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Abstract: Entity-relation extraction is a basic task in natural language processing, and recently, the use
of deep-learning methods, especially the Long Short-Term Memory (LSTM) network, has achieved
remarkable performance. However, most of the existing entity-relation extraction methods cannot
solve the overlapped multi-relation extraction problem, which means one or two entities are shared
among multiple relational triples contained in a sentence. In this paper, we propose a text-generated
method to solve the overlapped problem of entity-relation extraction. Based on this, (1) the entities
and their corresponding relations are jointly generated as target texts without any additional feature
engineering; (2) the model directly generates the relational triples using a unified decoding process,
and entities can be repeatedly presented in multiple triples to solve the overlapped-relation problem.
We conduct experiments on two public datasets—NYT10 and NYT11. The experimental results show
that our proposed method outperforms the existing work, and achieves the best results.

Keywords: relation extraction; entity recognition; information extraction; long short-term
memory network

1. Introduction

Entity-relation extraction is the core task and important segment in the fields of information
extraction, knowledge graph, natural language understanding, etc. In recent years, knowledge
graph [1] has been widely applied. Many achievements have also been made in the downstream
tasks such as question answering and retrieval based on knowledge graph. The basis for constructing
the knowledge graph is to build a knowledge base. In the knowledge base, the structured relational
triples are preserved in formats such as <entity 1, rel, entity 2>, which means that there is a relation
rel between entity 1 and entity 2. The goal of entity-relation extraction task is to extract the semantic
relations between entity pairs from unstructured text. With the application of deep learning in joint
learning and distant supervision, the relation extraction task has obtained rich research results.

The supervised entity-relation extraction methods can be divided into pipeline and joint learning.
The pipeline methods take the named entity recognition (NER) and relation classification (RC) as
two separate subtasks, and extract the relations between entities based on the completion of entity
recognition [2–4]. However, this kind of methods ignores the relevance between these two subtasks.
Recent work using joint learning [5–8] can make use of the tight interaction information between
entities and relations and use a single model to extract entities and classify the relations between
entities simultaneously, which solves the problems of the pipeline method well. However, most of
the existing work often requires complex feature engineering or relies heavily on the NLP tools to
extract features.

Moreover, most existing relation extraction models focus on scenarios dealing with a single
relation within one sentence, but there are usually multiple relations between entity mentions in one
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sentence. Sentences can be divided into three classes based on the degree of entity overlap [9], as
shown in Table 1: (1) Normal: a sentence belongs to Normal class if none of its triplets have overlapped
entities; (2) Entity Pair Overlap: some of its triplets have overlapped entity pair; (3) Single Entity
Overlap: some of its triplets have an overlapped entity and these triplets do not have overlapped
entity pair. Even though there are already several works to address the triplet overlap issue [9–11],
their effects are far from good enough, cannot solve the problems of relation extraction in complex
situations very well. As a result, the triplet overlap issue is not actually addressed.

Table 1. Examples of three classes: Normal, Entity Pair Overlap, and Single Entity Overlap. S1 belongs
to Normal class because there are no overlaps in its triplets; S2 belongs to Entity Pair Overlap class
since the entity pair (Sudan, Khartoum) are overlapped; S3 belongs to Single Entity Overlap class
because the entity Los Angeles is overlapped and its two triplets have no overlapped entity pairs.

Class Sentence Relation Triples

Normal S1: Chicago is in the United States. <The United States, contains, Chicago>

Entity Pair Overlap
S2: News of the list’s existence unnerved

officials in Khartoum, Sudan’s capital.
<Sudan, contains, Khartoum>
<Sudan, capital, Khartoum>

Single Entity Overlap
S3: John, 23, who lives in Los Angeles,

California.
<John, placelived, Los Angeles>

<California, contains, Los Angeles>

In reality, natural language texts, such as news and blogs, usually express multiple relations and
it is also common that one or more entity mentions appear among multiple relations. Therefore, it
is necessary to extract overlapping relations from the perspective of practical application scenarios.
The overlapping multi-relation extraction problem is more complex than single-relation extraction
because the single-relation extraction scenario can be basically divided into the following two types: (1)
for sentences with the given entity pairs, relation classification can be modeled as a text classification
problem; (2) for sentences with non-annotated target entity pairs, the model assumes that sentence
contains only one pair of entities and relation classification is performed after entity recognition; these
two cases usually use the softmax function in the relation classification phrase, so only one relation
can be extracted. In the multi-relation extraction situation, we need to find every complete relational
triple. The model needs to simultaneously extract the relation and the corresponding entity pairs.
Reference [8] provided an idea to integrate entity mention and relation type information into each
label, this two information can be obtained simultaneously when tagging each word. Zeng’s [9] work
is similar to ours, which is based on a sequence-to-sequence learning framework, but it cannot extract
multi-word entities because of the model design.

To tackle this problem, we completely convert entity-relation extraction task into text generation
task. We generate entity pairs and relational representation words according to source texts, without
any additional feature engineering. The task of generating target texts from source texts, including text
summarization [12,13], machine translation [14,15]. In the text summarization task, target texts are
keywords or key sentences that are copied from source texts or generated from vocabulary through
the semantic understanding of source text contents. For the relation extraction task, our target texts are
the entity pairs contained in the source texts and their corresponding relations, i.e., relational triplets.

In this paper, we adopt a sequence-to-sequence framework with the pointer, where using the
encoder to obtain the semantic encoding vector and the decoder with pointer is used to generate
entities or relations. Inspired by the text summarization paper [16], we also use a generation probability
pgen as a soft switch to select whether the current decoding time is more likely to copy words from
the original input or to generate words from the vocabulary. According to the specific situation of the
original input, one or more groups of relational triplets are generated, thereby implementing the joint
extraction of entities and relations. Entities can be repeated in multiple triplets, which can solve the
problem of overlapped multiple relational triplet extraction.

The main contributions of our work are concluded as follows:
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(1) We completely convert the entity-relation extraction to the text generation task, and use a unified
decoding method to generate entities and relational expressions as target text to realize the joint
extraction of entities and relations.

(2) Based on the text generation framework, the model is designed to generate multiple groups of
relational triplets. Entities can be repeated in multiple triplets to solve the problem of overlapped
multiple relational tuples.

(3) We conduct experiments on NYT10 and NYT11 public datasets, and the experimental results
show that we proposed method outperforms state-of-the-art with 4.7% and 11.4% improvements
in F1 score, respectively.

The remainder of the paper is organized as follows: Section 2 reviews the related works. Section 3
describes the proposed method in detail. In Section 4, datasets and settings used in the experiment are
presented and Section 5 shows the results. Section 6 discusses the performance comparison between
our model and the baseline methods. Section 7 concludes the paper.

2. Related Work

Entity and relation extraction methods can be divided into pipeline and joint learning.
Pipeline method regards entity recognition and relation extraction as two separate tasks, and

extracts relations based on entity recognition. Some pipeline methods based on RNN and CNN models
have been proposed. Ref. [17] first used RNN for relation extraction. Ref. [4] first introduced CNN to
this task. Refs. [2,18–20], improved on the previous work and enhanced the effect of relation extraction.
The pipeline method has the disadvantages of error propagation, ignoring the relevance between these
two subtasks and generating redundant information, while joint learning method proposed in recent
years which uses a single model to extract entities and relations simultaneously and can use the close
interaction information between entities and relations.

The joint learning method is further divided into feature-based structured systems [21] and neural
network models. Ref. [7] first used neural network methods with the dependency tree to jointly extract
entities and relations. Ref. [22] proposed a hybrid neural network which has two channels after the
encoding layer, one links to the NER module, the other feeds into the relation extraction module.
Ref. [5] first introduced the attention mechanism in combination with bidirectional LSTMs for joint
extraction of entities and relations. Ref. [8] proposed an entity-relation extraction method based on
a novel tagging scheme. This method completely transforms the joint learning model into sequence
labeling problem, it can extract multiple relations, but cannot deal with entity overlap because the
model can only assign a label to each word. Ref. [11] based on Zheng’s work [8], further transformed
the joint task into a graph problem and proposed a transition-based method, can model underlying
dependencies between relations and identify overlapped relational triples.

Ref. [9] first proposed a solution for overlapping relation extraction, and divided the sentences
into three classes according to the degree of entity overlap: Normal, Entity Pair Overlap, and Single
Entity Overlap. They proposed an end-to-end model based on sequence-to-sequence learning with
copy mechanism, copying entity pairs from the original input, and classifying the relation types in the
predefined relational table. Unlike [9], our model uses a unified way to generate token at any time in
the decoding process, instead of judging whether to copy entities or predict relations at different steps.
By calculating a generate probability distribution, the model can automatically learn whether entities
or relations should be generated at each moment. At the same time, because [9] presupposes that a
relational triple is generated every three steps, they can only recognize the last word of a multi-word
entity. While our model does not limit the number of words contained in each relational triple, it can
recognize multi-word entities and can copy entity words from the original text.



Appl. Sci. 2019, 9, 3795 4 of 13

3. Materials and Methods

In this section, we first formalize the description of the entity-relation problem. Then, we introduce
the sequence-to-sequence model with the pointer we use in detail.

3.1. Problem Formulation

Giving the training data [x, y], x represents the input text of the model and y represents the target
output. In the target sentence, we use ‘.’ to divide multiple triples, and within the triple, we use ‘,’ to
divide relational words, the first entity, and the second entity.

The goal of the model is to generate one or more groups of relational triplets according to the
specific situation in the source text, while allowing entities to be repeatedly presented. The model can
copy words from the source text by the pointer or generate words from the predefined vocabulary.
The overall structure of our model is shown in Figure 1.

Figure 1. The overall structure of our model. The blue block represents the bidirectional LSTMs in the
encoder, the red block represents the unidirectional LSTM in the decoder, the green block represents
the attention weight distribution, and the yellow block represents the final generation probability
distribution. All these above descriptions will be introduced in Section 3.

3.2. Model Description

3.2.1. Encoder

Giving a sentence s = [w1, w2, ... , wn], where wt represent the t-th word in the sentence of length
n, we first convert the word with one hot encoding into the embedding matrix through the word
embedding layer, and get e = [x1, x2, ... , xn], where xt ∈ Rd represents the embedding vector of
t-th word. The embedding layer randomly initializes the embedding matrix and updates the weight
parameters with the training of the model.

Then, we use LSTM to further encode the sequence. Long Short-Term Memory (LSTM) is a variant
of Recurrent Neural Network (RNN) which is widely used in various NLP tasks because it has ability
to capture long-term dependencies and solve the problem of gradient vanish in RNN. Specifically,
we use bidirectional LSTMs (Bi-LSTMS) which consists of two separate LSTM layers. The forward
LSTM layer

−→
h encodes the input sequence from x1 to xn. Similarly, the backward LSTM layer

←−
h will



Appl. Sci. 2019, 9, 3795 5 of 13

encode the input sequence from xn to x1. We then concatenate
−→
ht and

←−
ht to represent final encoder

information of t-th word, denoted as ht = [
−→
ht ,
←−
ht ], in this way, the encoder vector of each step can

obtain the semantic information of its context.

ft = σ(W f · [ht−1, xt] + b f )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(1)

In LSTM, as shown in Equation (1), xt represents the word vector of the t-th word, and ht

represents the hidden state vector at the time t. W and b represent the weight matrices and bias vectors
that can be learned, respectively.

3.2.2. Decoder

The decoder is aimed to generate tokens consisting of a layer of unidirectional LSTM.

ot, st = cell([xt−1, h∗t ], st−1) (2)

In Equation (2), cell is an LSTM unit, during training xt−1 represents the embedding of the
previous word in the target output sequence; in the test phase, it represents the embedding of the
word generated by the model at the previous step, and st−1 represents the decoding state at time t− 1.
At the same time, we use the attention mechanism to calculate the weight of the hidden vectors in
the encoder at the current decoding time, the attention distribution can be viewed as a probability
distribution over the source words. The greater the attention weight, the greater the influence on
the word generated at the current decoding time. In addition, h∗t represents the weighted sum of the
encoder hidden states based on attention weight, i.e., context vector. We use the attention calculation
method of [14] to obtain the context vector:

et
i = vTtanh(Whhi + Wsst + battn)

at = so f tmax(et)

h∗t = ∑
i

at
i hi

(3)

where v, Wh, Ws, and battn in Equation (3) are learnable parameters, hi represents the hidden state
vector of the encoder at time i .

at is the influence weight in attention which is also a probability distribution. When the model
wants to ‘copy’ a word from the original text, the word with the largest weight value will be selected
as the predicted word. Therefore, we also call at ‘pointer’.

Then the context vector is concatenated with the decoder state st and fed through linear layers to
produce the vocabulary distribution Pvocab:

Pvocab = so f tmax(Wv[st, h∗t ] + bv) (4)

where Wv and bv are learnable parameters, Pvocab is a probability distribution over all words in the
predefined vocabulary.
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To make the model have the ability to copy words from the source text, and to retain the ability to
select words through the predefined vocabulary, we calculate a generation probability pgen ∈ [0, 1] at
each decoding step, refer to [16]:

pgen = σ(wT
h ∗ h∗t + wT

s st + wT
x xt + bgen) (5)

where wh, ws, wx and bgen are learnable parameters and σ is the sigmoid function, pgen is calculated by
context vector h∗t , decoder state st, and decoder input xt. pgen is aimed to select the word output at the
current decoding time, with a greater probability of copying from the source text or more likely to be
generated from the predefined vocabulary.

And now we get the final probability distribution:

P(w) = pgenPvocab(w) + (1− pgen)∑
i

at
i (6)

where at represents the attention weight on the hidden states of the encoder. We select the word with
the greatest probability as the predicted word of the current step. In the test phase, the embedding of
this word will be sent to the next decoding step.

For entities, the model will tend to copy from the source text, so that for entities that do not appear
in the predefined vocabulary (unseen entities), the model also has the ability to correctly identify; for
relational expressions, the model is more tend to generate from the vocabulary.

3.2.3. Training and Decoding

During training, given a batch of data with B sentences S = {s1, s2, ... , sb} with their corresponding
target sequences Y = {y1, y2, ... , yb}, where yi = {w1

i , w2
i , ... , wT

i } is the reference of i-th sentence. The
loss function is defined as follows:

loss =
1

B× T

B

∑
i=1

T

∑
t=1
−log(P(w)) (7)

where T is the maximum time step of decoder.
While decoding, the model adopts beam search to increase the accuracy of the output. The

advantage of beam search is that we have multiple choices at each step, instead of selecting the word
with the highest probability at each time, in case that the optimal local prediction is incorrect. The
candidate predictions are ranked by global scores; thus, error propagation can be alleviated.

4. Experimental Setup

In this section, we present our experimental results on two different public datasets NYT10 and
NYT11, and compare them with the baseline methods to demonstrate the effectiveness of our model
from multiple perspectives.

4.1. Dataset

We conduct experiments on two public datasets NYT10 and NYT11. NYT (New York Times)
dataset is developed by distant supervision method. The original corpus in this dataset is extracted
from sentences in New York Times articles. NYT10 and NYT11 are two versions of NYT dataset.
Specifically, NYT10 dataset contains 29 valid relations, including 74,345 sentences, which is originally
released by [23]. NYT11 is relatively small, including 24 valid relations, which is provided by [24]. We
filtered the sentences that do not contain valid triples in the dataset, leaving 66,336 sentences. The
training set, valid set, and test set are split by random sampling. Some statistical data of the two
datasets are shown in Table 2.
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Table 2. Statistics of NYT10 and NYT11 datasets.

NYT10 NYT11

Relation types 29 24
Training set 66,828 58,356

Training tuples 84,166 98,393
Test set 4000 4998

Test tuples 5010 8226

4.2. Settings

We set 256 as the hidden state dimension of LSTM, 128 as the word embedding dimension, and
the batch size is 16. We set the maximum number of decoding steps to 60, so the model can generate
up to 10 groups of relational triples. We use Adam to optimize parameters and learning rate is set to
0.001 during training. We set beam size is 4, which means that the top 4 optimal generated sequences
are preserved during the decoding phase, and finally the one with the highest probability is selected as
the final output.

4.3. Baseline and Evaluation Metrics

We select four models as our baselines, CoType is a joint extraction model based on feature
system. SPTree uses neural network model with abundant linguistic resources. Noveltagging and
MultiDecoder both use neural network to jointly extract entities and relations without additional
features. These models all achieved the best results at that time.

• CoType [24]: a domain-independent framework by jointly embedding entity mentions, relation
mentions, text features, and type labels into representations, which formulates extraction as a
global embedding problem.

• SPTree [7]: an end-to-end relation extraction model that represents both word sequence and
dependency tree structures using bidirectional sequential and tree-structured LSTM-RNNs.

• Noveltagging [8]: an approach that treats joint extraction as a sequential labeling problem using a
tagging schema where each tag encodes entity mentions and relation types at the same time to
achieve joint extraction of entities and relations.

• MultiDecoder [9]: a sequence-to-sequence learning framework with a copy mechanism for joint
extraction, where multiple decoders are applied to generate triples to handle overlapping relations,
completing the extraction of a relational triple every three steps. This method is the first time to
solve the overlapping problem of multi-relational extraction.

We compare our method with the above four baselines on NYT10 and NYT11 dataset respectively.
In addition, we evaluate the performance of each model with micro Precision, Recall, and F1 score.
Only when the relation and entity pair are all correct, we think this relational triplet is correctly
predicted, where an entity is considered correct if the head and tail offsets are both correct. We used
the source code provided by above baselines to reproduce their performance on NYT10 and NYT11
dataset, respectively.

5. Results

In this section, we will show the experimental results of our proposed method and baseline
methods on NYT10 and NYT11, we reproduce the results of the baseline methods.

Model Performance

In which Table 3 shows the comparison of extraction effects on test sets of NYT10 and NYT11,
respectively. It can be found that our proposed method is better than baseline methods both on
NYT10 and NYT11 datasets, and outperforms [9] with 4.7% and 11.4% improvements in F1 score,
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respectively. At the same time, to prove the ability of our model to extract overlapped multi-relations,
we respectively divide two subsets from the NYT10 and NYT11 test sets. All sentences in one subset
have entity pair overlap, and all sentences in the other subset have single entity overlap. Please note
that some sentences may exist in both cases, in this experiment, this kind of sentence will exist in both
subsets. We compare our model with Noveltagging and MultiDecoder. Figures 2 and 3 show the
precision, recall, and F1 score of entity pair overlap and single entity overlap on NYT10 and NYT11
datasets, respectively. In the figure, blue, yellow, and green blocks represent the experimental results
of Noveltagging, MultiDecoder, and our model, respectively. As we can see, our model can handle
overlapped multi-relation extraction better than the baseline methods on both datasets.

Table 3. Comparison of results of our model and baselines in NYT10 and NYT11 datasets.

Model NYT10 NYT11

Precision Recall F1 Precision Recall F1

CoType - - - 0.417 0.320 0.362
SPTree 0.464 0.591 0.519 0.493 0.634 0.555

Noveltagging 0.563 0.334 0.419 0.622 0.341 0.440
MultiDecoder 0.543 0.530 0.536 0.586 0.574 0.580
Our Method 0.592 0.533 0.561 0.702 0.598 0.646

Bold numbers represent the results of proposed method and are also the highest scores of the three evaluation
metrics (precision, recall and F1 score) in the comparative experiment.

Figure 2. Results of our model and baseline models in Entity Pair Overlap class and Single Entity
Overlap class in NYT10 dataset.

Figure 3. Results of our model and baseline models in Entity Pair Overlap class and Single Entity
Overlap class in NYT11 dataset.
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6. Discussion

In this section, we focus on the advantages of our model over other baselines, and explain and
analyze the experimental results in detail.

6.1. Comparison of Overall Performance

Table 3 shows the Precision, Recall, and F1 scores of the baseline models and our proposed method.
CoType is a feature-based system whose performance is not as good as neural network models. SPTree
uses more linguistic resources (e.g., POS tags, chunks, syntactic parsing trees) to obtain better results
Noveltagging method [8] cannot solve the problem of overlapping multi-relations because it can only
assign a tag to each word in the sequence, which leads to a decrease in accuracy. Ref. [9] decides
to copy entities or predict relations according to different decoding steps. The copy mechanism is
used to calculate the probability distribution to select entities on the source texts at the time of entity
recognition, and at the steps of relation prediction, the probability distribution is calculated on the
relational table. While, during decoding, we do not distinguish the generation time of entities or
relations, and relational words are also distributed in the predefined vocabulary, rather than having a
separate relational table. We adopt a more unified decoding method, the predicted word at any time is
generated by calculating the mixed probability distribution P(w) over the vocabulary at each decoding
step. We hope that the model can learn whether to generate entities or relational words at each step in
the process of training.

Meanwhile, we set a maximum decoding step of 60 to generate up to 10 relational triples, while [9]
can generate up to 5 relational triples. At the same time, Zeng’ s model can extract multiple triples,
but it is limited to the 3t + 1, 3t + 2 (5 > t > = 0) to generate the first entity and the second entity of
the current triple. According to its presupposition, multi-word entity cannot be extracted completely,
which is a disadvantage in its model design. Our method can extract the whole part of each entity
completely, so when we judge whether the model extracts a triple correctly, Zeng’ s model is more
relaxed than our model, because it is equivalent to just extracting the last word in the entity as if the
entity was correctly extracted.

6.2. Comparison of Overlapped Multi-Relations Extraction Performance

To further contrast with baselines, we experiment with sentences of different entity overlap
degrees, respectively. Figures 2 and 3 show the experimental results of our proposed method and
two of our baseline methods (Noveltagging and MultiDecoder), respectively. As we can see in Entity
Pair Overlap class and Single Entity Overlap class, our method performs much better than others.
We think that our method generates entities and their relations as target texts, if there are multiple
relations between the entity pairs or an entity belongs to multiple triplets, then it can be understood
that this entity or entity pair has more abundant semantic information, and these entities will get more
attention at the moment of decoding. Therefore, there are greater probabilities for the model to select
them from the source texts. Thus, our method is more suitable for processing the relation extraction
in entity overlap case than [9]. Again, Noveltagging [8] cannot assign multiple tags to a single word,
which makes it impossible to extract overlapped relational triples.

6.3. Comparison of the Multiple Relational Triples Extraction Performance

We further divide the NYT11 test set and classify test set into 7 subclasses according to the
relation number of the entity pairs in each sentence. We test the extraction capability of our model
and MultiDecoder on each class which contains 1, 2, 3, 4, 5, 6 and >= 7 relational triples, respectively.
The results are shown in Figure 4, we can see that as the number of relations contained in a sentence
increases, the performance of MultiDecoder decreases. However, when the sentence has one to four
relational triples, the effect of our model is gradually increasing, and achieves the best performance
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when the number of relations is 4. When the number of relations between the same entity pair is
greater than 4, the extraction effects will gradually decrease.

(a) Precision (b) Recall

(c) F1 score

Figure 4. Results of Precision, Recall and F1 score of sentences that contains different number of triplets
of our model and MultiDecoder on NYT11 dataset.

As the number of relations increases, extraction becomes more difficult, so the performance of
MultiDecoder decreases gradually. For our model, as mentioned earlier, if there are multiple relations
between entities, it will be more likely to be noticed when decoding and thus extracted, but this is
within a certain threshold range (<=4), when the number of relations continues to increase, our model
will also have a performance degradation.

We will analyze why F1 score is the highest when there are 4 relational triples in a sentence from
the perspective of the proportion of entity pair overlap in each subclass. From Figures 2 and 3, we can
see that our model is more suitable for dealing with entity pair overlap class than single entity overlap
class. If there are more than two relations in the sentence, there will usually be one of two types of
overlapping situations. Therefore, we analyze the proportion of entity pair overlap situation in these
sentences which contain more than two relations. We count the number of relations that an entity pair
contains when there are 2, 3, and 4 relations in the sentence respectively, if the entity pair contains 2 or
more relations, it means there is entity pair overlap.

Table 4 shows the statistical results. From the table, we can see that in the subclass containing 4
triples in the sentence, has the largest proportion of entity overlap, reaching 80%, which is beyond the
other subclasses, so we think this is the reason makes the model perform best on this subclass. The more
relations are contained in sentences, the more complex the extraction is. When sentences contain more
relations (>4), we consider the following two reasons leading to the performance degradation of the
model. First, since our model generates relatively independent words rather than sentences with
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contextual contexts, it is relatively weak for LSTM to generate such a long sequence without coherent
semantics. Secondly, because the training set contains less than 3% of the sentences with more than 4
relations, the model is not sufficient to learn this situation.

Table 4. Statistics Results.

1 2 3 >=4 Percentage

sentences containing 2 relation triples 514 943 - - 0.647
sentences containing 3 relation triples 210 72 182 - 0.547
sentences containing 4 relation triples 70 71 12 194 0.800

Bold numbers represent the largest proportion of entity pair overlap in the three cases.

6.4. Case Study

Table 5 shows three examples of our model extracted from the NYT11 dataset, corresponding to
three categories: normal, single entity overlap, and entity pair overlap. The first sentence belongs to
the normal class and does not have multiple relations. ’contains’ means the relation of entity America
and entity Houston. Our model generate ’contains’ from predefined vocabulary and copy America,
Houston from input text. The second sentence contains two relations in which there is overlap of a
single entity, Italy. The third sentence contains two relations where entity pairs overlapped, <Microsoft,
Bill Gates>. The entity pair in the last sentence is <Somerset County, Quecreek>, but the model only
copies the last word ‘County’ in Somerset County from the original text, and does not extract entity
completely. In this case, we think that the triple predicted by the model is wrong.

Table 5. Extraction examples of our models. The first column in the table is the input of the model,
and the second column is the corresponding sentences of the output of the model. As described in
Section 3.1 above, multiple relational triples in the model output are separated by ‘.’ and ‘,’ separates
relational words and two entities within each triple.

Input Output of Our Model

Kevin Steurer is helping complete arrangements for
a family trip to Houston , America . contains , America , Houston .

You can take the train from many cities in Italy to Lecce ,
which is about 45 min from Otranto by car.

contains , Italy , Lecce .
contains , Italy , Otranto .

The real power at Microsoft resides with its longtime
leaders—Bill Gates, the co-founder and chairman.

work_in , Bill Gates , Microsoft .
founder , Microsoft , Bill Gates .

Somerset County has experienced disaster , with the crash
of flight and nine coal miners trapped at Quecreek. contains, County, Quecreek

7. Conclusions

In this paper, we propose to completely transform the entity-relation extraction task into the text
generation task to solve the entity overlap problem in relation extraction. We use a pointer-based
sequence-to-sequence framework to enable the model to copy words from the source text or to select
words from the predefined vocabulary. We further analyze the extraction ability of our model on
different degrees of entity overlap, and classify the sentences according to the different number of
relations between two entities, and test the extraction effects of our model on these subclasses. We
conduct experiments on the public datasets NYT10 and NYT11. The experimental results show that
our method outperforms the baselines.
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