP cosϕ, ky = kP sinϕ, and kP =
√

k2
x + k2

y is the structural wave number. The situation of
free vibration is considered here to determine the relationship between kP and frequency. Substitution
of Equation (11) into Equations (5) and (6) yields

a11k2
P + a12 a13k2

P a14kP 0
a21k2

P a22k2
P + a23 a24kP 0

a31kP a32kP a33k4
P + a34k2

P + a35 a36

0 0 a41 a42




U
V
W

wR0

 = 0, (12)

where the coefficients ai j are expressed as a function of frequency, which are defined in
Equations (A28)–(A43) in Appendix A. By calculating the matrix determinant of Equation (12),
the dispersion equation can be obtained as

k8
P + ε6k6

P + ε4k4
P + ε2k2

P + ε0 = 0, (13)

where ε0, ε2, ε4, and ε6 can be calculated with Equations (A44)–(A48) defined in Appendix A. As can
be seen in Equation (13), each frequency corresponds to four pairs of conjugate wave numbers, with
two of them related to x-wise and y-wise in-plane waves and the other two related to z-wise flexural
waves. The far-field sound radiation is strongly related to flexural waves instead of in-plane waves.
Further study shows that, for the flexural waves, only one pair corresponds to the propagating waves
and the other corresponds to the evanescent (near-field) waves. The waves considered in the theoretical
model are in sinusoidal form distributed in the whole infinite structure as shown in Equation (11)
instead of point-excited situation, in order to minimize the effect of near-field effect. For the sinusoidal
wave form, the sound pressure generated by evanescent wave attenuates rapidly from near surface to
far-away sound field, and the sound pressure only exists near the plate surface. In addition, the sound
pressure is out of phase with the plate velocity, resulting that there’s little sound power radiated
from evanescent wave. For the finite sandwich structure in the next subsection, the present model is
restricted to lightly damped situation and light-fluid acoustic medium so that the effect of near-field
effect can be reasonably ignored. In order to make the theoretical model not too complex, the effects of
evanescent flexural waves are ignored in the following analysis.

It is well known that the Helmholtz wave equation in a Cartesian coordinate system is expressed as

∂2p
∂2x

+
∂2p
∂2y

+
∂2p
∂2z
− k2

acp = 0, (14)

where kac = ω/c is the acoustic wave number and c is sound velocity in the surrounding acoustic
medium. The sound pressure solution of Equation (14) has the form of p = p0e− jkxe− jkye− jkz , substitution
of which into Equation (14) yields k2

x + k2
y + k2

z = k2
ac. Thus, the transverse acoustic wave number can

be expressed as kz = ±
√

k2
ac − k2

P. The continuity condition for normal velocity at the interface between
the plate surface and acoustic medium states that

v̂ = −
1

jωρ0

∂p
∂z

∣∣∣∣∣
z=0

, (15)

where ρ0 is the density of the acoustic medium and v̂ = − jωw is the normal velocity of the plate.
After some manipulations, the sound radiation efficiency of an infinite LR sandwich plate is given by

σinf =

√
k2

ac

k2
ac − k2

P

, (16)
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where kP is calculated using Equation (13) at a given frequency. Thus, the radiation efficiency can be
finally obtained as a function of frequency.

2.3. Vibro-Acoustic Formulation of a Finite Periodic Structure

An LR sandwich plate with a simply-supported boundary condition is placed in an infinite rigid
baffle, which is shown in Figure 2. A harmonic point force is applied on the plate. As the acoustic
medium chosen in this paper is air (a light fluid), the effects of fluid load by the acoustic medium on
the structure are neglected.
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u(x, y) =
∞∑

m=1

∞∑
n=1

Umn cos(kmx) sin(kny)

v(x, y) =
∞∑

m=1

∞∑
n=1

Vmn sin(kmx) cos(kny)

w(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin(kmx) sin(kny)

, (17)
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(
K11Umn + K12Vmn + K13Wmn

)
−ω2

(
M11Umn + M12Vmn + M13Wmn

)
= 0(

K21Umn + K22Vmn + K23Wmn
)
−ω2

(
M21Umn + M22Vmn + M23Wmn

)
= 0

K31Umn + K32Vmn + K33Wmn

+ 4kR
ab

M∑
p=1

N∑
q=1

S∑
s=1

T∑
t=1

χmnχpqWpq

−
4kR
ab

S∑
s=1

T∑
t=1

χmnwRst


−ω2

(
M31Umn + M32Vmn + M33Wmn

)
= Fmn

−kR
M∑

p=1

N∑
q=1

χpqWpq + kRwRst

−ω2(mRwRst) = 0

, (18)

where χmn = sin(kmxs) sin(knyt), χpq = sin
(
kpxs

)
sin

(
kqyt

)
, and wRst is the displacement of the mass

block of the stth resonator. For a point force excitation applied at position (x0, y0), the force term is
written as Fmn = 4F0

ab sin(kmx0) sin(kny0). The expressions of Ki j and Mi j (i, j = 1, 2, 3) are defined in
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Equations (A49)–(A66) in Appendix A. After further manipulations, Equation (18) can be written in
matrix form as [

K−ω2M
]
Φ = F, (19)

where Φ =
[

U V W WR
]T

, U =
[
Umn

]
1×(M×N)

, V =
[
Vmn

]
1×(M×N)

, W =
[
Wmn

]
1×(M×N)

,

WR =
[
WRst

]
1×(S×T)

, F =
[

0 0 Fw 0
]
, and Fw = [Fmn]1×(M×N). The infinite series in Equation (17)

are truncated to 1 ≤ m ≤ M and 1 ≤ n ≤ N. Then the modal frequencies and modal shapes
can be obtained by setting F as zero, and the modal coefficient Φ can be determined by setting
F as nonzero. After Φ is known, the displacement response of the LR sandwich plate can
finally be determined using Equation (17), from which the transverse velocity can be obtained

as v̂(x, y) =
∞∑

m=1

∞∑
n=1

V̂mn sin(kmx) sin(kny), where V̂mn = − jωWmn. The spatially averaged mean

square velocity can be calculated as

〈
v̂2

〉
=

M∑
m=1

N∑
n=1

1
8

V̂mnV̂∗mn, (20)

where the superscript asterisk denotes the complex conjugate of a variable. According to the Rayleigh
integral, the acoustic pressure p at the far-field observation point (r,θ,ϕ) can be written in terms of the
plate-surface velocity v̂(x, y)

p(r,θ,ϕ) =
jkaccρ0

2π

a∫
0

b∫
0

v̂(x, y)e− jkr

r
dydx. (21)

Substitution of Equation v̂(x, y) =
∞∑

m=1

∞∑
n=1

V̂mn sin(kmx) sin(kny) into Equation (21) gives

p(r,θ,ϕ) =
∞∑

m=1

∞∑
n=1

V̂mnTmn(r,θ,ϕ). (22)

Here

Tmn(r,θ,ϕ) = jkacρ0c
e− jkr

2πr
ab

mnπ2

(−1)me− jτx − 1

(τx/mπ)2
− 1

(−1)ne− jτy − 1(
τy/nπ

)2
− 1

, (23)

where τx = ka sinθ cosϕ and τy = kb sinθ sinϕ. Thus, the total acoustic power radiated from the LR
sandwich plate can be obtained by integrating sound intensity over a far-field hemisphere with radius r

Π =

2π∫
0

π/2∫
0

∣∣∣p(r,θ,ϕ)
∣∣∣2

2ρ0c
r2 sinθdθdϕ. (24)

Substituting Equation (22) into Equation (24) gives

Π =
∞∑

m=1

∞∑
n=1

∞∑
p=1

∞∑
q=1

Πmnpq, (25)

where Πmnpq is the acoustic power radiated by mode (m, n) due to the vibration of mode (p, q), and it is
given by

Πmnpq = V̂mnV̂∗pq

2π∫
0

π/2∫
0

Tmn(r,θ,ϕ)T∗pq(r,θ,ϕ)

2ρ0c
r2 sinθdθdϕ. (26)
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Thus, the modal radiation efficiency can be expressed as

σmnpq =
Πmnpq

1
8ρ0cabV̂mnV̂∗pq

=

2π∫
0

π/2∫
0

4
ρ2

0c2ab
Tmn(r,θ,ϕ)T∗pq(r,θ,ϕ)r2 sinθdθdϕ, (27)

and the total average radiation efficiency of the LR sandwich plate is given by

σ =
Π

1
2ρ0cab

〈
v̂2

〉 =

∞∑
m=1

∞∑
n=1

∞∑
p=1

∞∑
q=1

V̂mnV̂∗pqσmnpq

∞∑
m=1

∞∑
n=1

V̂mnV̂∗mn

. (28)

From Equation (28), when the modal vibration coefficient and the modal radiation efficiency
are obtained, the sound radiation power can be finally determined to illustrate the sound radiation
performance caused by the coupling effect between resonators and a sandwich plate.

3. Results and Discussion

The dimensions of a unit element of an LR sandwich plate are set as a1 = b1 = 100 mm,
h f = 2 mm, hc = 16 mm, and ro = 15 mm. The surface layer is made of aluminum with Young’s
modulus E f = 77.6 GPa, density ρ f = 2730 kg/m3, and Poisson’s ratio υ f = 0.35, while the core layer
is made of foam with shear modulus Gc = 0.05 GPa and density ρc0 = 110 kg/m3. The cylindrical
mass of the resonator is made of lead with radius ri = 12 mm, height hcR = 6 mm, and density
ρR = 11600 kg/m3. Thus, the mass of the resonator is calculated as 0.0315 kg, which is 25% of the
mass of a unit sandwich element without a resonator. The resonator is tuned to 1000 Hz with a spring
stiffness of kR = 1.2436× 106 N/m. In the following analysis, the above parameters are kept unchanged
unless otherwise stated.

3.1. Band-Gap Property

The dispersion curves of an infinite LR sandwich plate are calculated using the theory derived in
Section 2.2.1. At the same time, the dispersion curves of an infinite homogeneous sandwich plate with
the same dimensions and same materials are also discussed for comparison purposes.

The dispersion curves of these two structures are shown together in Figure 3. It can be seen that,
for the homogeneous sandwich plate, each frequency is always related to a wave number in the ΓX
direction and a wave number in the MΓ direction in the irreducible Brillouin zone, which means that
propagating modes are allowed at any frequency. However, for the LR sandwich plate, there are some
frequencies that are not related to any wave number in the ΓX direction. Two directional band-gaps
(DBG) along the ΓX direction and one complete band-gap (CBG) are observed in the figure with
band-gap frequencies of 825–1032 Hz and 1476–1677 Hz for the two DBGs and 868–1032 Hz for the
CBG, respectively. Further analysis shows that the first DBG located near the resonance of the resonator
acts as a resonance gap, which is caused by the LR effect; and the second DBG is a Bragg gap, which is
caused by wave scattering at periodic discontinuities and is affected significantly by the lattice constant.
These two types of band-gaps can be identified by comparing the modal shape of each dispersion
curve. The Bragg gap can also be identified by the Bragg frequency fB (the lower frequency edge of a
Bragg gap), where the wavelength is twice as that of the lattice constant, and it can be determined by
solving the transcendental equation kP( fB) = π/a1, where fB is calculated to be 1476 Hz.
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Figure 3. Dispersion curves of a locally resonant sandwich plate (LR-SP) and a homogeneous 
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Young’s modulus is set to be as large as 1 × 1015 Pa so that the block could be considered as a rigid 
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Figure 3. Dispersion curves of a locally resonant sandwich plate (LR-SP) and a homogeneous sandwich
plate (HM-SP). (DBG—directional band-gap; CBG—complete band-gap.).

In a finite periodic structure, the DBGs along the ΓX direction can only exist in a situation with
symmetric excitation, whereas the CBG is more general, where a wave from any direction can be
attenuated and the sound radiation from a finite structure is affected significantly by the CBG instead of
the DBG. Thus, this research will focus on the CBG and the term “band-gap” used in the next sections
will refer to the CBG.

The theoretical formulations are validated using a finite-element-method (FEM) numerical model
based on the COMSOL Multiphysics software. Shown in Figure 4a is a unit element, which mainly
consists of the bottom sandwich part and the top mass-block part. The dimensions and material
properties of the sandwich part are the same as that shown in the beginning of Section 3, except that
the density of the core is modified to be 102.2 kg/m3 as the core layer is considered as homogeneous in
the FEM model. The mass of the top mass-block part is set to be 0.0315 kg and its Young’s modulus is
set to be as large as 1 × 1015 Pa so that the block could be considered as a rigid body. A connection
function called “elastic layer” in COMSOL is added in the FEM modal between the bottom sandwich
part and the top mass-block part, so that the two parts are elastically connected. The spring stiffness
of the “elastic layer” is set to be kR = 1.2436 × 106 N/m, which is the same as that described in the
beginning of Section 3. The meshing model is shown in Figure 4b with the element size set as small as
2 mm for the purpose of satisfying the adequate meshing resolution at the highest frequency 2000 Hz.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 26 
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In order to obtain the band-gap properties, the Bloch–Floquet periodic conditions are applied
at two in-plane (both x-wise and y-wise) directions in the FEM model, which are represented by a
Bloch wave vector k = (α, β). By sweeping k in x-wise direction (α : 0→ π/a1 , β : 0), y-wise direction
(α : π/a1, β : 0→ π/a2 ), and corner-to-corner direction (α : π/a1 → 0 , β : π/a2 → 0), the dispersion
relationship between wave number and frequency can be obtained by further applying characteristic
frequency analysis in the simulation software.
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The dispersion curves calculated from the numerical model are shown together with the results
from the present analytical model in Figure 3. It can be seen that the results from the present model
have an excellent agreement with those from the FEM model, which shows that the solutions of the
present analytical model have sufficient precision.

3.2. Vibration Response of a Finite LR Sandwich Plate

The vibration response of a finite LR sandwich plate with a simply-supported boundary is further
studied to illustrate the band-gap phenomenon of vibration in a practical finite structure. The examined
structure is composed of 10 × 8 cells (1 × 0.8 m) with cell parameters the same as those shown in the
previous sub-section. A transverse point force is applied at position (0.1, 0.1 m) with a harmonic form
and the whole structure is structurally damped with a damping loss factor of η = 0.002.

The root-mean-square velocity averaged over the plate surface and each modal contribution of an
LR sandwich plate are shown in Figure 5a, together with the results of an equivalent homogeneous
sandwich plate shown in Figure 5b. Comparison of Figures 5a and 3 shows that the band-gaps of
an infinite periodic LR sandwich plate are coincident with the response valleys of a finite periodic
structure. In the band-gap frequency region (868–1032 Hz), the vibration of the LR sandwich plate is
significantly reduced compared with that of a homogeneous sandwich plate.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 26 
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Figure 5. Root-mean-square velocity (RMSV) averaged over the plate surface and corresponding
modal contributions in (a) a locally resonant sandwich plate and (b) a homogenous sandwich plate.
(BG—band-gap.)

In fact, the reduction of vibration in the band-gap can be explained by the effects of the resonators
on each vibration mode. As can be observed in Figure 5a, all the modal responses are significantly
affected by periodic resonators, with a weak response contribution in the band-gap but strong
contribution outside of the band-gap. Further explanation is given in Figure 6, where three specific
modes (mode (2, 3), mode (5, 4), and mode (5, 6)) are given for both the LR and homogeneous sandwich
plates. It is observed that, for the homogeneous sandwich plate, only one peak appears in the curve,
which corresponds to the flexural vibration mode. However, when the resonators are introduced to the
sandwich plate, a new peak related to the resonator vibration mode is generated as a result of vibration
coupling between the resonator and base plate. In addition, the flexural mode of the homogeneous
sandwich plate is shifted to a lower or higher frequency in the LR sandwich plate.
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Figure 6. Comparison of modal contributions for a homogeneous sandwich plate (HM-SP) and a
locally resonant sandwich plate (LR-SP) for (a) mode (2, 3), (b) mode (5, 4), and (c) mode (5, 6).
(Flex-mode—flexural vibration mode; LR-mode—resonator vibration mode.).

Further observation of Figures 5 and 6 shows that these two modal frequencies in the LR sandwich
plate are always set apart by the band-gap, with one mode positioned at the left side and the other at the
right side, and that no mode exists in the band-gap. This phenomenon is also revealed through modal
analysis of an LR sandwich plate and a homogeneous sandwich plate, and their modal frequencies
are shown in Figure 7. For the homogeneous sandwich plate, the modes may be positioned at any
frequency based on the dimensions and boundary conditions of the finite structure. However, for a
homogenous sandwich plate, when resonators are introduced the modal frequencies positioned within
the band-gap are shifted to the left side or right side of the band-gap. As a result, vibration modes
are not allowed in the band-gap of the LR sandwich plate. Thus, the vibration in the band-gap can
be reduced.
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3.3. Radiation Efficiency of an Infinite LR Sandwich Plate

It was found from the above analysis that periodic resonators can improve the vibration
performance of an LR sandwich plate in the band-gap frequency region. As the sound radiation
ultimately depends on vibration, the radiation performance will also be affected significantly. In this
subsection, the radiation efficiency of an infinite LR sandwich plate is examined here to reveal the
effects of periodic resonators on radiation characteristics.

Shown in Figure 8a–c are the structural wave number kP, acoustic wave number kac, transverse

acoustic wave number kzr = real
(√

k2
ac − k2

P

)
, and radiation efficiency σinf of an infinite homogeneous

sandwich plate (HM-SP) in Figure 8a, an infinite LR sandwich plate (LR-SP) with the resonator tuned
at fR = 1000 Hz in Figure 8b, and an infinite homogeneous sandwich plate with the LR mass added to
the core layer (HM-SP2) in Figure 8c. The difference between HM-SP and HM-SP2 is that the mass of
resonator is added to the core layer in HM-SP2 in order to examine the effects of increase of weight due
to periodic resonators on radiation properties, thus the weight of the structure of HM-SP2 keeps the
same as that of the structure of LR-SP. It is well known that, in an infinite structure, sound radiates
efficiently only in situations where the phase speed of a structural wave exceeds the speed of sound in
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the surrounding medium (cP > cac, kP < kac). Thus, kzr can be considered as an indicator of whether a
wave with a specific frequency radiates efficiently or not, that is, a wave radiates efficiently when kzr

exceeds zero and inefficiently when kzr equals zero. For a homogeneous structure, the frequency that
satisfies kP = kac is generally called the coincidence frequency, where vibration energy may transform
to sound radiation power most efficiently and the corresponding radiation efficiency tends to infinity.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 26 
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Figure 8. Wave numbers and radiation efficiencies of (a) an infinite homogeneous sandwich plate 
(HM-SP), (b) an infinite locally resonant sandwich plate (LR-SP), and (c) an infinite homogeneous 
sandwich plate with the LR mass added to the core layer (HM-SP2). (d) The comparison of structural 
wave numbers among the above three plates. 
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Figure 8. Wave numbers and radiation efficiencies of (a) an infinite homogeneous sandwich plate
(HM-SP), (b) an infinite locally resonant sandwich plate (LR-SP), and (c) an infinite homogeneous
sandwich plate with the LR mass added to the core layer (HM-SP2). (d) The comparison of structural
wave numbers among the above three plates.

As shown in Figure 8a, the coincidence frequency of the HM-SP is fcHM = 3507 Hz. With the
increase in frequency, the radiation efficiency σinf stays constant at zero below fcHM, then reaches
infinity at fcHM, and finally decreases from infinity to unity above fcHM. Thus, the effective radiation
region begins at 3507 Hz, where vibration energy can be radiated into the acoustic medium efficiently.
In Figure 8c for the structure of HM-SP2, the variation trends of wave numbers and radiation efficiency
keep the same as that in HM-SP, except that the coincidence frequency changes from 3507 Hz to 4666 Hz
because of the increased weight in the core layer. Thus, the effective radiation region for HM-SP2
begins at 4664 Hz.

However, the case of the LR sandwich plate differs from that of the homogeneous sandwich
plate. As is shown in Figure 8b, the acoustic wave number kac is the same as in the homogeneous
sandwich plate, while the structural wave number kP varies significantly near the band-gap region
(compare Figure 8a,b)). With the increase in frequency, kP first increases gradually from zero to infinity
over 0–1000 Hz, and then decreases sharply from infinity to zero over 1001–1026 Hz, then remains
unchanged at zero over 1027–1097 Hz, and finally increases from 1098 Hz to infinity. As kzr is calculated
from kac and kP, it is also significantly affected by the resonators near the band-gap frequency region
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(868–1032 Hz). It is noticed in Figure 8b that the coincidence frequency becomes fcLR = 3378 Hz, which
is 129 Hz lower than that of the structure of HM-SP. Furthermore, because of the variation of kP, kzr

becomes positive from 1018 to 1346 Hz, which corresponds to effective sound radiation. Thus, affected
by kzr, two effective radiation regions are formed, namely 1018–1346 Hz and 3378 Hz–∞. The first one
is the resonator-induced effective radiation region, which is located above the band-gap (868–1032 Hz)
with a small zone overlapping (1018–1032 Hz). Thus, for waves with frequencies close above the
band-gap, acoustic radiation may be enhanced due to the effective radiation region.

As the radiation efficiency is strongly related to the structural wave number kP, the structural
wave numbers of HM-SP, LR-SP, and HM-SP2 are compared to further examine the radiation properties
in Figure 8d. As shown in the figure, in the lower frequencies between 0 Hz to approximately 600 Hz,
the structural wave number kP of LR-SP nearly coincidence with that of HM-SP2. It is noticed that
these above two structures have the same weight, thus the increased weight introduced by periodic
resonators have some effect on the radiation. In contrast to lower frequencies, in the higher frequencies
between approximately 2.5 to 6 kHz, kP of LR-SP nearly coincides with that of HM-SP, inducing
that the weight introduced by periodic resonators have little effect on the radiation properties in
high frequencies.

It is noticed from the comparison between Figure 8a,b that the effects of periodic resonators on
the sound radiation of an infinite sandwich plate mainly contain two terms. The first is the decrease in
coincidence frequency from 3507 to 3378 Hz, and the second is the newly generated effective radiation
region. Thus, the total effective radiation region is actually enlarged, and the ineffective radiation region
in a homogeneous sandwich plate may be changed to an effective radiation region in an LR sandwich
plate. Although the vibration in the band-gap is reduced, sound radiation in other frequencies may be
enhanced. Therefore, care should be taken when designing a band-gap for noise-reduction purposes
as the band-gap design may in fact enlarge the effective radiation region.

In fact, the variation of acoustic radiation can be physically explained by the normalized effective
mass me of an LR sandwich plate, which is expressed as

me = 1 +
mRkR

mb(kR −ω2mR)
, (29)

where mb is the mass of a unit element of the base sandwich plate. As shown in Figure 8, radiation
efficiency is strongly dependent on the structural wave number kP, thus me and kP are shown together
in Figure 9 for further analysis. It is observed that, with the increase in frequency, me increases from
1.25 to infinity over 0–1000 Hz, then increases from minus infinity to approximately unity (but always
less than unity) between 1000 and 6000 Hz. In the lower frequencies, the limit of me is 1.25, which is
exactly the effective mass of the structure of HM-SP2. In the higher frequencies, me tends to unity,
which is exactly the effective mass of the structure of HM-SP. This phenomenon is the same as that
observed in Figure 8b. It can also be observed that the effective mass is disconnected at 1000 Hz (the
resonance frequency of the resonator). By comparing the two curves in Figure 9, it is found that kP

varies synchronously with me, and the position where me reaches its maximum is also the position of
the maximum of kP. This phenomenon can be simply comprehended by referring to a homogenous
single-layer plate, whose structural wave number is proportional to the fourth-root of the material
density, that is, kP = 4

√
ω2ρh/D. Thus, kP increases with increasing density/mass and decreases with

decreasing density/mass.
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In addition, the radiation efficiency is affected by the structural wave number as can be inferred
from Equation (16). Thus, it can be concluded that the special radiation performance of the LR sandwich
plate shown in Figure 8b is mainly caused by the variation in effective mass. The break in effective
mass at 1000 Hz causes kP to have a sudden drop close above 1000 Hz, resulting in kP becoming less
than kac, which should not occur in a homogeneous sandwich plate below the coincidence frequency.
Affected by this variation, a new resonator-induced effective radiation region (1018 Hz–1346 Hz) is then
generated. The decrease in coincidence frequency from 3507 Hz to 3378 Hz in an LR sandwich plate
can also be explained by the effective mass. This is easy to understand by referring to a homogeneous
single-layer plate, as the coincidence frequency can be described with an explicit expression, written
as fc = c2

√
ρh/2π

√
D, where fc is proportional to the square root of the material density. As the

effective mass me is less than unity above 1000 Hz, the coincidence frequency is decreased in the LR
sandwich plate.

3.4. Acoustic Radiation of a Finite LR Sandwich Plate

As was studied in Section 3.2, the introduction of periodic resonators had significant effects on
the vibration response, especially in the band-gap, where vibration response is significantly reduced.
This variation in vibration will in turn directly affect the acoustic radiation, owing to the coupling
between vibration and acoustic radiation. Thus, it can be inferred that the sound radiation in the
band-gap may also be reduced as a result of the great reduction in vibration. However, the sound
radiation performance beyond the band-gap cannot be estimated simply from vibration performance,
as the sound radiation is also greatly dependent on radiation efficiency, which quantifies how much
vibration energy can be transformed to sound radiation energy. Thus, this sub-section examines
the radiation efficiency and the final sound radiation power in order to further understand the
vibro-acoustic performance of an LR sandwich plate.

The structural model is the same as that used in Section 3.2. After the vibration response is
determined, the sound radiation power from this finite LR sandwich plate is then determined using a
Rayleigh integral in the far field. The corresponding average radiation efficiency is determined from
the modal radiation efficiency σmnpq and modal velocity response V̂mn using Equation (28). As the
radiation surface, structural boundary, and structural size of the homogeneous sandwich plate are the
same as those of the LR sandwich plate, the modal radiation efficiencies of both sandwich structures
are identical. Therefore, the variation in average radiation efficiency of both sandwich structures is,
in effect, due to the variation in the modal velocity response, as shown in Figure 5.

Shown in Figure 10 is a comparison of the radiation efficiencies of homogeneous (σHM) and LR (σLR)
sandwich plates. It is noticed that the effects of the periodic resonators on radiation efficiency depend
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on frequency. In the figure, the whole frequency zone is divided into four parts: zone I (0 Hz− f11),
zone II ( f11− fLR), zone III ( fLR− fcLR), and zone IV ( fcLR−6000 Hz), where f11 = 132 Hz, fLR = 1000 Hz,
and fcLR = 3378 Hz are the fundamental frequency, the resonance frequency of the resonator, and
the coincidence frequency of the LR sandwich plate, respectively. Below the fundamental frequency
(zone I) and above the coincidence frequency (zone IV), the periodic resonators have little small effect
on radiation efficiency and σLR and σHM are nearly the same, with σLR slightly higher than σHM in zone
I and slightly lower in zone IV. Meanwhile, in zone II and zone III, σLR and σHM vary significantly and
the periodic resonators have a negative effect on radiation efficiency in zone II and a positive effect in
zone III. Thus, compared with the homogeneous sandwich plate, the radiation performance of the LR
sandwich plate is improved in zone II yet deteriorated in zone III. It is also noticed that, at frequencies
close above the band-gap in zone III, σLR reaches a local maximum of 1.99 at 1158 Hz, which is more
than five times that of σHM. In the frequency band close to 1158 Hz, the LR sandwich plate radiates
very efficiently. In fact, this frequency region is simply the resonator-induced effective radiation zone
in an infinite LR sandwich plate, which can be found by comparing the radiation efficiency of finite
and infinite LR sandwich plates, as shown in Figure 11, where the two shaded regions are the effective
radiation zones in an infinite LR sandwich plate.
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plates. 
Figure 11. Comparison of radiation efficiencies between finite and infinite locally resonant
sandwich plates.

In fact, the variation between σLR and σHM can be physically explained by the effective mass and
how the mass will affect radiation depends on how the energy is radiated. As can be analyzed from the
curves of radiation efficiency, zone I is related to monopole radiation and zones II and III correspond
to the so-called corner-mode radiation (from 132 to around 2000 Hz) and edge-mode radiation (from
around 2000 to 3378 Hz), where sound radiation is mainly limited at the corner or edge of the plate.
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Above the coincidence frequency in zone IV, the finite structure behaves as an infinite structure with
regards to sound radiation. The normalized effective mass me is shown in Figure 10 to further illustrate
the effect of me on radiation efficiency.

In zone I, σLR is mainly contributed to from the first several modes, where the first mode makes
the greatest contribution, as it has the greatest modal vibration velocity and also the greatest modal
radiation efficiency below the fundamental frequency. Thus, both σHM and σLR can be approximately
estimated from the radiation efficiency of the first mode, σ11 = 4ab f 2/c2

ac, which is the reason it is
generally considered as monopole radiation. As shown in this expression, the radiation efficiency is not
related to the parameter of mass, and thus the variation in effective mass has little effect on radiation
efficiency in zone I. In zone IV, the radiation efficiency of a finite sandwich structure is approximately
the same as that of an infinite sandwich structure. Thus, the radiation efficiencies of these two sandwich
structures can be expressed as σLR ≈ (1− fcLR/ f )−1/2 and σHM ≈ (1− fcHM/ f )−1/2. As me is below
unity above 1000 Hz, fcLR < fcHM, which was analyzed in Sub-Section 3.3. Therefore, at most of the
frequencies in zone IV, σLR is slightly smaller than σHM. Furthermore, with the increase in frequency,
me gradually becomes approximately equal to unity, resulting in the radiation efficiency of the LR
sandwich plate being nearly the same as that of the homogeneous sandwich plate. In zone II and
zone III, for corner-mode and edge-mode radiation, it can be inferred from Equation (25) in [50] that
the material density has a negative effect on radiation efficiency. Thus, the increasing mass in zone
II induces decreasing radiation efficiency, while the decreasing mass in zone III induces increasing
radiation efficiency, especially near the resonance frequency of the resonator.

From the above analysis, it can be concluded that the effect of the periodic resonators on radiation
efficiency is due to their effect on the effective mass. The effective mass can be used to indicate which
part of the frequency region is acoustically improved and which part is acoustically deteriorated.
Thus, when the effective mass of an LR sandwich structure is obtained, the radiation efficiency can be
estimated to some degree, which gives a rough prediction of the final radiation performance. This can
be important for the band-gap design of an LR sandwich plate.

The sound radiation power of an LR sandwich plate and a homogeneous sandwich plate are
shown in Figure 12, together with the radiation efficiency of the LR sandwich plate. The power
is expressed in decibels with the reference power selected to be 6.67 × 10−19 W. As shown in the
figure, in the band-gap (825–1032 Hz), the acoustic radiation of the LR sandwich plate is reduced
significantly with an average attenuation of 31.5 dB compared with that of the homogeneous sandwich
plate. This improved acoustic performance is mainly caused by the reduction in vibration, as can
be seen from Figure 13, yet it should also be noticed that the reduced radiation efficiency in much
of the band-gap also makes a positive contribution to reducing sound radiation. It is interesting to
observe that the acoustic performance is significantly improved not only in the band-gap, but also in
the frequency region close below the band-gap. As can be calculated from 500 to 868 Hz, the average
radiation power of the LR sandwich plate is 8.4 dB lower than that of the homogeneous sandwich plate.
In this frequency band, the attenuation is mainly due to the decreased radiation efficiency, which is
physically caused by the increased effective mass, as can be seen from Figures 10 and 12. Thus, after
the periodic resonators are introduced to the sandwich plate, the acoustic performance is improved
both in the band-gap and below the band-gap, due to either the vibration reduction or the decreased
radiation efficiency. However, as shown in Figure 12, in the frequency region close above the band-gap,
the acoustic radiation is enhanced. From 1060 to 1400 Hz, the average radiation power of the LR
sandwich plate is increased by 9.1 dB compared with that of the homogeneous sandwich plate. Most of
this frequency band is overlapped with the newly generated effective radiation region (1018–1346 Hz) in
an infinite structure, where the radiation efficiency is significantly increased (see Figure 11). Therefore,
the increased radiation power close above the band-gap is mainly caused by the increased radiation
efficiency, although the vibration response is also slightly increased (see Figure 13).
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As can be seen in the above results, after periodic resonators are introduced into the sandwich
plate, the acoustic performance is improved both in the band-gap and below the band-gap, while the
acoustic radiation close above the band-gap is enhanced, owing to both increased radiation efficiency
and increased vibration velocity. It is interesting to note that this undesired sound radiation can be
suppressed by adding a small damping on the resonator. By doing this, the acoustic performance in
the frequency bands above and below the band-gap will both be improved.

In order to make the computation concise, hysteretic damping with damping loss factor ηR is
added to the spring of the resonator, with a complex stiffness expressed as kR = kR(1 + jηR). The sound
radiation power of a damped LR sandwich plate with ηR = 0.05 is shown in Figure 14a. It is observed
that the damping of the resonator has a minimal effect on sound radiation below 550 Hz and above
1600 Hz. In the band-gap, the maximal attenuation of radiation is decreased when damping is
introduced to the resonator. However, at frequencies close below and close above the band-gap,
the sound radiation is significantly reduced compared with that of the undamped LR sandwich plate.
As shown in Figure 15, with the increase in damping, the sound radiation becomes increasingly smaller
in the frequency ranges of 500–900 Hz and 1050–1600 Hz.
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Generally speaking, the damping of the resonator broadens the attenuation zone of sound
radiation, especially when the sound radiation above the band-gap is also reduced. In much of the
attenuation zone, radiation suppression caused by damping of the resonator is mainly due to the effect
of damping on the vibration response instead of the radiation efficiency, which can be inferred by
checking Figure 14b,c. For the radiation efficiency in Figure 14c, when ηR is set to the small value of 0.05,
the damping of the resonator only has an observable effect on the radiation efficiency in the frequency
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range from 745 to 917 Hz, which is located within or below the band-gap. In this frequency band, the
damping of the resonator helps to increase the radiation efficiency, which in turn causes increased
radiation over 889–917 Hz. As shown in Figure 15a, with the increase in damping, the radiation
efficiency is noticeably increased in the frequency band from 745 to 917 Hz, and is decreased near
the frequency of 1130 Hz. However, this decrement is very small, and this will not noticeably affect
radiation power.

From the above, it is clear that when damping is not added to the resonator, the attachment
of periodic resonators to a sandwich plate helps to reduce sound radiation at frequencies in the
band-gap and also close below the band-gap. However, the sound radiation close above the band-gap
is significantly enhanced, which leads to poor acoustic performance. This increased acoustic radiation
can be further reduced by adding damping to the resonator, which makes the LR sandwich plate more
beneficial for noise-reduction purposes.

4. Conclusions

The vibro-acoustic performance of a sandwich plate with periodic resonators was examined in
this paper. The band-gap properties, forced response, and acoustic radiation were theoretically derived
with closed-form solutions, and were all discussed with the purpose of examining the effects of periodic
resonators on the overall acoustic radiation.

For the infinite locally resonant (LR) sandwich plate examined in this paper, a new radiation zone
was generated above the band-gap and the coincidence frequency was decreased, resulting in the total
effective radiation zone being enlarged. Thus, ineffective radiation in a homogeneous sandwich plate
may become effective radiation in an LR sandwich plate. For the finite LR sandwich plate examined in
this paper, the periodic resonators had a minimal effect on radiation efficiency in the frequency regions
below the fundamental frequency and above the coincidence frequency. Between these two frequencies,
the radiation efficiency was decreased below and increased above the resonance frequency of the
resonator. The effects of the periodic resonators on radiation efficiency could be physically explained
by the effective mass of an LR unit, with decreased mass causing increased radiation efficiency and
increased mass causing decreased radiation efficiency. The effective mass can be considered as an
indicator of which part of a frequency region will be acoustically improved and which part will be
acoustically deteriorated. This will be convenient and important for LR sandwich plate design.

In the band-gap, acoustic radiation is significantly reduced because of the reduction in vibration,
as there is no mode existing in the band-gap. In the frequency band close below the band-gap, acoustic
radiation is also noticeably reduced, not only because of the suppression of vibration but also because
of the lower radiation efficiency. In contrast, the introduction of periodic resonators to a sandwich
structure also increases radiation power in the frequency band close above the band-gap, mainly
because of the increased radiation efficiency. Fortunately, this increased radiation above the band-gap
can be further reduced by introducing a small damping to the resonator by reducing the vibration
response. Therefore, in order to improve the acoustic performance of a sandwich plate, the resonator
should be tuned at or above the target frequency when damping is not applied in the resonator.
When the resonator is damped, the design of band-gap may have more options.
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Appendix A

The elements of operator matrix L in Equation (5) are expressed as

L11 = 2B
∂2

∂x2 + 2υaB
∂2

∂y2 − 4Gh + 2ω2
(
m f + C

)
, (A1)

L12 = 2υbB
∂2

∂x∂y
, (A2)

L13 = 2Ghd
∂
∂x

+ 12ω2ht1C
∂
∂x

, (A3)

L21 = L12, (A4)

L22 = 2υaB
∂2

∂x2 + 2B
∂2

∂y2 − 4Gh + 2ω2
(
m f + C

)
, (A5)

L23 = 2Ghd
∂
∂y

+ 12ω2ht1C
∂
∂y

, (A6)

L31 = L13, (A7)

L32 = L23, (A8)

and

L33 = 2D
(
∂2

∂x2 +
∂2

∂y2

)2

−Ghd2
(
∂2

∂x2 +
∂2

∂y2

)
+ω2

(
2I f + Ic

)( ∂2

∂x2 +
∂2

∂y2

)
−ω2mT, (A9)

where υa =
(
1− υ f

)
/2, υb =

(
1 + υ f

)
/2, C = m2/6, and ht1 = −h f /12.

The expressions of Ki j and Mi j (i, j = 1, 2, 3) in Equation (9) are expressed, respectively, as

K11 = Bk2
m + υaBk2

n + 2Gh, (A10)

K12 = υbBkmkn, (A11)

K13 = jGhdkm, (A12)

K21 = K12, (A13)

K22 = υaBk2
m + Bk2

n + 2Gh, (A14)

K23 = jGhdkn, (A15)

K31 = −2 jGhdkm, (A16)

K32 = −2 jGhdkn, (A17)

K33 = 2D
(
k4

m + 2k2
mk2

n + k4
n

)
+ Ghd2

(
k2

m + k2
n

)
, (A18)

M11 = m f + C, (A19)

M12 = 0, (A20)

M13 = −6 jht1Ckm, (A21)

M21 = 0, (A22)

M22 = m f + C, (A23)

M23 = −6 jht1Ckn, (A24)

M31 = 12 jht1Ckm, (A25)
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M32 = 12 jht1Ckn, (A26)

M33 =
(
2I f + Ic

)(
k2

m + k2
n

)
+ mT. (A27)

The expressions of ai j in Equation (12) are expressed as

a11 = B cos2 ϕ+ υaB sin2 ϕ, (A28)

a12 = 2Gh −ω
2
(
m f + C

)
, (A29)

a13 = υbB cosϕ sinϕ, (A30)

a14 = jGhd cosϕ+ 6 jω2ht1C cosϕ, (A31)

a21 = υbB cosϕ sinϕ, (A32)

a22 = υaB cos2 ϕ+ B sin2 ϕ, (A33)

a23 = 2Gh −ω
2
(
m f + C

)
, (A34)

a24 = jGhd sinϕ+ 6 jω2ht1C sinϕ, (A35)

a31 = −2 jGhd cosϕ+ jω2h f C cosϕ, (A36)

a32 = −2 jGhd sinϕ+ jω2h f C sinϕ, (A37)

a33 = 2D, (A38)

a34 = Ghd2
−ω2

(
2I f + Ic

)
, (A39)

a35 =
kR

ab
−ω2mT, (A40)

a36 = −
kR

ab
, (A41)

a41 = −kR, (A42)

a42 = kR −ω
2mR. (A43)

The polynomial coefficients in Equation (13) are expressed as ε0 = p0/p8, ε2 = p2/p8, ε4 = p4/p8,
and ε6 = p6/p8, where p0, p2, p4, p6, and p8 are expressed, respectively, as

p0 = −a12a23a36a41 + a12a23a35a42, (A44)

p2 = −a12a22a36a41 − a11a23a36a41 − a14a23a31a42 − a12a24a32a42

+a12a23a34a42 + a12a22a35a42 + a11a23a35a42
, (A45)

p4 = a13a21a36a41 − a11a22a36a41 − a14a22a31a42 + a13a24a31a42 + a14a21a32a42 − a11a24a32a42

+a12a23a33a42 + a12a22a34a42 + a11a23a34a42 − a13a21a35a42 + a11a22a35a42
, (A46)

p6 = a12a22a33a42 + a11a23a33a42 − a13a21a34a42 + a11a22a34a42, (A47)

and
p8 = −a13a21a33a42 + a11a22a33a42. (A48)

The expressions of Ki j and Mi j (i, j = 1, 2, 3) in Equation (18) are expressed, respectively, as

K11 = K11, (A49)

K12 = K12, (A50)

K13 = jK13, (A51)



Appl. Sci. 2019, 9, 3651 23 of 25

K21 = K21, (A52)

K22 = K22, (A53)

K23 = jK23, (A54)

K31 = − jK31, (A55)

K32 = − jK32, (A56)

K33 = K33, (A57)

M11 = M11, (A58)

M12 = M12, (A59)

M13 = jM13, (A60)

M21 = M21, (A61)

M22 = M22, (A62)

M23 = jM23, (A63)

M31 = − jM31, (A64)

M32 = − jM32, (A65)

M33 = M33. (A66)
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