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Abstract: Biomechanical feedback is a relevant key to improving sports and arts performance. Yet,
the bibliometric keyword analysis on Web of Science publications reveals that, when comparing to
other biofeedback applications, the real-time biomechanical feedback application lags far behind in
sports and arts practice. While real-time physiological and biochemical biofeedback have seen routine
applications, the use of real-time biomechanical feedback in motor learning and training is still rare.
On that account, the paper aims to extract the specific research areas, such as three-dimensional (3D)
motion capture, anthropometry, biomechanical modeling, sensing technology, and artificial intelligent
(AI)/deep learning, which could contribute to the development of the real-time biomechanical
feedback system. The review summarizes the past and current state of biomechanical feedback
studies in sports and arts performance; and, by integrating the results of the studies with the
contemporary wearable technology, proposes a two-chain body model monitoring using six IMUs
(inertial measurement unit) with deep learning technology. The framework can serve as a basis for a
breakthrough in the development. The review indicates that the vital step in the development is to
establish a massive data, which could be obtained by using the synchronized measurement of 3D
motion capture and IMUs, and that should cover diverse sports and arts skills. As such, wearables
powered by deep learning models trained by the massive and diverse datasets can supply a feasible,
reliable, and practical biomechanical feedback for athletic and artistic training.

Keywords: anthropometry; biomechanical modeling; two-chain body model; joints’ coordination;
IMUs; deep learning

Wearable sensors have garnered great interest in biofeedback training, owing to their tremendous
promise for a plethora of applications. They supply real-time non-invasive monitoring of
physical-activity parameters as indicators of a trainee’s physical progress. Yet, the absence of a reliable
method of applying wearables in biomechanical feedback training has greatly hindered wearable
application in the area of human motor skill learning, training, and optimization. This review article
intends to concentrate on the theme of biomechanical feedback training, selecting the relevant/related
articles to summarize previous investigations in order to inform the reader of the current state and the
next possible steps for its development. The article reports on:

• Biofeedback and its types
• Biomechanical feedback in motor learning—how far is it from a real-time application?
• Milestones of biofeedback training in human motor-skill learning
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• Defines and clarifies the problem—why is biomechanical one different from other biofeedback?
• Significant gaps in the current research
• How past and current developments influencing new endeavors—ideas of where research might

break through.

1. Biofeedback and Its Types

Biofeedback is usually gained by connecting human body to electrical sensors that receive
information (feedback) about human body (bio). It is a technique that one can use to learn to control
one’s body functions or physical performance [1]. Generally, there are four types of biofeedback:
physiological (e.g., heart rate and blood pressure), neurological (e.g., electroencephalogram
(EEG)/brain-wave), biochemical (e.g., electrolytes and metabolites in sweat or saliva), and
biomechanical (e.g., joint angles and force applied) [2,3]. In human motor learning, biofeedback
training familiarizes us with the activity in our various body systems, so it is an useful educational
and/or training tool for mastering and/or maintaining human motor skills [4].

2. Biomechanical Feedback in Motor Learning—How Far Is It from a Real-Time Application?

Wearables in sports are only few years old; however, they have expanded radically, from the
real-time monitoring of players’ signs of exhaustion or injury while on the field to including perceptual
and psychological aspects of professional team sports for enhancing performance [5–7]. It has
already been a public’s agreement that wearable technology is leading a revolution in sports [5,7,8].
Various sensors are now fitted into sport equipment, wristband, and/or clothing to determine athletic
performance, like speed, acceleration, power, distance, heart, and metabolic conditions during training.
All the crucial data are sent to the coach and training team instantly, allowing for them to perform an
individualized training for increasing athletic competence.

Nevertheless, a real-time biomechanical feedback training would currently not look so optimistic.
A search using keywords in the authority database—Web of Science—reveals the following scenario:
When the keyword “biofeedback training” is applied, 5588 articles are found. However, when the
keyword is changed to “biomechanical feedback training”, the article number is dramatically dropped
to 569. Even more theatrical, when two additional keywords “real-time” and “sport” are added for
a search, the number decreased to 23. To the end of the search, scarcity of articles occurs when the
keyword “sport” is substituted by “dancing”, i.e., only one article is found (Table 1). These results
would suggest that, when comparing to other biofeedback applications, the real-time biomechanical
feedback application lag far behind in sports and arts practice.

Table 1. The result of literature search in all databases of Web of Science on 11 October 2018.

Biofeedback Training Biomechanical
Feedback Training

Biomechanical
Feedback Training &
Real-Time & Sport

Biomechanical
Feedback Training &
Real-Time & Dancing

5588 569 23 1

A close look at the types of published papers divulges that the real-time biomechanical feedback
training in motor learning is still an infant science, i.e., only two applied studies attempting to reveal
its potentials in human motor learning/training (Table 2). When considering the booming popularity
of wearables in sports as well as in health-related applications, the number of biomechanical inquiries
appears to be disproportionately low. The rarity of this occurrence could be a product of both facts
that there is a lack of a general biomechanical model for feedback motor learning and that researchers
are still searching for methodological breakthroughs to link biomechanical quantification and human
motor learning in real-time.
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Table 2. The article types of real-time biomechanical feedback training found in Web of Science.

Motor Learning/Training Method/Development Injury Prevention/Rehabilitation Review Articles Patents Total

Sport 2 10 7 2 2 23
Dancing 0 1 0 0 0 1

3. Milestones of Biofeedback Training in Human Motor Skill Learning and Training

Effective human motor skill learning/training benefits nearly every one of us, as it can help
develop interests in more physical activities and lead to more active lifestyles [9]. The main aims of
researches that are related to human motor skills’ learning (both in sports and arts performance) are
to improve learning techniques (education), to accelerate skill acquisition (learning), and to maintain
motor function (training). All the three aspects rely on the feedback mechanism for their efficiency and
effectiveness [10]. Given the complexity of human sensory-motor behavior, informed learning and
training hold a great potential to improve efficiencies, particularly in the acquisition of cognitive and
psychomotor skills for highly complicated performance activities [11–15]. The two key components
in human motor skill learning and training are practice and biofeedback [16]. Previous studies have
shown that, when properly understood and applied, biofeedback is an excellent tool for enhancing
practice and performance of human motor skills [17–23].

3.1. Historical Overview

Learning and training of human motor skills has a history of over thousands of years [15,16],
experiencing some key periods, such as apprenticeship, class education, individualized instruction,
and integrated performance support; however, the appearance of (bio)feedback in systematic motor
skill training occurred in early 1950s [24,25]. After World War II, individualized instruction was first
developed in industry for training human physical skills (i.e., human motor skills) efficiently and
reducing expense while still getting high instructional value for various professionals. The training
method broke the learning into small steps with an activity afterward to check comprehension.
The reinforcement learning behavior opened the door for biofeedback intervention in motor learning
and practicing new motor skills.

This early form of feedback learning in essence requires immediate feedback (i.e., real-time
feedback) given after each skill practice. The training can be knowledge-based (trainer), or more
objectively, technology-based. The advantages of the feedback learning are: (1) it allows for a learner
to practice at his or her own pace and to find mistakes and correct them and (2) it reduces learning
time, produces a low error rate, and improves learning efficiency through immediate feedback [15,16].
The successful example of the feedback learning is a computer-based training developed and is used
primarily in the military [25]. The benefits of such training are more opportunities for realistic training
and feedbacks; and, increased availability and accessibility of training in operational units.

From scientific point of view, human motor-skill development is a biological process; therefore,
the influential feedbacks should be those related to the changes of biological parameters of human
motor system. In essence, feedback in human motor-skills’ training is primarily biofeedback.
Biofeedback as a research major was first reported in the 1960s, supplying single-parameter feedback
in real-time training [2]. Until the end of the last century, biofeedback had been able to supply multiple
parameters, such as body temperature, heart rate, respiratory rate, muscle activity, impact, joint
angle, and others during training [26–28]. Only due to the limitation of sensing technology at that
time, the application was commonly lab-based and applicants were equipped with wires. As such,
the applications were mainly in areas of less human mobility or less human movement complexity,
such as in senior health care, physiotherapy, and rehabilitation [2,29–33], i.e., the application was
lab-based, not practical in motor learning/training related to sports and arts performance.
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3.2. The Present Aspects

Over the past decade, wearables are becoming the trend in sports training. The technological
developments have led to the production of inexpensive, non-invasive, miniature sensors, which
are ideal for obtaining sport performance measures during training or competition. The miniature
sensing devices are worn on wrist, clothes, and/or shoes. They supply real-time biofeedback for sports
analyses. The sensing technology has turned towards creating devices with new form factors that
augment sports activities.

The overwhelmingly impression of wearables success in sports is mainly in motoring physical
condition and preventing injuries. For sport-related injuries, soft-tissue injury remains the most common
type among athletes. The injury is often caused by fatigue, overtraining, or dehydration [34–36].
Wearable sensors are now able to collect data related to these risk physical conditions from athletes’
physical conditions, muscle activities, and sweat [3,5–7]. The real-time biofeedback helps coaches to
alternate quickly their training or competition strategies for decreasing this major injury in trainings and
competitions [5,7,34].

3.3. The Current Success of Wearables in Sports Is Not Yet Linked to the Human Motor-Skill Learning

The existing evidences demonstrate that the wearables have successfully supplied real-time
information related to athletes’ speed, acceleration, power, distance (i.e., locomotion/physical
characteristics), heart rate, muscle activities (i.e., physiological feedback), and electrolytes, metabolites
(i.e., biochemical feedback). Although, these parameters are useful in analyzing the general physical
condition of an athlete, they do not provide information that is related to the limbs’ control of human
motor skills, i.e., the biomechanical feedback is still missing. Without this vital information, the motor
learning of complicate skills (e.g., artistic performance, gymnastics/acrobatics skills, and many others)
is largely formed of art based on the trainers’ subjective experiences of “what works” [11,12,37]. While
this can be effective for some learners, large and widespread biological diversity unfortunately limits
the generalizability of a single individual’s experiences [11,12,38,39]. Even small variations in bone
length, muscle, and tendon attachments, for example, can disrupt this traditional form of knowledge
transfer. Thus, to improve motor-skills’ learning, we need to establish scientifically described training
targets and routes, which in turn require biomechanical feedback tools that can measure and quantify
characteristics of effective limbs’ coordination (i.e., motor control).

4. Defines and Clarifies the Problems—Why Is Biomechanical One Different from Other
Biofeedback?

4.1. Unique Aspects of Biomechanical Feedback

Physiological, neurological, and biochemical feedback present information related to one’s
physiological variation, muscle tension, physical condition, and thought processes. Such information
is conserved across human motor skills, i.e., across different movement forms. Therefore, feedback
devices monitoring these parameters can be universally applied to all activities [40,41].

In contrast to physiological, neuronal, and biochemical feedback, biomechanical feedback mainly
provides information that is related to the limb control of human motor skills, which directly accelerates
motor skill learning and optimization, but must be tailored to the activity being examined [42–45].
In other words, biomechanical feedback is thus a more useful tool but complicated for its development.

Several studies in the past decades confirmed the importance of real-time biomechanical feedback,
showing up to 100% improvement with its application [46–49]. However, the development of
biomechanical feedback is still in its infancy. While the real-time biofeedback of the first three types
(i.e., physiological, neurological, and biochemical feedback) has been well developed for the past
decades and is now a routine application (successfully transferred from lab-based to training and/or
competition environments), the studies and applications of biomechanical one are still rare. After
reviewing 666 publications between 1960’s and 2010’s, Tate and his colleagues found that there
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were only seven studies using real-time biomechanical feedback for physical training in laboratory
environment [2]. Supplementary, the current state has not shown a considerable change, especially in
sports and arts performances (Tables 1 and 2). The rarity could be caused by the numerous hitches that
must be overcome during the development of the real-time biomechanical feedback tools. The obvious
one is that biomechanical feedback must always be tailored to an activity (i.e., non-generalizable),
requiring different design parameters for different motor skills. Thus, to develop a biomechanical
feedback device, one must first obtain a thorough understanding of the selected motor skill in order
to select the useful parameters for monitoring. Additionally, the devices must not interfere with the
motor skill being executed. This technical limitation alone has proved to be a major hindrance to the
development of biomechanical feedback devices in motor learning and training.

In short, biomechanical wearables still require much more researches before it can become an
impactful tool in the real world.

4.2. Biomechanical Steps Required in Developing Wearables for Biomechanical Feedback

As discussed before, a successful motor learning outcome can be supported by useful and timely
biomechanical feedback to the athlete targeting performance defects. Systematic, objective, and
reliable performance monitoring and evaluation, performed by means of quantitative analyses of
biomechanical variables, can reinforce the biomechanical feedback training in sports practice [12,37,42].
Therefore, the ways of quantifying a motor skill with high spatial and temporal accuracy (i.e., the limbs
coordination) would be the key for developing wearables for biomechanical feedback training [50].

Currently, the most reliable biomechanical feedback method is three-dimensional (3D) motion
capture, which identifies and tracks markers that are attached to a human subject’s joints and body
parts to obtain 3D skeleton information [51–53]. The spatiotemporal human representation based on
3D motion capture data is currently the most trustworthy approach in motor skill quantification, both
in sports and arts performance [54–60]. This method, however, mainly supplies post-measurement
feedback (i.e., not real-time) due to its drawbacks: multiple cameras placed in a room, long calibration
and setup procedures, a time consuming course on data collection, processing, analysis, and
interpretation, and the high cost of the equipment [61–63].

For practitioners, real-time feedback is more useful. Yet, due to the drawbacks of 3D motion
analysis technology and the diversity of human motor skills in sports and arts performance, research
on biomechanical feedback has to undergo:

(1) selection of a specific motor skill,
(2) 3D motion analysis of the skill,
(3) verification of post-measurement feedback in practice, and
(4) development of feedback device for monitoring the critical/vital parameter(s) (e.g., coordination

among certain segments or joints) for the given motor skill.

These steps are, at present, required for developing a reliable device that is capable of supplying
real-time biomechanical feedback [27,50].

4.3. Challenges Faced by Developing Wearables for Biomechanical Feedback

The current sensing development has shown its potential to mitigate problematic constraints of
biofeedback devices on human movement and demonstrated its great promise to expand the capabilities
of biofeedback to motor-skill learning [5]. The successes in health and physiotherapy [26,29,64,65]
suggest that biomechanical wearables will become a reality in human motor learning and training in
sports and arts. However, the transition from the simple motor skills training to the complicated ones
would face several challenges.

It is no doubt that the most challenge for developing biomechanical wearables is the practicality
in sports and arts performance. Any device attached to human body will supply certain constraints
for our movement and alternate the movement control in a way that may not reach the goal of
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training. Currently, the reliable 3D motion capture technology requires around 40 markers for motor
skills quantification and characterization [52,59,60,66]. Even the non-ideal test condition cannot
be substituted by simply replacing the ~40 markers (sphere shape of 9 mm in diameter and almost
weightless) with wearables, because the weight and volume of current wearables (e.g., IMUs) can cause
unknown experimental artifacts. Therefore, how to apply fewer wearables (e.g., 4–6) for accurately
rebuilding sports and arts motor skills would be the primary focus for the development of wearables
in human motor-skill learning. While the use of the ~40 motion-capture markers can directly quantify
complicated motor skills, there is no direct way for using 4-6 wearables to reach the same goal.

The second challenge is the identification of motor control patterns. In sports and arts activities,
the motor control patterns exhibit the characteristic wherein either gross or fine motor control appears
to be dominant. In most sports, it is reasonable to conceive that the majority of activities (e.g., running,
jumping and throwing) mainly rely upon large muscles (i.e., gross motor control), where smaller
muscles function in significant stabilizing roles. Fewer activities, like shooting, rely mainly on smaller
muscle group coordination (i.e., fine motor control) where gross motor control supplies foundational
support or is nearly arrested [44,51]. In the case of music performance (e.g., playing the piano or the
violin) there is visibly co-dependent interaction of both gross and fine motor control with dynamic
interchange of roles depending on the musical context [45,51]. To complicate matters further, because
fine arts performance (e.g., music) unfolds over time, during which all motor control must be guided,
performers’ motor behaviors must be part of a contextual, forward-planned process. At the same
time, since it is undesirable for performers to merely act as mechanical executors of instructions on a
printed page [67], they must maintain sufficient flexibility to adapt to and accommodate circumstantial
developments. At the highest levels of complexity, adaptation will include immediate forward
re-planning. Thus, music performance must be considered a process, not a reconstruction; a reality that
creates significant, but not insurmountable, challenges for researchers who apply scientific techniques
to fine arts performance. Fine arts performance places more demands on sensing technology than those
activities that are dominated by gross motor control in sports. Therefore, wearable sensors are gaining
endless interest nowadays in sports [5,7], whereas, they are still sporadic in arts performance [39,68].

The third challenge is the expert-knowledge (i.e., compensatory strategies depending on an
individual anthropometry and physical condition) in complicated motor skills learning. Motor control
in sports and arts are acknowledged to be activities requiring complex behavior and long-time motor
control development [14,42,59]. Athletes and artists take significant amounts of training and practice
for individualized development, i.e., motor skill optimization based on their body structures and
physical uniqueness. During their years of training, the desirability of acquiring performance skills
efficiently and effectively while simultaneously avoiding injury would seem self-evident. Therefore,
athletes and artists at various levels are continually searching for opportunities to improve their motor
skills and gain advantages or perfection in their competitions or performances. Study on developing
individualized compensatory joint-coordination is still feeble.

In brief, developing real-time biomechanical feedback needs for searching ways/body models to
supply information, which should consider the motor-control diversity, the anthropometrical variation,
and physical compensation/optimization.

5. Significant Gaps in the Current Research

5.1. The Lack of a General Full-Body Biomechanical Model Supported by a Practical Number of Wearables

Currently, the most reliable and practical full-body model for quantifying complicated human
motor-skills consists of 15 segments: head, upper trunk, lower trunk, upper arms, lower arms, hands,
thighs, shanks, and feet (Figure 1). This biomechanical model requires ~40 inputs (i.e., 40 selected body
points) for determining joints kinematics in order to reveal the motor control/limbs’ coordination,
and the model has been successfully applied in numerous 3D motion analyses of human virtuosity in
sports and arts performance [69–75].



Appl. Sci. 2019, 9, 226 7 of 15

Notwithstanding the above successes, the development of real-time biomechanical feedback is still
in his infant phase. A brief look at the following facts may reveal one of the gaps in the development.
(1) the concept of applying a general full-body model (i.e., 3D skeleton) in human movement study
can be traced back to the early seminal research of Johansson in 1973 [76], which demonstrated that
a major joint positions can effectively analyse human behaviors. (2) The tremendous success of the
full-body model in 3D quantification of various human movements have been widely seen in the
past decades [69–75]. (3) The limited applications of real-time biomechanical feedback in sports are
still using special partial-body models that are related to rowing (limbs’ accelerations) [77], shooting
(stability of center of gravity) [78], bicycling (the foot angle profile) [79], and swimming (temporal
stroke phase identification) [80]. The above facts might indicate that, for developing a universally
applicable device, the first missing piece might be a general full-body biomechanical model supported
by wearables.

Obviously, it is wise to transfer the success of the general full-body model from 3D motion capture
domain to wearables domain; nevertheless, it is nonrealistic and impractical to use so many wearables
for rebuilding the full-body model. The question aroused is what is the minimum wearables required
for the rebuilding? So far, there is a dearth in research on this issue. For reaching a general application
of real-time biomechanical feedback in sports and arts performance, studies are needed to discover
ways for reducing the number of the model inputs to a doable level in order to apply wearables in
practice; and such a reduction should not trade off the current accuracy of 3D motion technology.
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Taekwondo [56,81].

5.2. The Lack of a General Method for Identifying Motor-Control Patterns

It would be a practitioner’s desire that, just like physiological, neurological, and biochemical
wearables, the biomechanical one could also be universally applied to all motor skills for their learning
and training in sports and arts. A general application means that a general method should exist for
data interpretation (i.e., identification of motor-control patterns). Unfortunately, we are still far away
from the goal. Apart the lack of a general full-body biomechanical model, there is not a general method
for data interpretation. All existing studies are specific/isolate ones. So far, only few studies explored
the real-time biomechanical feedback related to sport activities [64,82,83]. On one side, the feedbacks
were force, power, or velocity; not the feedbacks of limbs’ coordination, i.e., motor control patterns.
On the other side, the evaluation methods were tailed to the activities being examined, i.e., no potential
for delimitation.

Another confounding factor influencing the identification of motor-control patterns is
anthropometry. In great part, the personal control ‘style’ derives from an individual development of a
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variety of motor behaviors that are compensatory in nature; accommodating body size and shape as
well as physical ability, such as flexibility and agility. This individualization, in turn, poses particular
challenges for both research and pedagogy. An astonishing example of motor compensation can be
observed in the performance of Canadian violinist Adrian Anantawan [84]. Adrian was born without
a right hand, no wrist, and only a partial forearm. This means he has only two arm segments with
two functional joints in his bowing arm—the arm responsible for much, if not most of the violinistic
nuances that are associated with articulation and expression. A “normal” violinist would have the
use of three large segments in the arm (upper arm, forearm, hand) plus the fingers (with a total of 17
functional joints) for the finest motor adjustments. Astoundingly, Adrian has found compensatory
motor control mechanisms that allow him to accomplish performance at the highest of professional
levels [85]. His accomplishments highlight that there are many motor control means to the same end.
For meaningful motor control identification, novel methodology must be developed to examine its
many facets simultaneously.

6. How Past and Current Developments Influencing New Endeavors—Ideas of Where Research
Might Break Through

In area of human motor skill learning, people are always looking for ways to speed up
training, ways to make it more economical, efficient, and effective, ways to minimize injuries.
Real-time biomechanical feedback training could be the best way that people are looking for,
because the technology would have potentials for: (1) making scientific monitoring from a lab-based
environment to in field, (2) simplifying a scientific quantification from using a complicated motion
capture system to easily-applied wearables, and (3) transferring the vital biomechanical feedback
in a right time for preventing the worst/movement errors happening, while finding individual
compensation/optimization [50]. For reaching this goal, further studies should focus on solving the
challenges (Section 4.3) and bridging the gaps (Section 5). The research focuses could be summarized,
as follows:

• Developing a wearable-based full-body biomechanical model that is equivalent to the current 3D
15-segment one

• Searching new method for wearable data interpretation, i.e., motor control characterization
• Generalizing the approach to various sports and arts performance.

The past and current studies of anthropometry, biomechanics, sensing technology, and AI have
supplied rich food of thoughts that might be benefit to the future research endeavors.

6.1. A Two-Chain Model as a General Full-Body Biomechanical Model for Wearable-Data Collection?

Anthropometrical studies [38,86] show that an individual full-body model (equivalent to the
generic 15-segment model in 3D motion capture) can alternatively be built indirectly using an
anthropometrical approach. Using variables such as body weight, body height, age, gender, and
race, one can statistically determine the segments’ lengths, segments’ masses, segments’ COGs
(center of gravity), and moment of inertia of body segments. Now, the question is how many
wearables are needed to reliably determine the joints angles and limbs coordination? Additionally,
the locations of wearables can introduce an artificial stimulus to the neurosensory system while
measuring human movement, yielding motion patterns that do not reflect natural patterns of
movement. Therefore, both the number and location of wearables are vital for developing real-time
biomechanical feedback training.

Studies on these issues could be considered as no-theory-first type of studies. A common research
strategy for developing a general method for a no-theory-first topic would be to begin with empirical
inquiries on various cases (i.e., case studies) that investigate the subject within its real-life context [87].
The case studies could supply up-close, in-depth, and detailed aspects of the topic, as well as its related
contextual conditions. Using inductive reasoning, research hypotheses could be made from these
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case studies for future studies. As such, hypothesis-driven studies would be a logical, reasonable,
and practical choice for making breakthroughs. It may be worth of trying this research path for the
development of real-time biomechanical feedback.

Based on the current cases of 3D motion analysis studies [60,70,74,75,88,89], a variety of
complicated human movements (both sports and arts performance) could be considered as a model
system with two mechanical chains: upper-body chain and lower-body chain (Figure 2). The base
segment of the upper-body chain is upper-trunk & head; two sub-chains (i.e., arms) are linked to the
base. Similarly, the lower-body chain consists of a base (i.e., lower-trunk) and two sub-chains (i.e., legs).
The proposed generic model of a human body would reduce the number of DOFs (degrees of freedom)
in human movement quantification. With this abstraction, human motor-skills could be tracked by
using fewer IMUs (inertial measurement units), a sensing technology that measures linear and angular
motion usually with a triad of gyroscopes and triad of accelerometers [90–92]. Previous studies have
proven the reliability and concurrent validity of the technology in human gait quantification related to
clinical and/or physiotherapy applications and feedback training in rehabilitation [93,94]. It is time to
explore the IMUs’ potential in sports and arts applications [95].

For sports and arts applications, it would be possible, if one could apply three IMUs on each chain
(one on the base, one on each distal end of the chain) (Figure 2a), to determine the segments’/joints’
motion and coordination as well as the orientation–relationship between the two bases of the two chains.
As such, human motor-skills can be quasi-naturally tracked (i.e., wearables minimally encumber
human motor control), estimated, and recognized for the real-time biomechanical feedback training.
Only, the IMUs’ inputs are still not enough for using traditional ways (class mechanics and engineering)
to quantitatively determine the model system. Yet, artificial intelligent (AI) could clear the barrier due
to its “learning” ability [96,97].
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for human motor-skills’ tracking; (b) A ballet skill; (c) A Indian dance skill; (d) Baseball pitch;
and, (e) Bicycle kick in soccer (the three-dimensional (3D) motion data was generated in Shan’s
Biomechanics Lab).

6.2. AI for Motor-Control Quantification

The AI systems are performance driven—one focus is on the predictive accuracy, based on
known characteristics learned from the previous data/training samples [98,99]. In the past decades,
AI techniques have experienced a resurgence following concurrent advances in computer power,
large amounts of data (big data), and theoretical understanding. AI techniques have become a
powerful tool for helping to solve many challenging problems in human motor-skills’ evaluations and
analyses [96,97,100–102].

The idea of AI prediction is to find a way to learn general features in order to make sense of new
data [98,99]. This description highlights the central role of data for establishing implicit knowledge.
The amount of data must be sufficiently large to provide many training examples from which a large
set of parameters can be extracted.
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Among the AI technologies, deep learning is considered as a powerful tool that percolates through
to all application areas of machine learning, such as image identification, speech recognition, natural
language processing, and, indeed, biofeedback support [103–105]. The success of deep learning
networks encourages their implementation in further applications for the enhancement of human
physical activities [106,107]. Most recently (September 2018), Nature Neuroscience has published the
latest developments in the area of markerless, video-based motion tracking, indicating that the power
of deep learning will enable motion tracking to human-like accuracy [108]. This study confirms that
motion capture/quantification of limbs’ coordination will move from an expensive and difficult task
restricted to the laboratory to an effortless daily routine for researchers and practitioners.

From motor learning point of view, wearables would have much higher potential than video
shooting in the future practice. This is not only because of the fast advance in miniature of wearables,
but also due to two inherited drawbacks of video-shooting approach. Reliable biomechanical feedback
should obtain from accurate quantification of human movement in field, with some requiring large
space. Even with a multiple-camera setting, unexpected environmental factors (e.g., interactions among
athletes) will create data-gap. Further, it is true that we are already sitting on massive movement data
(e.g., YouTube, Flickr) for training of deep learning models; but the video datasets are un-calibrated
and have very little information on the hardware and conditions used to capture particular videos,
which can bias the deep learning recognition algorithms [109]. Currently, the availability of reliable
motion capture data for developing deep learning models is significantly limited.

Summarized from Sections 6.1 and 6.2, the combination of the two-chain full-body model with
six wearable IMUs and the deep learning prediction based on IMUs’ data shows great potential in
developing real-time biomechanical feedback training for an efficient human motor-skill learning and
optimization. The missing piece for testing the potential is reliable massive training data.

6.3. The Diversification of Deep-Learning Training Datasets for Increasing Feedback Reliability

The current studies show that two factors strongly influence deep learning performance [99,110–112].
One is the massive data and the other one is the diversity of the massive data. A systematical review
article in 2018 has examined 53 studies (published from 1 January 2008 to 31 December 2017) on deep
learning applications of the physiological data/signals in healthcare. The article found that, not only the
amount of data, but also the diversity of data would affect the prediction’s reliability [99]. This result
would suggest that deep learning algorithms would perform well with large and diverse datasets.

It is well known that, among all human physical activities, sports and arts skills exhibit the most
diversity of motor control. The datasets that are available for developing deep learning models have to
reflect the diversity, because the depth and specialization must come from training the deep learning
algorithms with the massive and diverse data collected from sports and arts motor skills. Therefore,
at present, the vital step for developing real-time biomechanical feedback tool is to simultaneously
collect a large amount of motion data using both 3D motion capture (e.g., the two-chain model with
~40 markers) and wearable IMUs (e.g., the same model with six IMUs). The datasets should cover
large variety of sports skills and arts performances. As such, the 3D motion-capture data can be served
as a “supervisor” for training network model to map IMUs data to joints’ kinematic data. Such a
deep learning model could be universally applied in motor learning and the training of sports and
arts skills.

Retrospectively, the current knowledge (i.e., anthropometry, biomechanical modeling, and
deep learning) and technology (i.e., miniaturized IMUs) supply an almost perfect environment
for developing a real-time biomechanical feedback tool for general application in sports and arts.
The missing piece is the massive and diverse motor-skill datasets for deep learning.

7. Conclusions

Through a review on the past and current state of biomechanical feedback studies in sports and
arts performance, this paper introduced a two-chain model with six IMUs that are powered with
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deep learning technology. The framework can serve as a basis for developing real-time biomechanical
feedback training in practice. In order to creating a feasible, reliable, and practical biomechanical
feedback tool for athletic and artistic motor-skills’ learning and optimization, the massive and
diverse motor-skill datasets have to be built first. The big data could be obtained by a synchronized
measurement from 3D motion capture and IMUs. Currently, gaining high-quality, full-body motion
data cross sports and arts performance would be the vital step for the real-time biomechanical
feed-back development.
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