
applied  
sciences

Article

Toward Better PV Panel’s Output Power Prediction; a
Module Based on Nonlinear Autoregressive Neural
Network with Exogenous Inputs

Emad Natsheh and Sufyan Samara *

Department of Computer Engineering, An-Najah National University, Omar Ibn Al-Khattab St., PO Box 7,
Nablus, Palestine
* Correspondence: sufyan_sa@najah.edu

Received: 27 July 2019; Accepted: 2 September 2019; Published: 4 September 2019
����������
�������

Abstract: Much work has been carried out for modeling the output power of photovoltaic
panels. Using artificial neural networks (ANNS), one could efficiently model the output power of
heterogeneous photovoltaic (HPV) panels. However, due to the existing different types of artificial
neural network implementations, it has become hard to choose the best approach to use for a specific
application. This raises the need for studies that develop models using the different neural networks
types and compare the efficiency of these different types for that specific application. In this work,
two neural network types, namely, the nonlinear autoregressive network with exogenous inputs
(NARX) and the deep feed-forward (DFF) neural network, have been developed and compared for
modeling the maximum output power of HPV panels. Both neural networks have four exogenous
inputs and two outputs. Matlab/Simulink is used in evaluating the proposed two models under a
variety of atmospheric conditions. A comprehensive evaluation, including a Diebold-Mariano (DM)
test, is applied to verify the ability of the proposed networks. Moreover, the work further investigates
the two developed neural networks using their actual implementation on a low-cost microcontroller.
Both neural networks have performed very well; however, the NARX model performance is much
better compared with DFF. Using the NARX network, a prediction of PV output power could be
obtained, with half the execution time required to obtain the same prediction with the DFF neural
network, and with accuracy of ±0.18 W.

Keywords: renewable energy; modeling; heterogeneous photovoltaic panel; artificial neural network;
low-cost microcontroller; modeling; time series prediction

1. Introduction

In the last decade, solar energy has been of great interest to investors, governments, energy
operators, and international organizations. This is because of its multiple environmental and economic
benefits. To generate electricity from solar energy, one can either use solar thermal or photovoltaic
(PV) panels. However, the PV panel’s systems have gained global acceptance and are now playing an
important part in providing sustainable clean energy [1]. Consequently, over the past few years, there
have been tremendous growths in the PV panel’s usage all over the globe. This can be clearly induced
from Figure 1, in which the x-axis characterizes the year, and where the y-axis characterizes the amount
of power produced from PV panels in Gigawatts (GW). As illustrated in Figure 1, the global capacity
of power produced from PV panel’s installations increased in two years (2006–2008) from 6.7 GW to
16.0 GW and increase continuously to reach 100.5 GW in the next four years (2008–2012). In total, the
installed PV panels’ capacity has increased all over the globe from 6.7 GW to 404 GW in the last 12
years. This continuous growth is anticipated to progress at a similar or even at a higher rate in the
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forthcoming years. This can be related to the technological benefit of the PV panels. In summary;
from the year 2006 to 2017, we see an exponential increase in the amount of power produced from
the PV panels [2]. This exponential growth of the PV panel’s power production, all over the globe, is
proportional to the exponential increase in the number of PV panels used to produce such power.
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However, the power generated from a PV panel depends on a number of uncertain meteorological
aspects such as atmospheric temperature, PV panel temperature, and solar irradiance. Thus, the
accurate prediction of PV panel’s output power production is highly difficult. The unforeseen PV
panel’s power output creates different negative effects on the quality, the stability, and the reliability
of an electrical grid system. These negative effects hinder any possibility for effective distribution
scheduling and/or management of the generated power [3,4]. On the other hand, precise forecasting
of the PV panel’s output power production can improve the reliability of the system. This could be
carried out to keep an effective schedule that would maintain the power quality and stabilization with
a grid with secure operation [5].

As a result, a precise prediction of PV power production is of great importance and imposes
a rich research area with many challenges. This can be clearly induced by the amount of research
that has been carried out to forecast solar power and PV panel’s output power through different
perspectives. Various methods have been implemented, including numerical weather prediction [2,6–8],
statistical [2,9–11], and artificial neural networks (ANNS) [2,12–16]. Several studies have illustrated
that ANNS are more appropriate when compared to other techniques; especially when a complicated
and non-linear connection occurs between the data without any prior presumption [17–19].

In addition, because of the excellent outcomes achieved in actual applications [20–23], ANNs are
chosen to be of the most popular models. One great benefit of the ANN model is its ability to model
non-linear data associations. The authors in [24,25] employed a neural network to energy consumption
approximation. Deb et al. [26] discussed a procedure to predict the energy consumption of day time load
of cooling institutional buildings. Paoli et al. [27] developed a multi-layer perceptron for solar radiation
forecasting. Mandal et al. [16] presented a PV system power output one-hour-ahead forecasting by
combining radial basis and wavelet transform function neural network. Saberian et al. [28] used
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both the feed-forward neural network (FFNN) and the general regression neural network (GRNN) to
forecast the power output of photovoltaic cells. They concluded that FFNN outperformed GRNN.

All previously cited studies [12–28] modeled the output power of photovoltaic panels using static
neural networks techniques (e.g., FFNN). In actual life applications, there are many non-linear systems,
such as the PV panels, whose behavior varies according to their contemporary state. Therefore, in
the past few years, researchers have developed new dynamic forecasting techniques that improve
the accuracy and stability of model prediction [29]. Among these techniques are the dynamic
recurrent neural network (RNN) and the nonlinear autoregressive network with exogenous inputs
(NARX) [30,31]. Wunsch et al. [32] applied the NARX to obtain groundwater level forecasts for several
wells in southwest Germany. In [33], convolutional neural network combined with a recurrent neural
network (RNN) is used for automatic lip-reading recognition. Ahmad et al. [34] used an autoregressive
RNN with exogenous inputs and weather variables to provide a day-ahead forecast of hourly solar
irradiance in New Zealand. In [35], RNN combined with a wavelet neural network (forming a diagonal
recurrent wavelet neural network) is presented to perform day-ahead solar irradiance forecasting.
As opposed to recurrent networks, NARX have a lower number of feedback connections, which comes
only from the output neuron rather than from hidden states. Hence, NARX has lower implementation
complexity compared with RNN, especially when it comes to hardware implementation. Moreover,
there are not many studies showing the effect of using such techniques in the PV output power
forecasting field.

Nevertheless, the field of PV panel’s output power prediction is an open field and much work is
required toward obtaining better and more accurate techniques. In the field of PV panel’s and solar
energy, the area of ANNS has yet many benefits to offer. Due to many ANNS models and variations,
one needs to explore the different kinds of ANNS and their customization to reveal the benefits ANNS

can offer to accommodate different criteria. Among these criteria, we can point out, finding small
size ANNS to fit a low-cost embedded system, providing for more accuracy, and the support for
heterogeneity in terms of different geolocation also manufacturing characteristics.

Hence, this study focuses on the output power modeling of heterogeneous PV panels using
the NARX neural network. Moreover, a neural network module based on deep feed-forward (static
network) is developed for comparison and investigation purposes of the proposed network. The deep
feed-forward (DFF) has gained a lot of attention in recent years due to flexibility and accuracy in
different application. In the end, the work presents a comparison between the running time of both
networks implementations ona low-cost microcontroller. This implementation allows the proposed
work to be used as a submodule in real-time PV panel’s monitoring system.

2. Artificial Neural Networks Topology

In this work, two promising neural network architectures have been developed for modeling
the output power of HPV. The first model is the DFF neural network, and the second is the NARX
neural network. The two models developed to tackle different manufactured PV panels. The following
subsections describe the topology and the training algorithm used to implement these models.

2.1. DFF Neural Network

A DFF network, also called a Multilayer Perceptron (MLP), is a neural network structure that is
used in many applications. It is applied to both discrete and discontinuous problems [36,37].

MLPs consist of neurons, which are structured into layers. The input layer and the output layer
are the first layer and the last layer, respectively. The hidden layers are the ones in between the first
layer and the last layer.

There is a specific function for each layer in the MLP. The input signals are accepted through the
input layer and redistributed to all the hidden layer neurons. The hidden layer stimulus patterns are
propagated to the output layer, which produces the entire network output pattern. The hidden layer
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neurons detect the input patterns’ hidden features. The output layer uses these features to calculate
the final output. Figure 2 shows the topology of the developed DFF neural network.
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As illustrated in Figure 2, the developed DFF model is composed of four layers. The input layer
accepts the panel’s temperature, the solar radiation, and the panel’s Short Circuit Current (SCC) and
Open Circuit Voltage (OCV) at 1 kW/m2 and 25 ◦C. Each layer of the two hidden layers is composed
of five neurons. Each of these neurons uses an activation function, which is the hyperbolic tangent
sigmoid transfer function. The output layer consists of two nodes, which calculate the optimum
operating voltage and the optimum current that correspond to the inputs at the input layer. Nodes of
the output layer use a linear activation function.

Thus, the actual output of the neurons in the computational layers can be represented as in
Equations (1)–(3):

H f j =
2

1 + e
−2

(
4∑

i=1
xi wi j−θ j

) − 1 (1)

Hsk =
2

1 + e
−2
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Yol =
5∑

k=1
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where Hfj is the jth node output in the first hidden layer,θj is the threshold applied to the neuron j, wij
is attained through the neural network training stage and it represents the weight between ith node in
the input layer and the jth node in the first hidden layer, xi is the value of input I, Hsk is the kth node
output in the second hidden layer, θk is the threshold applied to the neuron k, wjk is obtained during
the training phase of the neural network and it represents the weight between the jth node in the first
hidden layer and kth node in the second hidden layer, Yol is the lth node output in the output layer, θl
is the threshold applied to the neuron l, and wkl is obtained during the training phase of the neural
network and it represents the weight between the kth node in the second hidden layer and lth node in
the output layer.

2.2. NARX Neural Network

NARX is a neural network with recurrent dynamic behavior [38–40] that has been effectively
used for time series problems estimation. The main difference between MLP and NARX is that NARX
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allows a weighted feedback connection between layers of neurons. This allows the NARX models to
consider lagged (past period) values of variables, which make them suitable for time series analysis.
Alternatively, although in the literature, there are many approaches for time series analysis, such as the
autoregressive integrated moving average approach and the autoregressive moving average approach;
these approaches cannot cope with nonlinear problems [41,42]. NARX, however, can efficiently be
used for modelling time series with non-linear behavior.

The NARX neural network can be constructed into one of two architectures [31], the parallel
architecture (namely close-loop architecture), and the series-parallel architecture (namely, open-loop
architecture), see Figure 3.
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inputs (NARX).

This study uses the open-loop architecture. This is because of the pure feed-forward network
architecture and the past accurate values availability of the time series. The NARX network behavior,
in compliance with the time series forecast, can be mathematically modeled by the equation shown in
Equation (4) [31]:

y(t) = f (y(t− 1), y(t− 2), . . . y(t− ny), x(t− 1), x(t− 2), . . . , x(t− nx)) (4)

This equation defines in what way a NARX network is used to forecast a data series y(t) value.
The equation makes use of the previous values of the y series and another external series x. The f ()
unknown function is a mapping function, and it is the purpose of the training phase of the network to
find an approximation of this mapping function. This is done through an optimization process of the
neuron bias and the network weights.

As mentioned above, the NARX is a model with non-linear behavior that has the ability to
approximate forthcoming values of time series using its former calculated values and some exterior
data. In the presented work, NARX is used to estimate the values of the optimum operating voltage
and current. As inputs, the NARX uses four inputs with exterior data at time t − 1. In addition,
the NARX uses two time-series inputs that represent its previous outputs of the estimated optimum
operating voltage and current at time t − 1. Figure 4 shows the developed NARX network discussed in
this work.

As illustrated in Figure 4, the first layer has six nodes of inputs. These are the panel temperature,
the solar radiation, the panel OCV, the panel SCC, and the two output values previously attained from
the time series. In the middle (hidden) layer there are five nodes with hyperbolic tangent sigmoid
transfer activation function. The last layer consists of two nodes, which calculate the two outputs of
the network. These are the optimum operating current and voltage. A linear activation function is
used in the nodes of the last layer.
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2.3. Training Algorithm

Many training methods have been developed for neural networks [43,44]; these include
the Gradient Descent training approach, the Resilient Back-propagation training approach, the
Levenberg-Marquardt (LM) approach, and the Gauss-Newton training approach. The LM training
approach has been selected for training both of the developed topologies (see Figures 3 and 4). The LM
training method is less sensitive to local converges, and therefore, it provides a better learning training
approach. Moreover, it provides a balanced tradeoff between the stability and training speed [43].

The LM training approach was developed to estimate the derivative of the second-order without
the particular Hessian matrix computation requirement. Instead, it only requires the Jacobian matrix,
also the gradient vector.

Equation (5) is used to calculate the loss function gradient vector when the performance function
resembles the mean squared error (MSE). Using the Jacobian matrix we can estimate the Hessian matrix
as shown in Equation (6) [43]:

∇ f = JTe (5)

H ≈ JT J + µ I (6)

In Equations (5) and (6), e denotes the error vector, I represents the identity matrix, the combination
coefficient µ is always greater than zero, and the Jacobian matrix J can be defined as in Equation (7):

Ji, j =
∂ei
∂w j

, where j = 1, . . . , m and i = 1, . . . , n (7)

Equations (5) and (6) can be combined to form the update rule ∆w shown in Equation (8) [43]:

∆w = (JJT + µ I)
−1

JTe (8)

The state diagram for the training algorithm is shown in Figure 5. The training process begins by
calculating the loss (MSE), the Hessian approximation, and the gradient. The training objective is to
minimize the loss (MSE) as much as possible. This is done by tuning the parameter (µ) of the learning
rate as follows:

• µ is multiplied by 10 when the current epoch MSE exceeds the previous value.
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• µ is multiplied by 0.1 when the MSE is equal or less to the previous one.
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2.4. Dataset Collection

Meteorological data consisting of solar irradiance and temperature were gathered in real-time
from An-Najah Energy Research Center (ERC) [45]. The equipment used to collect the dataset consists
of a temperature sensor to measure the PV panel body temperature (namely, the sensor WE710 with
±0.25 ◦C precision), and a high accuracy solar radiation sensor (namely, the sensor WE300 with ±1%
precision).

Despite the precision of the used sensors, the data captured are sometimes unreliable, noisy,
or incomplete. This is primarily due to a sensor error percentage or noise in connections. Hence,
to overcome the noise in the obtained data, a moving average filter [46] was used, see Figure 6.
The meteorological data were collected on an hourly based manner in the period from February 2018
to July 2018. Anomalies in data due to a broken or unfunctional device/sensor were eliminated.

The targeted output voltage (Vr) and current (Ir) are collected by running a MATLAB code
that analyses the validated PV model output characteristics [47–50]. The dynamic behaviour of the
proposed PV model has been validated previously by the author for different types of PV modules
under variety of solar radiation and temperature conditions. High agreement between the outcomes of
the model and the experimental data was achieved. Results and validation of the module can be found
in the author previous work published in [50].

Three different photovoltaic panels were used to obtain data; these are the Astronergy-CHSM6610P
panel, the Sharp’s-NUS0E3E panel, and Lorentz mono-crystalline panel. Standard testing conditions
used when recording the PV panel’s manufacturer specifications. Table 1 shows the used PV panel’s
manufacturer specifications.



Appl. Sci. 2019, 9, 3670 8 of 20

Appl. Sci. 2019, 9, 3670 7 of 20 

• μ is multiplied by 10 when the current epoch MSE exceeds the previous value.  
• μ is multiplied by 0.1 when the MSE is equal or less to the previous one. 

 

Figure 5. Levenberg-Marquardt (LM) state diagram. 

2.4. Dataset Collection 

Meteorological data consisting of solar irradiance and temperature were gathered in real-time 
from An-Najah Energy Research Center (ERC) [45]. The equipment used to collect the dataset consists 
of a temperature sensor to measure the PV panel body temperature (namely, the sensor WE710 with 
±0.25 °C precision), and a high accuracy solar radiation sensor (namely, the sensor WE300 with ±1% 
precision).  

Despite the precision of the used sensors, the data captured are sometimes unreliable, noisy, or 
incomplete. This is primarily due to a sensor error percentage or noise in connections. Hence, to 
overcome the noise in the obtained data, a moving average filter [46] was used, see Figure 6. The 
meteorological data were collected on an hourly based manner in the period from February 2018 to 
July 2018. Anomalies in data due to a broken or unfunctional device/sensor were eliminated.  

 
a Appl. Sci. 2019, 9, 3670 8 of 20 

 

Figure 6. Average hourly temperature and solar radiation distributions throughout April 2018 (a) 
with moving average filter (b) without moving average filter. 

The targeted output voltage (Vr) and current (Ir) are collected by running a MATLAB code that 
analyses the validated PV model output characteristics [47–50]. The dynamic behaviour of the 
proposed PV model has been validated previously by the author for different types of PV modules 
under variety of solar radiation and temperature conditions. High agreement between the outcomes 
of the model and the experimental data was achieved. Results and validation of the module can be 
found in the author previous work published in [50]. 

Three different photovoltaic panels were used to obtain data; these are the Astronergy-
CHSM6610P panel, the Sharp’s-NUS0E3E panel, and Lorentz mono-crystalline panel. Standard 
testing conditions used when recording the PV panel’s manufacturer specifications. Table 1 shows 
the used PV panel’s manufacturer specifications. 

Table 1. The used PV panel’s manufacturer specifications. 

 Astronergy-CHSM6610P Sharp’s NUS0E3E Lorentz Mono-Crystalline 
Max power (Pm) 225 W 180 W 75 W 

Voltage when power at max 29.76 V 23.7 V 16.5 V 
Current when power at max 7.55 A 7.6 A 4.6 A 

Voltage at Open circuit  36.88 V 30 V 21.0 V 
Current at Short circuit  8.27 A 8.37 A 5.4 A 
OCV Temp coefficient −0.129 V/°C −104 mV/°C −60.8 mV/°C 
SCC Temp coefficient +0.052%/°C +0.053%/°C 3.0 mA/°C 

For the proposed neural networks to be modeled, the collected data were separated into three 
parts: testing (25%), training (60%), and validation (15%). To have the same range of values, a 
normalization process [49] is done on all data to be in the range(−1 to +1) using Equation (9): 

( ) min
minmax

minmax
min A

BB
AABBA +








−
−−=  (9) 

where the normalized value is denoted by A, and B denotes the non-normalized value. When the 
result is obtained, it becomes normal after using Equation (10). Table 2 shows typical examples of the 
used datasets. 

( ) min
minmax

minmax
min B

AA
BBAAB +








−
−−=  (10) 

 

  

b 
Figure 6. Average hourly temperature and solar radiation distributions throughout April 2018 (a) with
moving average filter (b) without moving average filter.

Table 1. The used PV panel’s manufacturer specifications.

Astronergy-CHSM6610P Sharp’s NUS0E3E Lorentz Mono-Crystalline

Max power (Pm) 225 W 180 W 75 W
Voltage when power at max 29.76 V 23.7 V 16.5 V
Current when power at max 7.55 A 7.6 A 4.6 A

Voltage at Open circuit 36.88 V 30 V 21.0 V
Current at Short circuit 8.27 A 8.37 A 5.4 A
OCV Temp coefficient −0.129 V/◦C −104 mV/◦C −60.8 mV/◦C
SCC Temp coefficient +0.052%/◦C +0.053%/◦C 3.0 mA/◦C

For the proposed neural networks to be modeled, the collected data were separated into three parts:
testing (25%), training (60%), and validation (15%). To have the same range of values, a normalization
process [49] is done on all data to be in the range(−1 to +1) using Equation (9):

A = (B− Bmin)

[
Amax −Amin

Bmax − Bmin

]
+ Amin (9)

where the normalized value is denoted by A, and B denotes the non-normalized value. When the
result is obtained, it becomes normal after using Equation (10). Table 2 shows typical examples of the
used datasets.

B = (A−Amin)

[
Bmax − Bmin

Amax −Amin

]
+ Bmin (10)
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Table 2. Typical random examples of the training sets.

1st Pattern 2ed Pattern 3ed Pattern 4th Pattern 5th Pattern 6th Pattern

NDP DP NDP DP NDP DP NDP DP NDP DP NDP DP

G (W/m2) −0.0315 485 −0.1859 410 0.1256 565 −0.3467 330 0.01507 510 0.21608 610
TC (◦C) 0.0 20 −0.3333 15 0.3333 25 −0.6666 10 0.0 20 0.6666 30
OCV a 1.0 36.88 1.0 36.88 0.1335 30 0.1335 30 −1.0 21 −1.0 21
SCC a 0.9326 8.27 0.9326 8.27 1.0 8.37 1.0 8.37 −1.0 5.4 −1.0 5.4
Vr (V) 0.7510 30.44 0.8092 31.35 0.3538 23.615 0.4941 25.89 −0.0319 16.79 −0.0999 15.88
Ir (A) −0.1131 3.56 −0.2573 2.99 0.0447 4.21 −0.4686 2.15 −0.4699 2.16 −0.3361 2.65

a These input parameters allow the proposed networks to tackles different types of PV panel’s.

3. Results and Discussion

3.1. Neural Network Structure

Several trials have been performed to determine the neural network configuration. Table 3
presents some important parameters for the selected configurations. The decisions have been made
based on two imperatives attributes which are: the number of nodes in hidden layers, and the choice
of each layer activation function.

Table 3. Attributes of the proposed neural network model’sstructures. MSE: mean squared error.

NARX Structure DFF Structure

Attribute Choice Attribute Choice

Number of hidden layers 1 Num.of hidden layers 2
Normalization interval

of dataset [−1,1] Normalization Interval
of dataset [−1,1]

Tapped delay line (TDL) 1 b TDL 0
Error MSE Error MSE

Training approach Levenberg-Marquardt Training approach Levenberg-Marquardt
b One input delay and one output delay.

Choosing each layer activation function is proven to be an important issue. Moreover, previous
studies showed that multilayer network with linear output neurons and sigmoid hidden neurons are
arbitrarily well-fitted to map multi-dimensional problems [36,49]. Hence, in this study, the activation
function of the hyperbolic tangent is implemented for the hidden layers, also the linear activation
function is implemented for the output layer. There is an advantage, especially when using the
Levenberg-Marquardt training approach, to use the hyperbolic tangent function. The fact that this
function is derivable, gives the advantage for easier neural network weights tuning.

The last important parameter, which must be studied to complete the structures of the neural
networks, is the number of nodes in each hidden layer. Table 4 compares the best MSE results to
various hidden layer’s number of neurons for both NARX and DFF network.

Table 4. Best-obtained results vs.the hidden layer’snumber of neurons.

NARX Model DFF Model

Number of Nodes/Neurons MSE Train MSE Test Number of Nodes/Neurons MSE Train MSE Test

2 0.0365 0.0465 2 × 2 1.5618 2.9642
3 0.0131 0.0315 3 × 3 0.7764 0.8642
4 0.00964 0.010065 4 × 4 0.5831 0.6945
5 0.007589 0.006415 4 × 5 0.4816 0.4951
6 0.010832 0.009921 5 × 5 0.4167 0.4283
7 0.009412 0.007052 5 × 6 0.4576 0.4891
8 0.008641 0.007731 6 × 5 0.4317 0.5172
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As shown in Table 4 the best-obtained structure of the DFF model is when having five neurons in
each hidden layer. The MSE for both training and testing with this structure are 0.4167 and 0.4283,
respectively. However, using the NARX model the results were much better. Result shows that when
having five neurons in one hidden layer, the MSE for both testing and training are 0.006415 and
0.007589, respectively.

3.2. Evaluation of the Proposed Network Models

Before starting the simulation, the dataset was divided into three parts: testing (1680 cases),
validation (840 cases), and training (5880 cases). The training and validation sets are used during the
training stage. The training dataset part is used to find the neural network bias and weights. The over
fitting was minimized using the validation set. Figure 7, shows the results throughout the training and
validation stages.
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As shown in Figure 7, the measured error with the NARX model is much lower compared with
the DFF model. Moreover, Figure 8 illustrates the function of error autocorrelation (for the NARX
network) which describes the time correlation of the prediction errors. It can be seen from Figure 8 that
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After the training stage is done, the testing dataset part is used to evaluate the model and test its
performance. Figures 9–12, shows real time comparison between the real data of the networks models
and the simulated results for two different manufacturing PV panels.

The results of these figures are obtained from the average hourly solar radiation and temperature
distributions during April 2018 (see Figure 6). The comparison of NARX and DFF results demonstrate
that NARX is more efficiently track the real time data compared with DFF.

To further verify the effectiveness and significance of the proposed models, we employed the
Diebold-Mariano (DM) statistic [51]. The DM compares the forecast accuracy of two models. The MSE
is adopted as the loss function to build the loss differential. The DM test results are exhibited in the
following Table 5.

According to the DM test results presented in Table 5, the first two sample windows indicates
that there is no significant different between the two forecasting models (p-value > 0.05); however, in
the third test-sample window, the forecasting performance of the NARX model is better than the DFF
model (p-value < 0.05).
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simulated NARX network (b) NARX voltage and current errors.

Table 5. Results of the Diebold-Mariano (DM) test.

Average Value

First Test-Sample
Window (406)

Second Test-Sample
Window (912)

Third Test-Sample
Window (1680)

DM-test c 1.6873 1.3783 −6.5539
p-value 0.0915 0.1681 <0.00001

c Significance level is 5%.
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3.3. Implementing the Two Networks on A Low-Cost Microcontroller

The aim of this work is to find an accurate forecasting neural network that is suitable for using
as sub-module in PV monitoring, PV fault detection, or any PV system that requires PV output
power prediction. To further investigate the two developed networks, both trained ANNs are loaded
on the same hardware, namely the ATmega2560 8-bit low cost microcontroller. Both networks
were implemented using the topologies shown in Figures 2 and 4. Equations (1)–(3) were used for
implementing the neurons with weights (wij, wjk, and wkl) obtained from the training phase of the
neural networks. The same data set is used as input on both implementations and each neural network
output is recorded along with the execution time, see Table 6. As shown in Table 6, there is a difference
between values obtained from MATLAB simulation and hardware implementation. This is because
the hardware implementation on low cost microcontroller requires some rounding in values and
requires some tradeoff between memory and value precision. However, we notice that the NARX
network showed better performance in term of execution time, also better accuracy over the DFF
network compared to the results obtained in simulation. Using NARX network an output power
value is obtained with a higher accuracy of ±0.18 W and with half the execution time compared to the
DFF network. Using the DFF network the same output power value calculation requires double the
execution time of the NARX network and with lower accuracy of ±0.59 W.

Table 6. Execution time and accuracy results from DFF and NARX networks hardware implementations
on low cost microcontroller.

# Input Matlabsimulation DFF Hardware
Implementation

NARX Hardware
Implementation

# G Tc OCV SCC DFF Output
Power

NARX
Output
Power

Output
Power

Execution
Time in

Ms

Output
Power

Execution
Time in

Ms

1 100 5 36.88 8.27 18.5462685 19.80749509 19.9485 13.328 19.4607 7.632
2 135 5 36.88 8.27 27.45394878 28.74701286 29.3508 13.312 28.557 7.584
3 195 10 36.88 8.27 41.66625045 42.9396561 43.0836 13.264 42.9358 7.68
4 315 15 36.88 8.27 69.91714602 71.1672504 69.7662 13.168 71.185 7.712
5 430 20 36.88 8.27 95.0832446 96.29310936 94.5768 13.232 96.5568 7.616
6 100 5 30 8.37 12.25372005 13.14547358 11.8704 13.408 13.4136 7.504
7 135 5 30 8.37 18.60995015 19.53232499 18.0553 13.408 19.6812 7.552
8 195 10 30 8.37 30.05208908 30.98741522 29.1856 13.616 30.8238 7.648
9 315 15 30 8.37 52.92692456 53.88320892 52.269 13.568 53.664 7.648

10 430 20 30 8.37 74.6095383 75.55625954 74.2356 13.44 75.831 7.44
11 100 5 21 5.4 2.53894176 2.79904892 2.3448 12.64 2.6946 7.184
12 135 5 21 5.4 4.6246709 4.97279076 4.68 12.704 5.1604 7.168
13 195 10 21 5.4 9.40729383 9.839436255 9.654 12.88 10.0772 7.424
14 315 15 21 5.4 19.81514307 20.26637574 19.9056 12.848 20.2059 7.392
15 430 20 21 5.4 29.38812465 29.82476539 29.232 12.592 30.082 7.408

4. Conclusions

This paper discusses a novel and a more accurate heterogeneous photovoltaic (HPV) output
power modeling topology using nonlinear autoregressive network with exogenous inputs (NARX).
The work compares the proposed NARX neural network structure with the commonly used deep
feed-forward neural network (DFF) structure. Both structures have been used to model the maximum
output power of HPV panels.

The training phases of the neural networks are performed periodically. Several simulations
are carried out with different evaluation criteria. Both of neural networks have decent modeling
performance; nevertheless, NARX has outperformed DFF with mean square error of 0.007589.

Both models are further investigated by implementing them on real hardware for performance and
execution time evaluation. The nonlinear autoregressive network with exogenous inputs outperform
the deep feed-forward neural network with both accuracy and performance. Using the NARX neural
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network, a prediction of PV output power could be obtained with half the execution time required
to obtain the same prediction with the deep feed-forward neural network and with an accuracy of
±0.18 W.

On the other hand, future research will need to be carried out on using this network model in
PV fault detection. The NARX model has the ability to capture the nonlinear association of patterns
between predictors, such as irradiance and temperature, to determine accurate MPP.
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Abbreviations

The following abbreviations are used in this manuscript:

ANNS Artificial Neural Networks
DFF Deep Feed-Forward
DM Diebold-Mariano
DP Data Pattern
FFNN Feed-Forward Neural Network
G Solar radiation
GRNN General Regression Neural Network
HPV Heterogeneous Photovoltaic
LM Levenberg-Marquardt
MLP Multilayer Perceptron
MSE Mean Square Error
NARX network Nonlinear Autoregressive network with exogenous inputs
NDP Normalized Data Pattern
OCV Open Circuit Voltage
PV Photovoltaic
p-Value Probability Value
RNN Recurrent Neural Network
SCC Short Circuit Current
Tc Panel temperature
TDL Tapped Delay Line
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