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Readers who have recently visited or purchased a newly built house may have started to notice
the standard inclusion of “smart home” technologies. The smart system can automatically control
environmental parameters, such as temperature or window shading, based on the ambient conditions
or can be sent via verbal request to go on online shopping errand. Security systems linked to
the smart system can alert residents of potential visitors based on the integrated motion detectors,
and increasingly, who the visitor is, using advanced facial recognition software. Such smart home
functionalities are the fruits harvested from decades of research in network technologies, artificial
intelligence, embedded electronics, advanced sensors, among others. Numerous researchers around
the globe have innovated and labored long hours to bring cutting edge ideas to life and finally to
application. Thus, despite the highly complex mathematics and engineering that drives smart home
systems, an increasingly large part of the population has started to take such innovations for granted.
Even the lay person has a functional, albeit naive understanding of such systems and can seamlessly
use them to improve their lives. However, the smart home is only one of many microcosms that
comprise the larger realm of the so-called structural health monitoring (SHM) [1–3].

Zooming out to the big picture, one can see that society lives in and is supported by numerous,
intersecting layers of large-scale infrastructure. We rely on the transportation infrastructure to go to
work or get back home; we need the sewage system to keep our living places hygienic; we depend on
the energy network to power our devices and appliances. The list can go on, and while we may not
notice when everything works as intended, if any layer of infrastructure is suddenly made absent,
society can come to a standstill. Thus, the health of infrastructure is paramount in the list of national
priorities. This notion is paralleled by the National Academy of Engineers Grand Challenges for
restoring urban infrastructure. For infrastructure, the main antagonists to good infrastructural health
are corrosion [4,5], vibration and fatigue [6–8], aging [9], natural and man-made disasters [10,11],
which work to either gradually or rapidly induce structural failure [12,13]. For years, we have relied
on manual inspections to detect damage and determine whether remediation was necessary. This
reliance on manual labor is time consuming and highly skill dependent. Damages deep within concrete
structures may not be realized until it is too late [14,15]. The result is a pressing situation in which large
swaths of structures across the nation are in desperate need of maintenance and improvements, as
highlighted by the dismal infrastructural grade issued by the National Report Card in 2017. We have
furthermore arrived at a point at which we need to consider the future where an increasing population
will place even further loads onto the already strained infrastructure. Recognizing the implications of
this impending crisis, researchers from all types of backgrounds are racing to innovate technologies
that can revolutionize our current way of dealing with infrastructure that is each day accumulating
damage that is not always visible even to the trained eye.
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The range of research, partly captured in this issue, is stratified from foundational research into the
behavior of structures to prototype systems that are soon ready for commercialization. Some examples
of research directed towards better understanding of structural behavior in this special issue include the
modeling of various structural responses to normal and disaster level loads. Researchers have worked
on modeling the behavior of structural components such as columns and shear walls [16,17], as well as
different types of transportation infrastructure such as roads, railways, tunnels, and bridges [18–22]. In
areas prone to typhoons, researchers modeled the behavior of high-rises to strong winds [23,24]. On
the smaller scale, the propagation of guided waves has been modeled to help predict corrosion [25].
In contrast to theory and modeling are experimentalists who take a more hands on approach and
perform testing. Examples include the flexural testing of high-performance steel beams, steel bar
corrosion [26], testing of bonding behavior in reinforced concrete [27], among others [28,29]. At a
higher level, using the current understanding of system mechanical behaviors, investigators have
developed methods to identify, extract features, and classify the health of different structures using
minimal knowledge of system behavior [30–35]. Supporting such work are other researchers that
specialize in the long-term monitoring of damage and help strategize everything from sensor placement
to understanding what the key parameters that need to be monitored are. Examples include work on
developing of positioning systems that determine the best locations to measure structural vibrations,
monitoring of tunnel deformations using GPS systems, monitoring of pipes to blast forces, etc. [36–41].
A large number of investigators focus on damage detection [42–46], in which sensing technologies
are used to characterize (e.g., location, size, depth, etc.) damage at a shorter time frame than typical
monitoring techniques. Examples include the use of vibration and acoustic signals to detect water
leaks [47], the use of infrared to detect damage in beams [48], utilizing acoustic emission to detect
wearing in pin connections [49], and the training of deep learning neural networks to identify damage
in composite pipelines [50], and much more [51].

An interesting subset of the research on SHM and damage detection is driven by the
multi-functionalities of piezoelectric materials [52–54], such as PZT (Lead Zirconate Titanate), which
has a strong piezoelectric effect and is often used to generate and detect stress waves for SHM [55–57].
PZT has high bandwidth [58,59] and is often used to fabricate acoustic emission sensors/probes [27,49].
As reported in this special issue, PZT transducers have demonstrated the potential for a staggering
range of applications [25–27,35,42,49], including the development of smart transducers that have
recently shown to be able to monitor the health of structural components and interfaces and detect
debonding and delamination damages. A recent development has even demonstrated the ability to use
piezoelectric transducers to communicate information across a structure [60], potentially also picking up
on damage as the stress waves propagate across the structure. All the above research and development
have the potential to work with each other to produce new technologies and understanding in
ways that cannot be expected. Examples can be found in the most recent research in bolt looseness
detection [61]. The bolt is among the most ubiquitous structural component found in almost all types
of infrastructure [62,63]. The importance of the bolted connection is for instance supported by recent
Bureau of Safety and Environmental Enforcement (BSEE) statements that warn how disastrous oil spills
can result from neglecting to constantly inspect and monitor bolted connections in offshore equipment.
Recent research has shown the innovative ways to use vision [62] and vibro-acoustic signals [63] to
rapidly detect and even quantify bolt looseness. For example, by listening to the sounds generated by
the light percussion of a bolt by a small impactor [64,65], a neural network, combined with complex
signal processing algorithms, can tell the operator the preload of the bolt [66], and potentially what
other bolts (e.g., if installed in a flange) need servicing. The percussion-based method shall have
potential in damage detection of various civil structures, such as concrete filled steel tube structures
and steep plate composite structures. Another emerging research in SHM is the use of robotic vehicles
to perform inspection and damage detection in areas that are inaccessible or not easy to access to
human [67,68].
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Despite the seemingly grim situation of current infrastructural health, the volume of research
activity aimed at structural health monitoring and damage detection is rapidly expanding and evolving.
The innovation presented in this issue and in other literature should give the reader a sense of
optimism for the future. Perhaps soon in our lifetimes, highly intelligent infrastructure, analogous
to the increasingly commonplace “smart home”, can be something that can be taken for granted by
the masses.
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