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Abstract: Latent heat storage materials have been tested by several researchers for decades to be
used as passive heating and cooling systems in buildings but their implementation into building
components is still stacked as is facing specific technical limitations related to difficulties to be charged
both in heating and cooling periods. This paper presents a numerical analysis to evaluate the potential
of a disruptive system, which is designed to solve the main drawbacks and to convert phase change
materials (PCM) passive heating technology into a competitive solution for the building sector. The
novel technology moves PCM layer with respect to the insulation layer inside the building component
to maximize solar benefits in winter and be able to actively provide space heating. Design variables
such as PCM melting point and control schemes were optimized. The results demonstrated that this
technology is not only able to limit heat losses towards outdoors but it can provide space heating
from stored solar energy when required. The promising numerical results endorse the possibility to
build a future experimental prototype to quantify more in detail the benefits of this system.
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1. Introduction

Building envelopes have a crucial impact on building energy use for space heating and cooling
systems and their designs are crucial to reduce these loads while maintaining the occupants thermal
comfort [1]. Currently, both heating and cooling demands represent 50% of the total global energy
consumed in European buildings and this demand is increasing with the comfort requirements in
developing countries [2].

Within this context, the use of phase change materials (PCM) for passive heating and cooling
systems in buildings has attracted the attention of the scientific community as an appropriate technology
which can promote net-zero energy buildings [3]. These materials, when integrated into building
walls or roofs, can provide thermal benefits due to its high thermal energy storage capacity, which can
prevent or delay the cooling peak load during summer and can absorb part of the solar radiation in
winter. In building envelope applications, PCM stores latent heat as the ambient temperature rises
to the melting point (most PCM changes from a solid to a liquid state) and as the temperature cools
down, the PCM returns to a solid phase, releasing the stored latent heat [4].

Several researchers have investigated and developed different ways to incorporate PCM
into building envelopes [5], such as microencapsulated [6–8], impregnated [9], or installed in
macro-encapsulated panels [10]. Numerical and experimental research have emphasized the benefits
of using passive PCM technology in buildings: (1) reduction of maximum room air temperature during
the cooling period [11], (2) reduction of thermal oscillation during the cooling period, (3) cooling load
reduction [12], and (4) possible solar absorption and heating load reduction [13].
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However, there exist specific technical barriers that limit the benefits of both PCM heating and
cooling passive technologies and do not allow them to become an attractive technology able to justify
their initial economic investment. These technical barriers are blocking the implementation of this
technology into the market. In case of PCM passive cooling, the solidification process of PCM is
limited as the PCM layer is not directly exposed outdoors but thermally protected by insulation
(Figure 1), which makes the technology completely useless in periods when solidification cannot be
ensured. Within this context, Mandilaras et al. [14] experimentally tested passive PCM in two-storey
buildings and showed that PCM did not provide benefits from July to August (when cooling is highly
demanded) as solidification was not achieved during night time. Moreover, in PCM passive cooling
applications, the building peak cooling load is accumulated in the PCM and therefore its effect indoors
is delayed, however, that latent heat is mainly discharged indoors because the insulation strongly
limits its dissipation to outdoors. Finally, passive cooling PCM technology only interferes in outdoor
cooling loads transmitted by conduction but it cannot deal with internal heat loads or solar gains
from openings. In fact, this technology provides higher energy consumption for space cooling in the
presence of significant internal heating loads [15].

On the other hand, the use of PCM for heating purposes is based on its capability to absorb solar
gains coming through the glazing and to release stored solar energy during the night [16]. This limited
activation conditions limits: (1) its energy benefits (quantified around 4–5% [17]), (2) its implementation
mainly to internal solar exposed surfaces (internal walls or floor), and (3) its use in climatic regions
with non-severe winter conditions (otherwise, only operative during early and late winter as well as
spring and autumn seasons) [13].
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The idea behind the system presented in this paper relies on changing the age-old concept that
building envelopes are static and fixed during its use. Research has been developed in the frame of
developing climatic adaptive building shells (CABS) [18–20]. One can imagine that it would provide
extraordinary energy benefits if building envelopes (roofs or walls) can modify its thermal properties,
such as thermal resistance or heat storage capacity, according to the heating and cooling demand
daily profiles.

For example, it will be interesting to remove the insulating layers of building envelopes (roofs
and walls) in an office building during summer nights so the building can dissipate the heat stored
from external and internal loads to outdoors. However, insulation is required to prevent peak cooling
load during the day. Similarly, in winter it will be interesting to remove the insulation during the
sunny hours so thermal massive elements (brick or concrete layers facing indoors) would be able to
store solar heat and later provide space heating. Insulation layers have to be present after these sunny
hours to avoid or limit thermal losses to outdoors. Within this context, some work has been done in
the development of active insulating layers. Simko et al. [21] tested numerically and experimentally
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thermally active walls with water pipes arranged in milled channels in the thermal insulation, which is
able to alternate between a thermal barrier system to a space heating supplier.

The ability to modify the thermal properties depending on the weather conditions and building
use becomes even more interesting when phase change material (PCM) is integrated into the
building envelope.

This paper presents an innovative system, which is designed to solve the previously cited
drawbacks and to convert PCM passive heating and cooling technology into a competitive and
attractive solution for the building sector. The proposed system relies on the ability of roofs and walls
to adapt the position of their layers and hence their morphology during its operation. This new ability
of building components will revolutionize building designs as multiple technical, functional, and
aesthetic options arise. This new system varies the position of the PCM with respect to the insulating
layer to maximize solar benefits in winter and night free cooling in summer. de Gracia [22] numerically
analyzed the benefits and performance of such technology when used for passive cooling purposes,
showing that the system cannot only reduce cooling loads from outdoors but can provide space cooling
when required by the demand. The previous paper [22] evaluated the performance of the system
during summer when it moves the PCM to face outdoors at night time to facilitate its solidification and
once the PCM is charged, it moves the PCM back to face indoors to prevent peak cooling load during
the following day.

This paper will use the previously developed numerical tool to evaluate the potential of this new
building system to reduce energy consumption for space heating taking advantage of thermal storage
of solar energy and to optimize key design and control variables.

2. Methodology

2.1. Dynamic PCM Wall Concept

The proposed dynamic PCM system relies on the ability of the PCM layer to change its position
inside the building envelope (vertical or horizontal). The Boolean variable POS describes the position
of the PCM layer with respect to the insulation layer at each time. Therefore, the system is able to place
PCM facing outdoors during sunny hours to store incident solar energy and moves back PCM to face
indoor space and release stored solar energy to the indoor environment when space heating is required
(usually at night time).

The addition of PCM in the movable layer can be achieved by means of different techniques [23],
such as impregnation, tubes filled with PCM attached to continuous layers, or honeycomb systems.
A rotatable electrical servomotor can be implemented on top and bottom of the insulation layer to
guide the movement of the PCM layer from one face to the other. The use of timing belts and/or gears
are expected in this sort of system to ensure appropriate control of movement without slip. Moreover,
the use of endless screw might be appropriate to link electrical servomotor with the rotatable gears.
More details about the possible design and integration of PCM can be found in de Gracia [22]. Figure 2
shows in detail a possible mechanical design of the system, including the position of the servomotor
and the endless screw connected to the rotatable gear.
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2.2. Numerical Model Description

The numerical model has been previously used to analyze the performance of the presented
system for cooling purposes [22], which is an implicit one dimensional finite control volume model [24].
The convective heat transfer between the surfaces and both environments (hin and hout) are assumed
constant, being 8 W/m2

·K for the indoor environment and 25 W/m2
·K for outdoor surfaces [25]. The

melting and solidification processes are implemented through an equivalent heat capacity method [26]
with a triangle shaped distribution over temperature [27,28]. The phase change range is 4 K, and
hysteresis and subcooling are not considered. Moreover, the temperature of the indoor environment
(Tindoor) is set constant to 20 ◦C [29].

The finite volume model uses uniform discretized spatial step of 1 mm [24] and a time step of 60 s,
ensuring mesh independence and consistency of the numerical scheme. A detailed description of the
numerical model can be found in de Gracia et al. [22].

2.3. Optimization of Design and Control Parameters

A suitable selection of PCM melting temperature depending on the climatic conditions, building
constructive system, and heating demand is mandatory for the correct performance of the system.
Moreover, the activation of the system and an appropriate schedule of positioning PCM facing outdoors
or indoors plays a crucial role.

Design (phase change PCM temperature) and control (POS[t]) variables have been optimized
using a generic optimization program (GenOpt v3.11) [30]. A particle swarm optimization algorithm
with constriction coefficient (PSOCC) [31] was used in this study. The algorithm was linked to the finite
volume numerical model and was set with the following settings: (i) 20 generations, (ii) 20 particles
per generation, and (iii) 2 seeds.

The PSOCC varies these three variables to minimize the heating load (Qload in J/m2
·day):

(i) PCM peak melting temperature (TPCM) exploring integer values between 8 to 29 ◦C.
(ii) Hour to start exposure of PCM to solar energy, POS [t] is set to 1 (t1). Continuous exploration

between 0 to 24 h.
(iii) Hour to finish exposure of PCM to solar energy, POS [t] is set to 0 (t0). Continuous exploration

between 0 to 24 h.

It has to be noticed that control was optimized based on the average values of a specific period,
meaning that t1 and t0 were set to the same value for all days during the analyzed period. Finally, the
daily heating load is computed as shown in Equations (1) and (2). Where

.
Qheating is the rate of heating

loads per unit area (W/m2) at each time step, hin is the heat transfer coefficient of the internal surface,
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Tindoor is the temperature of the indoor environment, Tsi is the temperature of the interior surface, and
Qload is the heating load for a specific period between t0 and tend,

.
Qheatinghin(Tindoor − Tsi) (1)

Qload =

tend∫
t0

.
Qheating·dt (2)

2.4. Case Studies

In this study, the novel system has been tested numerically considering the registered weather
conditions during November 1st to 10th 2017 (Figure 3) in the experimental set-up of Puigverd de
Lleida [32] which is classified as Csa according to Köppen-Geiger [33]. Furthermore, the performance
of the dynamic PCM technology has been analyzed in the south wall of the following different
constructive systems:

• Wall 1: Typical Mediterranean constructive system based on two layers of bricks and 5 cm of
mineral wool in between.

• Wall 2: Case-600 building prototype from ASHRAE Standard 140-2011 [29].
• Wall 3: Ideal envelope, which is based on a single layer of insulation surrounded by a polymeric

sheet with and without PCM.
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Figure 3. Weather conditions during the analyzed period.

The three selected morphologies of the building envelope represent different levels of thermal
storage capacity and thermal resistance. Without considering the PCM layer, Wall 2 presents a storage
capacity of 156.1 kJ/m2

·K, while Wall 1 presents more thermal mass and can store 200.7 kJ/m2
·K. On

the other hand, Wall 3 is analyzed as a case study with minimum storage capacity (10,4 kJ/m2
·K) other

than the one provided by the use of PCM. Regarding the thermal resistance, Wall 2 presents a thermal
transmittance in steady state (U-value) of 0.22 W/m2

·K, while U-value of both Wall 1 and Wall 3 is
0.66 W/m2

·K. The layer distribution, thickness of each layer, and thermo-physical properties of used
materials are given in Table 1 for each tested constructive system.

Furthermore, the specific heat capacity of the PCM layer presents a heat storage capacity of 2,000
J/kg·K outside the phase change range (solid and liquid sensible region), and an enthalpy of fusion
of 200 J/g, similar to those available in the market. It might occur that the amount of PCM able to be
added in the polymeric sheet is limited, therefore this study will evaluate the influence that the amount
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of PCM (0%, 25%, 50% 75%, and 100% w/w) has in the performance of the static (conventional system
in which PCM is always placed in the layer facing indoors) and the proposed dynamic system.

Table 1. Thermo-physical properties and constructive systems description (listed from outside to inside).

Construct
System Layer Thickness (m) Thermal Conductivity

(W/m·K)
Heat Capacity

(J/kg·K)
Density
(kg/m3)

Wall 1

Hollow Brick 0.07 0.375 1000 930
PCM 0.007 0.2 f(T) 800

Insulation 0.05 0.05 1000 35
Plastic sheet 0.007 0.3 1250 900
Perforated

brick 0.14 0.543 1000 900

Wall 2

Wood siding 0.01 0.14 900 530
PCM 0.007 0.2 f(T) 800

Insulation 0.0615 0.04 1400 40
Plastic sheet 0.007 0.3 1250 900

Concrete
block 0.1 0.51 1000 1400

Wall 3
PCM 0.007 0.2 f(T) 800

Insulation 0.072 0.05 1000 35
Plastic sheet 0.007 0.3 1250 900

For the proposed amount of PCM (5.6 kg of PCM/m2), the current design suggests the use of
an electrical motor (100 W) for 2 s for changing the position of the PCM layer, which means a daily
electrical consumption of 400 J.

3. Results and Discussion

3.1. Thermal Behaviour of Dynamic PCM System

Figure 4 shows the solar radiation and outdoor temperature evolution, and how the variation of
the position of PCM layer (0 or 1) affects to the PCM temperature when implemented in ASHRAE
envelope (Wall 2). As it can be seen, once the position of the system is set to 1 and PCM is located
facing outdoors with respect to the insulation layer, its temperature starts to increase as solar radiation
is stored through the melting process of PCM. After the sunny hours, the PCM is set back to its original
position (facing indoors with respect to insulation, POS = 0) and discharges the stored heat to the
indoor environment. In this period, the PCM layer remains inside the phase change range (21 to 25 ◦C)
being warmer than indoor set point temperature (20 ◦C), that allows the system not only to be used as
a thermal barrier to outdoor conditions, but to provide space heating due to stored solar energy.
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Figure 4. Evolution of PCM temperature in dynamic system when implemented in the ASHRAE
(Wall 2) envelope.

Moreover, as it was previously discussed in the introduction, the current state of the art of passive
PCM systems for heating purposes is limited as PCM cannot be melted unless it is directly exposed
to solar energy coming from openings or windows. This issue can be clearly seen in Figure 5, which
shows the thermal evolution of the polymeric layer (with or without PCM) in case it is implemented in
a static or dynamic system. No significant differences were observed between the static system with or
without PCM with temperatures below set point (20 ◦C) almost all the time. On the other hand, the
dynamic system is able to charge the PCM partially six days (phase change range between 21 and 25 ◦C)
out of ten, and to fully charge it three days. It is important to highlight, that the control of the system
was optimized based on the average results of the ten analyzed days, meaning the optimal decision
of positioning PCM facing outdoors and indoors is the same for all the analyzed days, therefore, a
daily-based control would even increase the performance. These activations of the PCM result in a
dramatic reduction of the heating load coming from the outer environment. Figure 6 presents the
evolution of the heating load for static and dynamic systems, showing that the use of PCM does not
reduce heating load unless it is implemented in the dynamic technology. When the PCM layer is able to
move with respect to the insulation, it provides space heating to indoor environment (negative heating
loads), specially during afternoons and night periods. It has to be noticed that since the schedule of
operation of the system is optimized to minimize the overall heating load and activations are set at the
same time for each day, in some particular days with low solar radiation (first two tested days), the
dynamic system can provide extra heating loads in some specific periods.
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Figure 6. Evolution of heating load for the different analysed systems when implemented in the
ASHRAE (Wall2) envelope.

3.2. Heating Load Reduction by Using Dynamic PCM Wall

Table 2 presents the heating load reduction provided by the dynamic system when implemented
into different types of envelopes. The results show reductions higher than 100% in all studied envelopes
for the analyzed period, which means that when using the dynamic system, the envelope is able to
provide more heat from solar energy than what is transferred to the outdoor environment due to
thermal losses. Results also demonstrate that the system performs better when implemented into
building walls with low thermal mass, as PCM is more directly exposed to solar radiation and it can also
discharge stored solar heat easily to the indoor environment. Table 2 also shows that optimum PCM
melting temperature depends on the constructive system in which the dynamic system is implemented,
with its melting peak at 21 ◦C in the case when it is implemented in walls with high thermal mass
(Wall 1) and 23 ◦C in cases with lower thermal mass (Wall 2 and 3).
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Table 2. Heating load reduction by using static and dynamic PCM for each constructive system.

Construction System System Optimized TPCM (◦C) Qload [kJ/m2] Heating Load Reduction (%)

Wall 1

Static
NoPCM - 2085.2 -

Static PCM 23 2085.2 0,00
Dynamic 21 −311.6 114.94

Wall 2

Static
NoPCM - 2033.7 -

Static PCM 22 2035.1 −0,07
Dynamic 23 −2452.4 220.59

Wall 3

Static
NoPCM - 2869.6 -

Static PCM 22 2871.0 −0,05
Dynamic 23 −5994.4 308.89

3.3. Parametric Analysis of Amount of PCM

As it was previously stated, the implementation of PCM in the movable layer can be achieved by
means of using a polymeric matrix, or other system such as tubes or honeycomb layers. In any case,
the addition of PCM will not achieve 100% w/w, as some matrix will be used to hold the PCM and
prevent its leakage. Within this context, Table 3 presents how the amount of PCM in the rotatable layer
affects the performance of the whole system in terms of energy savings and optimal control strategy
(t0 and t1). Results show that the dynamic system is able to provide considerable heating benefits
even without using any PCM in the movable layer and just storing solar energy in the polymeric
matrix in a sensible form. Thus, this can reduce the heating load by 36% when the dynamic system is
implemented in Wall1 and Wall3 construction systems and by more than 50% when implemented into
the Wall 2 envelope. Furthermore, the use of any amount of PCM enhances dramatically this effect,
as the system achieves heating load reductions higher than 100% when using 50% w/w of PCM in
Wall 1 and when using 25% w/w of PCM in Wall 2 and Wall 3 construction systems. That means that
with these proportions of PCM, the system provides a positive energy balance, as the amount of solar
energy dissipated indoors is higher than heat losses to the outdoor environment.

Table 3. Sensitivity analysis of PCM amount in heating load and control parameters by using dynamic
system for each constructive system.

Constructive System PCM % w/w t1 t0 Qload [kJ/m2] Heating Load Reduction (%)

Wall 1

0 14:14 16:01 1319.8 36.71
25 13:29 16:36 278.9 86.63
50 12:37 16:44 −189.8 109.10
75 12:17 16:53 −309.9 114.86
100 12:26 16:58 −311.6 114.94

Wall 2

0 13:12 15:07 949.1 53.33
25 11:25 15:01 −425.5 120.92
50 10:43 15:31 −1359.8 166.86
75 10:42 15:24 −2041.6 200.39
100 10:32 15:47 −2452.3 220.59

Wall 3

0 12:02 13:11 1833.6 36.10
25 13:08 15:15 −95.0 103.31
50 11:49 14:59 −2281.3 179.50
75 11:52 16:41 −4260.8 248.48
100 11:49 15:49 −5994.4 308.89

As expected, the more amount of PCM added in the movable layer, the higher heating benefits
that the system can provide. However, this improvement is not always linear, as shown in Figure 7.
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The system cannot improve benefits when adding more PCM than 50% in the case when the system is
implemented in Wall 1, as the high thermal mass of the constructive system also plays an important
role. On the other hand, lightweight systems (Wall 3) present a linear relation between thermal benefits
and the amount of PCM; numerical results suggest that thicker rotatable layers with PCM could be a
good option to even maximize the heating benefits. Thus, this remarks the importance of a proper
design of the system depending on the morphology of the building element (roof or wall) in which it
will be implemented and the weather conditions under which it will be exposed.
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4. Conclusions

A numerical proof of concept of a novel PCM heating technology implemented into building
walls and/or roofs is given. The system is able to change the position of the PCM layer with respect to
the insulation inside the building component. Therefore, the system can locate PCM facing outdoors
during sunny hours to maximize solar absorption and the position of the PCM facing indoors to
provide space heating when required by the demand. The novel dynamic system has been numerically
tested when implemented into three different construction morphologies under Csa weather conditions,
providing extraordinary benefits in all of them. Numerical results demonstrate that the system can not
only be used as a thermal barrier from the outer environment but can provide active space heating from
stored solar energy. Moreover, in case of using movable layers with limited quantity of PCM (25–50%
w/w), the system is able to provide positive net energy balance, meaning that it releases indoors more
stored solar energy than all the heat losses to the outdoor environment.

The study also highlighted that the performance of the system is highly influenced by certain
design key parameters, such as melting temperature and amount of PCM, as well as on control schedule
to determine activations during the day. These variables should be examined and optimized for each
case, considering constructive system, building use, and weather conditions.

The high potential to reduce energy consumption for space heating applications showed by the
numerical results supports the future development of an experimental prototype to quantify the benefits
from this technology under relevant environment and evaluate its economic and environmental benefits.
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