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Abstract: Traffic emissions are considered one of the leading causes of environmental impact in
megacities and their dangerous effects on human health. This paper presents a hybrid model based
on data mining and GIS models designed to predict vehicular Carbon Monoxide (CO) emitted from
traffic on the New Klang Valley Expressway, Malaysia. The hybrid model was developed based on
the integration of GIS and the optimized Artificial Neural Network algorithm that combined with the
Correlation based Feature Selection (CFS) algorithm to predict the daily vehicular CO emissions and
generate prediction maps at a microscale level in a small urban area by using a field survey and open
source data, which are the main contributions to this paper. The other contribution is related to the
case study, which represents the spatial and quantitative variations in the vehicular CO emissions
between toll plaza areas and road networks. The proposed hybrid model consists of three steps:
the first step is the implementation of the correlation-based Feature Selection model to select the best
model’s predictors; the second step is the prediction of vehicular CO by using a multilayer perceptron
neural network model; and the third step is the creation of micro scale prediction maps. The model
was developed using six traffic CO predictors: number of vehicles, number of heavy vehicles, number
of motorbikes, temperature, wind speed and a digital surface model. The network architecture and its
hyperparameters were optimized through a grid search approach. The traffic CO concentrations were
observed at 15-min intervals on weekends and weekdays, four times per day. The results showed
that the developed model had achieved validation accuracy of 80.6 %. Overall, the developed models
are found to be promising tools for vehicular CO simulations in highly congested areas.

Keywords: traffic CO; traffic CO prediction; neural networks; GIS; land use/land cover (LULC)

1. Introduction

The transport infrastructure like expressways and roads has a significant importance in the
development of any country’s economy by linking cities. These infrastructures are rapidly developing
due to the changing in the traffic modes, leading to congested roads. Hence, road traffic emissions are
increasing, creating many negative impacts on air quality on roadways, intersections and toll roads.
Traffic emissions, such as carbon monoxide (CO), are the primary contributor to overall air pollution
from this infrastructure, and the primary source of traffic emissions is vehicular exhausts.

Spatial prediction models are effectively used as a decision-making support tool for prediction
and simulation of traffic emissions on road networks [1–3]. There are various negative impacts that
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can result from inappropriate traffic levels, including high levels of noise and high concentrations
of gaseous pollutants [4,5]. Several diseases e.g., cancers, heart diseases, respiratory problems and
preterm births, can occur when human beings are exposed to high concentrations of CO [6–8].

The measurement of vehicular emissions on roadways and toll gates may be costly, risky and
requires a lot of time and effort. Moreover, the designers do not have the opportunity to determine the
vehicular emissions through the design process. In the most recent planning techniques for design
of highways and road networks, traffic emission models are often required to support sustainable
transportation planning and the reduction of traffic emissions from sources such as congestion and
tollgate areas. Thus, the GIS-based modeling of traffic emission and intra-urban air pollution exposure
can be an effective tool in the environmental assessment for sustainable road planning. This tool can
distinguish the areas affected by different types of pollutants and the related ecological and social
factors. This would be able to determine the best strategy to support the decision makers [9]. On the
other hand, GIS can save costs and time in the traffic emission modeling and can therefore be used in
sustainable planning.

Different types of traffic CO prediction approaches are mentioned in the literature [10–12].
Early methods of traffic CO modelling were based on traditional techniques using data sampling and
global position system (GPS) techniques. Several thematic maps and vehicle emission equations are
combined to model the traffic emission distribution in a region and produce informative maps that
could help in effective decision making [10]. Recent methods are mostly based on land-use regression
analysis using statistical and soft computing algorithms [10,13]. These statistical and computing
techniques allow the input of various traffic and road geometry factors. Almost all these models
are designed by using experimental samples; consequently, these models are highly influenced by
the traffic flow condition and the measurement style and the geographic locations [14]. The main
drawback of these models is that they can not be generalized because of the local environment like
vehicle model and type and the weather [15,16]. Ref. [17] presented an approach of recognizing the
road geometric features from positioning information surveyed by collecting vehicle data.

2. Previous Works

Many models have been developed to predict CO emissions and other traffic emissions, such as
NOx, NO2, CO2 and SO2. In a paper, Ref. [18] presented a methodology by integrating the spatial
analysis techniques and the neighborhood statistic function algorithm to evaluate the spatial diffusion
of the gaseous pollutant in north of Italy by using the air pollutant records obtained from monitoring
stations and GIS data (i.e., administrative borders, built-up areas, emission sources and road networks).
Their results were illustrated on grids with a cell size of (4 × 4) km. Although this method showed
a significant spatial representation of air pollution, the methodology was constrained by the limited
spatial resolution. Therefore, it cannot be used for high-resolution data. Ref. [19] developed a
GIS-based tool by combining the operational street pollution model (OSPM) and a multi-agent-based
transportation model (MATSIM) to estimate the air pollutant concentrations in Munich, Germany.
Their results showed hourly prediction of NOx from traffic. This approach can be used as an effective
tool for air quality studies in urban areas. Nevertheless, its disadvantages appear in the complexity of
a system that comprises different models where the non-expert users are not able to use it. Ref. [20]
developed a model based on land-use regression algorithm and land-use types, meteorological
variables and vehicle-kilometers-travelled (VKTs) and linear regression algorithm to estimate the
concentrations of Nitrogen Dioxide (NO2) in Seoul, Korea. The results showed the significant impacts
of the residential, commercial land use, wind speed, temperature and humidity on the concentrations
of NO2. The air pollutants recorded by the fixed air quality monitoring stations can be affected by
several factors such as terrain and buildings altitude. Moreover, the weather factors are not suitable
to model and produce high-resolution products such as roadmaps. Ref. [21] presented a statistical
model based on the fuzzy logic system to predict CO concentrations in Tehran, Iran. This model
mainly relied on historical data, which were obtained from monitoring stations. Fuzzy logic algorithms



Appl. Sci. 2019, 9, 313 3 of 23

were applied to combine the parameters. Their results showed that lowest Room Mean Square
Error (RMSE) was recorded at 2.13. Another study related to statistical modeling was conducted
by [22] to forecast air pollutants in Hong Kong based on the integration of two statistical models,
i.e., the generalized additive models and the Global Forecast System, which linked the air pollution
with meteorological data. Results showed a contrast in the air pollutant levels between urban and
suburban areas. This model is useful for predicting air quality in complex terrain areas. These models
lack the spatial aspect and could not be used to produce prediction maps. Ref. [23] developed a
methodology by using two commercial programs to estimate the traffic emissions in small area in
Madrid, Spain. The VISSIM program was used for traffic simulation to calculate a velocity-time profile.
Then, the related emissions at the vehicle level were completed using the VERSIT + micro program.
Results showed the spatial variation in NOx and PM10 concentrations are based on microscale maps
with high resolution, cell size (5 × 5) m. This model depends on the estimated emissions data based
on prediction simulations without using actual samples based on sampling equipment.

Recently, machine-learning technologies have attracted researchers. The neural network (NN)
models are the most popular models in the Artificial Intelligence models. Ref. [24] developed a model
by integrating the artificial neural network (ANN) algorithm and evolutionary polynomial regression
(EPR) to estimate the CO concentrations in Tabriz City, Iran. The EPR is one of the data mining
algorithms developed based on evolutionary computing and the integration of numerical regression
and genetic algorithm. The EPR model involves two stages: a genetic algorithm is used in the first
stage based on the numerical regression to search for symbolic structures, whereas in the second
stage, symbolic structure parameters are determined based on the linear least squares techniques.
Their results showed that the ANN model is more reliable than the EPR model. The highest value
of the correlation coefficient was measured at 0.85 based on NN and 0.41 using EPR. This study
indicated that NN modeling can be efficiently utilized for air quality forecasting. On the other hand,
ref. [25] developed a model based on the NN algorithm and data obtained from field survey to
estimate the hourly traffic emissions near roads. The authors used different parameters such as traffic
data, meteorology, proximity to roads and road direction. This model is considered as an efficient
approach for predicting pollutant near a road. Although they used geographic information as a
parameter, their results did not contain spatial prediction results such as maps. They only presented
a statistical analysis. Results showed that the highest correlation coefficient for the CO prediction
was 0.879. Ref. [26] conducted the most relevant studies that combined the NN model and the spatial
prediction model. They presented an approach that combined the linear-chain conditional random field
algorithm and ANN model to generate real-time air pollution maps. They utilized the data recorded
from monitoring stations and the traffic data collected from the field while geographic parameters
like land use and road network were derived using GIS data. Their results showed the air pollutants
prediction on maps with (1× 1) km spatial resolution. However, the developed model did not consider
many issues like uncertainty, modeling multifactor and nonlinearity. Although several authors have
attempted to overcome these issues, they principally focused on the integration of big data and the
large scale modeling. On the other hand, most of these models deal with large quantities of data,
expensive equipment, and complex data processing models, which require substantial time, cost and
other resources.

In this paper, we presented a hybrid model to produce microscale prediction maps considering
toll gate locations, as well as the other parameters listed in the literature. The model is developed by
combining the metaheuristic optimization technique and ANN algorithm to predict traffic emissions
based on a small number of training data and avoiding transferability issues. The metaheuristic
optimization algorithms like correlation-based feature selection models which have the ability to
find best model’s predictors in a short time were compared to other optimization techniques. Also,
ANN algorithms are suitable for prediction based on few training data. The major contributions of
this work lie in producing highly accurate predictive maps and providing a description of the high
variation of traffic emissions on roads and tollgate areas. Other significant advantages may include
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easy implementation of the proposed model in open source GIS software where the non-expert users
can utilize the model for rapid simulations and assessments of vehicular emissions based on microscale
prediction maps. Also, the users can design GIS models based on their needs. We proposed that the
combination of metaheuristic optimization and machine learning algorithms could help improving the
forecasting of CO emissions on roads, highways and in tollgate areas.

3. Materials and Methods

3.1. Study Area

This study was conducted near of Subang jaya toll plaza which links the New Klang Valley
Expressway (NKVE) and the federal expressway in Peninsular Malaysia. Subang toll plaza is located
within a highly dense populated area in Petaling Jaya, Selangor, Malaysia (Figure 1). The total length
of NKVE is 35 km, which connects urban and industrial areas in the capital city of Kuala Lumpur. It is
a major highway for citizens who are living in the main cities like Kuala Lumpur, Subang, Shah Alam,
Damansara, Sungai Buloh, Klang and Petaling Jaya. The vehicular speed limits are standardized to 110
and 90 km/h on Bukit Raja to Bukit Lanjan stretch and Bukit Lanjan to Jalan Duta stretch, respectively.
The study area contains different types of land use such as tollgate area, commercial, industrial and
residential areas, making it well suited for vehicular emissions studies.
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Figure 1. Location map of the study area.

3.2. Data and Method

Several data (i.e., vehicular CO samples, meteorology and traffic flow data) were collected from
the field during April 2017. Light Detection and Ranging (LiDAR) data were collected in March 2017,
and the Worldview3 satellite image was captured in May 2017. Figure 2 shows the overall methodology,
which consists of several steps. The hybrid model is designed to predict CO emissions at a specific
time and location, for example, prediction maps based on different times of a day. The first step is data
collection, which was achieved based on a gas analyzer and data loggers to simultaneously collect CO,
temperature, humidity, and traffic information. The LULC map was extracted from the Worldview-3
image with spatial resolution of 0.3 m. The digital surface model (DSM) was derived from the Airborne
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LiDAR point clouds by using Environment for Visualizing Images (ENVI) software. The second step
is the statistical modelling, which was applied by combining two models i.e., the correlation based
feature selection (CFS) and Multilayer Perceptron (MLP) by using Weka software. The final step is
the spatial modelling based on the regression equations derived from regression analysis and GIS
techniques to generate microscale prediction maps for the traffic CO emissions during different times
of the day.
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3.3. Field Surveying

3.3.1. Sampling Selection

The vehicular CO, traffic condition and meteorology data are important for the development of
vehicular CO emissions models [27]. Many studies have described approaches of collecting traffic
flow data from the field, and the most important aspect has been determined to be the distribution
of air pollutants samples and their suitability [28,29]. The accuracy of the spatial interpolation is
highly affected by the sampling design and the variations between traffic CO samples [30]. Moreover,
the density of points must be good enough to achieve high accuracy of interpolated data. Conversely,
a large number of samples should be avoided to decrease the processing time. Most importantly,
the samples density should be adjusted by considering the vehicular CO diffusion characteristics.
In this paper, traffic CO data were collected according to a procedure given by [31]. Their method was



Appl. Sci. 2019, 9, 313 6 of 23

implemented by creating sampling locations based on a random selection method by using spatial
analysis techniques. This approach generates the optimum number of samples compared to the study
area [31].

First, three layers (residential, commercial and industrial) from the land-use map were extracted.
These layers were converted into points with a spatial constraint to force them inside the land-use
polygons. Next, the density of points was estimated using a 150 m search radius and the resolution of
the output density raster was set to 25 m. The density rasters were then integrated based on different
coefficients (industrial = 1, commercial = 2, and residential = 3). The next step is the rescaling of the
final density raster from 0 to 1 depending on linear approach led to the creation of the probability
raster which was used to select the samples of the traffic CO. Next, the geospatial balanced points
were then created within the study area by using the probability raster. The total number of points
were generated based on the length of the road network, the cost of the project and the capability of
traffic emissions detection equipment used in the data gathering. As a result, the locations of the traffic
CO samples were distributed along the study area. Therefore, extra steps should be implemented to
improve the created points in order to select the final sample locations depending on the transportation
characteristics. Tessellated grids with a spatial resolution 25 m were generated. Then, these grids
were intersected with the created points and the road network layer and the remaining tessellated
grids were removed. Subsequently, the final traffic CO samples were selected within the intersected
tessellated grids and road network.

3.3.2. Data Collection

Traffic CO concentrations were collected from the field by using a low cost Gas Analyzer device
model Micro-clip5 (1 ppm resolution). The data were collected continuously in 15-min intervals
(recording the 15-min minimum, maximum, and average). The traffic flow data and meteorology
information were simultaneously collected using a data logger and GPS device (Garmin GPS etrex
10, Olathe, KS, USA; available at University Putra Malaysia). Figure 3 shows the sampling procedure.
The traffic CO analyzer was installed in the location of samples by using a Global Navigation System
(GPS), at least 2 m from the road edge. The GPS was used to determine the geographic location of
samples and to manually verify the locations using land-use maps. The traffic CO was measured four
times a day on weekends and weekdays, in the morning (6.30 a.m. to 8.30 a.m.), afternoon (11.30 a.m.
to 1.30 p.m.), evening (6.30 p.m. to 8.30 p.m.), and at night (11 p.m. to 12 midnight). In addition,
the traffic data were collected by using digital cameras installed in the road’s side in the sample’s
location. The traffic flow data were classified into several types (the number of cars, the number of
heavy vehicles and the number of motorbikes), where the cars were private cars and taxi cars. On the
other hand, the heavy vehicles refer to the following: medium truck, heavy truck, super-heavy/special
duty truck and buses, while the motorbikes refer to any type of motorbikes. The meteorological data
(temperature, humidity, wind speed and wind direction) were collected for two days, including on
weekdays and weekends, to examine various scenarios in the study area for accurate and effective
study of traffic CO modelling and mapping (e.g., hazard maps, risk maps, and further analysis).
Figure 4 shows the data collection procedure adopted in this study.
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3.4. Vehicular CO Prediction Model

3.4.1. Vehicular CO Model Parameters

The presented model aims to predict the daily traffic CO emissions and create prediction maps
at different times of a day by using GIS techniques. The traffic CO descriptor (i.e., the dependent
parameter) in the current study is the vehicular CO emissions measured every 15 min. The contributing
parameters to vehicular CO emission were first selected depending on the previous studies and with
consideration of traffic condition, weather characteristics, the surrounding (LULC), topography, and the
building heights in the study area. These parameters are the number of vehicles, number of heavy
vehicles, the number of motorbikes, temperature, humidity, wind speed, wind direction, LULC and
digital surface model (DSM). Many studies have been conducted based on these parameters [32–36].
There are many factors that could affect the vehicular emissions such as engine condition and the fuel
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type (gasoline, diesel); however, these data cannot be detected through field survey. On the other hand,
the data collection did not contain vehicle speed information because the study area is very small
and the variation between the vehicles speed is difficult to differentiate. Consequently, the vehicle
speed profile is stable during the day. There are many vehicular emissions studies conducted without
adopting vehicle speed, such as [25]. The parameters’ statistics are shown in Table 1. The NN model
was used to find out the degree of contribution of each mentioned parameter for estimating the
vehicular CO emission. The NN has the ability to model the complex simulations of non-linear
problems such as vehicular CO emission. However, contributing parameters to vehicular CO emission
may not be directly used as inputs in the NN model, because of high levels of correlation between the
factors resulting in multicollinearity, which can reduce the precision of estimating the vehicular CO
emission. Moreover, using a large number of contributing parameters to vehicular CO emission (traffic
CO predictors) as input layers of NN can generate over-fitting problems and increase the complexity
ratio to run NN model. In the proposed NN model, only relevant and low-correlated parameters were
used as inputs. The relevant and significant factors were selected using the CFS model. Table 2 shows
the traffic CO measurements results.

Table 1. Summary statistics of traffic CO predictors.

Parameter Average Minimum Maximum

Number of vehicles (per 15 min) 1172 126 2762
Number of heavy vehicles (per 15 min) 78 16 325

Number of motorbikes (per 15 min) 112 9 489
Temperature (◦C) 29.9 25.6 37.7

Humidity (%) 73.5 54.3 94.5
Wind Speed (mph) 16.87 16 18.20

Wind Direction (angle) 247.1 0 350
DSM (m) 25.7 10.03 129.5

Table 2. Summary statistics of traffic CO measurements.

Time

Weekend Weekday

Average CO Concentration (per 15 min) (ppm) Average CO Concentration (per 15 min) (ppm)

Min Max Mean Min Max Mean

Morning 0 8 2.36 0 30.5 8.5
Afternoon 0 14.5 3.5 0 12.8 4.5
Evening 0 9.3 3.92 0 27.3 5.84

Night 0 3.6 1.47 0 5.6 1.9

3.4.2. Correlation-Based Feature Selection (CFS) Model

The CFS algorithm is one of the machine learning algorithms which is considered as a filter
algorithm that choose the features based on correlation concepts [37]. A major characteristic of the
correlation-based function is the ability to choose sub-groups that include features that are unusually
correlated to the targeted class but unassociated with each other. On the other hand, this algorithm
neglects the features with low correlation with the targeted class, and this algorithm is used to delete
the duplicated features because they will be correlated with one of the rest of the features at least.
The acknowledgement of a feature will rely on the degree to which it predicts classes in territories of
the instance space not currently anticipated by different features.

The CFS’s feature subset assessment function is presented in Equation (1):

Ms = krc f /
√

k + k( k− 1) r f f (1)

where Ms is the heuristic “merit” of a feature subset S containing k features, rc f is the mean of the
feature-class correlation (f ∈ S), and r f f is the average of the feature-feature intercorrelation.
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3.4.3. Multilayer Perceptron (MLP) Neural Network

The MLP algorithm is one of the ANN algorithms which results from adding hidden layers
to the simple perceptron. In this algorithm, the structure of the NN is generally trained based on
backpropagation algorithm and some related variants. Therefore, the models are designed based on
the integration of the MLP algorithm and a backpropagation algorithm called backpropagation neural
network [38–43]. The multilayer perceptron algorithm was developed due to the computational
limitations that resulted from single-layered perceptron models. According to the experiments,
the multilayer perceptron algorithm has the ability to represent complex simulations and mapping and
process high level non-linear problems. Also, the MLP algorithm has the ability to process the nonlinear
features, thus allowing the representation of a continuous function of non-linear activation functions
such as sigmoid functions [44], which has a clear analogy with the conventional representation of a
periodic function such as a Fourier series (i.e., as the sum of simple sine waves). Therefore, the MLP
can be considered as a universal functional approximation. Figure 3 shows the architecture of an MLP
with several layers of neurons and nonlinear activation functions.

The MLP is considered as a feed-forward system with single or multiple layer of segments among
network output and input layers [38–45]. With the assumption of L-layer MPL, the system can signified
by NL

n0,n1,..., nL
, where nl , l = 0, 1, . . . , L indicate the number of segments in the input layer (l = 0),

the l is number of hidden layers that can range (l = 0, 2, . . . , L− 1), L is the number of layers, and the

output layer is (l = L). X(0) =
[

x(0)0 u1u2 . . . un0

]T
is the input vector and X(l) =

[
x(l)0 x(l)1 . . . x(l)ni

]T

denotes the lth layer output vector in the interval [0, T]. At this time, {ui}, j = 1, 2, . . . n0 represents
the input attribute pattern while x(l)j indicates the output of the jth segments of lth network layer.

The threshold input is represented by x(l)0 with a fixed value at one. The neuron weight of the jth

segment of lth layer from the ith segment of (l − 1) can be represented by ω
(l)
ji . The activation function,

which is connected with all the segments of the system except the input layer, is the tanh function
specified by ρ(S) = tan h(S) =

(
1−e−2S

1+e−2S

)
. The restricted derivative of the ρ(S) based on S is signified

by ρ′(S) that is known as ρ′(S) =
(
1− ρ2(S)

)
. Also, the linear sum of the jth segment of lth layer is

symbolized by S(l)
j .

In the forward part, at the kth time direct, the input attribute pattern vector of X(0) is implemented
in the system, while the corresponding preferred output is

{
yj
}

, for j = 1, 2, . . . , nL. Since no calculation

is applied, the input layer of the MLP is known by x(0)j = uj for j = 1, 2, . . . , n0. For other layers,
l = 1, 2, . . . , L, and j = 1, 2, . . . , n1, the outputs are computed as:

x(0)j = ρ(S(l)
j ) and S(l)

j = ∑ni−1
i=0 ω

(1)
ji x(l−1)

i .

The probable output is identified by
{

ŷJ
}

and is assumed as
{

ŷJ
}
=
{

x(L)
j

}
for all j = 1, 2, . . . , nL.

The mean square error for the system can be formulated as e2

nL where ej = yj − ŷJ is the error signal for
the jth output. Furthermore, the instantons squared error can be computed by e2 = ∑n L

j=1 e2
j .

However, in the learning part, the BP procedure reduces the squared error by varying {ω(l)
ji }

according to the gradient search method, recursively. The squared error derivatives connected with
the jth segment in layer l are described as Equation (2):

δ
(1)
j = −1

2
δe2

δS(1)
i

(2)

Then, these derivatives can be formulated as in Equation (3):



Appl. Sci. 2019, 9, 313 10 of 23

δ
(1)
j =

 ρ′
(

S(l)
j

)
.ej f or l = L

ρ′
(

S(l)
j

)
. ∑n l+1

i=1 ω
(l+1)
i .δ(l+1)

i f or l = L− 1, L− 2, . . . , 1.
(3)

Eventually, the weights of the MLP are reorganized at the kth instant as in Equation (4):

ω
(l)
ji (k + 1) = ω

(l)
ji (k) + ∆(l)

ji (k) and ∆(l)
ji (k) = µδ

(l)
i x(l−1)

i + γ∆(l)
ji (k− 1) (4)

where µ is the learning rate and γ signifies the momentum rate hyper-parameters.
The final proposed network architecture for traffic CO prediction is illustrated in Figure 5.

The proposed network is designed based on the results of the best traffic predictors that resulted from
the CFS model, optimization and hyper-parameter, which are used to select the best predictors.
By using the open source machine learning software (Weka), different MLP structures have
been used to select the optimal MLP neural network model for the traffic CO prediction model.
The proposed methodology was designed by combining the correlation-based feature selection model
and multilayer perceptron.
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3.4.4. Optimization Method

The capacity of the prediction in MLP model relies on its hyperparameter and structure. In this
paper, several network structure hyperparameter combinations were tested to determine a sub-optimal
network model for modeling vehicular CO. Table 3 shows the structures and hyperparameters
evaluated in the current study and their search space domain. In general, there are two main categories
of NN, MLP and radial basis function (RBF). The former uses dot products between inputs and weights
and monotonic activation functions such as sigmoid. The MLP uses dot products between inputs and
weights and monotonic activation functions such as sigmoid while the RBF uses Euclidean distances
between inputs and weights and usually Gaussian activation functions. Both of the networks can be
trained with the back-propagation algorithm. In the RBF model, it is not necessary to use multiple
hidden layers whereas with MLP, multiple hidden layers are used. In addition, the RBF model is
less sensitive to noise than the MLP model. Other parameters of the network are the number of
hidden units, training algorithm, error function, activation function, learning rate, and momentum.
The number of hidden layers controls the complexity of the designed network. A small number
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of hidden units may result in low prediction capacity due to insufficient learning whereas a large
number of hidden layers can reduce the ability of the model to be generalized and can also create
overfitting problems. The training algorithm is the optimization method for calculating the weight for
each node in the network. There are many training algorithms for NN based on back-propagation;
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) and radial basis function training algorithm (RBFT)
are the most recommended back-propagation algorithms used for optimization of NN architecture [46].
During training of the network, an objective function or optimization score function was minimized
according to the labeled training dataset. The optimizer usually has a learning rate and gradient
momentum parameters. In addition, many activation functions such as identity, logistic, and Gaussian
could be used in the hidden layers and the output layers of the neural network.

Table 3. Hyper parameters of the proposed model for traffic CO prediction and their search spaces
used for fine-tuning.

Parameter Search Domain

Type of network MLP, RBF
Number of hidden units (3–40)

Training Algorithm BFGS, RBFT
Hidden Activation Identity, Logistic, Tanh, Exponential, Gaussian
Output Activation Identity, Logistic, Tanh, Exponential, Gaussian

Learning rate (0.1, 0.5)
Momentum (0.1–0.9)

The total number of instances was 352, which was separated into training 70% (246) and testing
30% (106). This sample size is still small compared to other studies. However, it needs a good approach
to handle overfitting problems. One approach is to design a cross-validation evaluation procedure.
Other methods are data augmentation or collecting new samples. There are also methods such as
transfer learning which requires retrained networks. Overall, training of the neural networks with
small datasets requires careful analysis and evaluation before using them in practice. There are also
some tricks to improve the performance of neural networks for small datasets. Those include batch
normalization, rectified linear unit (relu) activations and regularization methods such as l1 and l2.
On the other hand, the hyperparameters of the NN for predicting vehicular CO were chosen based on
the implementation of systematic grid-based search that can be applied with the Scikit-Learn algorithm
using 100 epochs. Although this method demands high quality of computation, more accurate outputs
could result by fine tuning the hyperparameter values. Many models based on various integrations of
parameters were generated. Cross validation (10-fold) was applied to validate each model. Therefore,
the parameters that resulted in higher accuracy are the best parameters.

3.4.5. GIS Modelling

Collecting traffic CO data, especially on the highways, is dangerous and expensive. Therefore,
predicting traffic CO concentrations on highways helps to generate traffic CO data that can be used for
further studies. In this research, the measured and predicted traffic CO concentrations are used for GIS
modelling based on a grid analysis. GIS modelling and mapping are mainly applied to assess affected
people and environments due to inappropriate traffic emissions from traffic activities. The observed
traffic CO samples are an important factor in the model, for computing the relationship between the
predictive factors and carbon concentrations which were applied in the training data, and for the
validation process. After training the NN model with the CO measurements from the field, the NN
model produced a regression equation based on weighted values for each predictor factor, in order
to calculate the predicted values based on the predictor factors that can be easily applied in a GIS
platform; this is the main contribution of the proposed model. This equation has been applied using
GIS to produce a spatial prediction of traffic CO concentration in the study area. This step was applied
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by implementing the final prediction equations on the 5 × 5 m GRID, using ArcGIS tools which are
very efficient for spatial representation [23].

4. Results and Discussion

4.1. Contribution of Traffic CO Predictors

As shown in Table 4, the traffic CO predictors make different contributions to the traffic CO values
that resulted from this study. The statistical analysis based on the Chi-square method shows that the
parameters that contributed the most are the number of heavy vehicles (F = 32.784) and the number of
vehicles (F = 18.277). Conversely, the findings indicated that the other traffic CO predictors (number of
motorbikes, DSM, wind speed and temperature) did not make a significant contribution (Table 4).

Table 4. Results of assessing the contribution of traffic CO predictors using the Chi-square method.

Road Traffic CO Predictors R-Squared F-Statistic

Number of heavy vehicles 0.7546 32.784
Number of vehicles 0.5322 18.277

Number of motorbikes 0.0472 1.951
DSM (m) 0.0168 1.231

Wind speed (mph) 0.0016 0.124
Temperature (◦C) 0.0014 0.1178

4.2. Traffic CO Prediction Results

Two MLP models were trained and tested. The first model was trained based on MLP algorithm
using nine parameters (those listed in Table 1 plus LULC) to predict the traffic CO concentration.
The second model was trained based on the combination with the correlation-based feature selection
(CFS-MLP) and six parameters that resulted from the CFS model. These parameters were: number
of vehicles, number of heavy vehicles, number of motorbikes, temperature, wind speed, and DSM.
The CFS algorithm was implemented to select the highly correlated parameters and best parameters to
predict the traffic CO that led to increased accuracy of the prediction process.

Table 5 shows the proposed model’s results when the input parameters were filtered and reduced
from nine parameters to six based on the CFS algorithm which finds features that have higher
correlation with the class but are uncorrelated with each other. Therefore, the highest correlated
parameters were used for the prediction analysis, which resulted in improving the prediction accuracy.
The relative absolute error decreased from 30.94% to 21.99% and the root relative square error also
decreased from 23.48% to 19.40%. On the other hand, the correlation coefficient increased from
0.866 ppm to 0.98 ppm. The mean absolute error (MAE) was reduced from 0.99 ppm to 0.89 ppm.
The root mean square error (RMSE) also decreased from 1.29 ppm to 1.27 ppm. The prediction results
showed that the prediction improvement occurred after the implementation of the CFS algorithm
which is able to reduce the high dimensionality, remove the low correlated data and improve the
learning accuracy.

Table 5. Results of predictions with MLP model and the proposed model (CFS-MLP) model.

MLP Model CFS-MLP Model

Best structure 9-4-1 Best structure 6-3-1
Correlation coefficient 0.8657 Correlation coefficient 0.980

Mean absolute error (ppm) 0.991 Mean absolute error (ppm) 0.8925
Root mean squared error (ppm) 1.2862 Root mean squared error (ppm) 1.2736

Relative absolute error % 30.94% Relative absolute error % 21.99%
Root relative squared error % 23.48% Root relative squared error % 19.40%

Total number of instances 247 Total number of instances 247
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4.3. Traffic CO Prediction at Different Times of Day

Regression equations were created, based on the results from the CFS-MLP model; the coefficients
of vehicular emissions predictors are calculated to formulate regression models to easily predict
vehicular emission in the study area using a set of predictors that can be gathered from the field and
existing databases in order to facilitate connection with the GIS-based model by applying parameter
coefficients in the spatial model. The decision makers can notice the effect of causative parameters on
vehicular emissions occurrence, which was assessed by the corresponding coefficient that appears in
the regression function [47]. Regression equations were simulated at different times during the day
(morning, afternoon, evening and night) to predict traffic CO at these times. The highest RMSE was
2.9817 ppm during evening observations, while the lowest RMSE was 0.387 ppm at night. Table 6
shows the results of the regression analysis at different times.

Table 6. Regression models for traffic CO prediction based on the CFS-MLP model.

Traffic CO Predictors
Estimated Coefficient

Morning Afternoon Evening Night

Number of vehicles −0.0016 0.0142 0.0108 0.0147
Number of heavy vehicles 0.0622 0.01 0.0319 −0.0216

Number of motorbikes 0.0135 −0.0378 −0.0376 −0.0093
Temperature ◦C −0.4501 0.5512 0.4888 −0.0333

Wind speed mph 0.0752 −0.194 −0.4084 0.0135
DSM m −0.2085 0.213 0.0812 0.1116

Intercept 16.8559 −22.2525 −15.8113 −2.1367
RMSE 2.914 ppm 2.0347 ppm 2.9817 ppm 0.387 ppm

4.4. GIS Modelling Results

A GIS model was applied to generate prediction maps at different times a day (Figures 6 and 7).
The resultant spatial prediction maps showed that the concentrations of traffic CO increased more on
weekdays than on weekends. These maps also showed that there was significant variation between
traffic CO concentrations according to the time of day, with the traffic CO ranging from a high of
35.23 ppm per 15 min during the weekday morning to a low of 4.76 ppm per 15 min during the
weekend night. The prediction maps showed that the highest values of traffic CO are located near the
toll areas compared to other areas such as residential green areas, because of the traffic congestion
at toll gates. The lowest values of traffic CO are concentrated near residential areas which reached
zero values.

4.5. Comparison with Other Models

The developed model was compared with other popular models such as the support vector
machine for regression (SVR) and the linear regression (LR) models. These models generated two
statistical equations based on model parameters. Testing data were used for model validation;
these equations are shown below:

Traffic CO = 0.0022 × Number of vehicles + 0.0403 × Number of heavy vehicles
− 0.0187 × Number of Motorbikes + 0.1957 × Temperature
− 0.0984 × Wind speed − 0.0102 × DSM − 4.4382

(4)

For the LR model:

Traffic CO = 0.05 × Number of heavy vehicles + 0.21 (5)
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4.6. Validation of Traffic CO Prediction Maps

The traffic CO spatial prediction maps were verified using the test sites of traffic CO samples,
and the verification method was then performed by comparing the traffic CO test data and the traffic
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CO spatial prediction maps. The lowest accuracy of the validation was at night time (72.48%) and the
highest accuracy was during the evening (92.75%).

Table 7 shows the comparison between CFS-MLP, SVR and LR model. The comparative analysis
was conducted by using the training data and the proposed model, support vector regression model,
linear regression, land use regression model and dispersion model i.e., CALINE4 model based on
many criteria not only Root mean square RMSE, but we also compared the proposed model with other
baseline models based on mean absolute error (MAE), relative absolute error, root relative squared
error and correlation coefficient. Results showed that the proposed model is superior to the compared
models. The correlation coefficient based on our proposed model was 0.980, which is higher than the
SVR (0.8668) and LR (0.851). The MAE of the proposed model was 0.896 ppm which is lower than SVR
(1.640 ppm) and LR (1.851 ppm). On the other hand, the RMSE results indicated that the proposed
model has the lowest RMSE (1.286 ppm) compared to SVR (2.752 ppm) and LR models (2.849 ppm).
The RAE ratio for the proposed model was calculated to be 21.99%, which was lower than the RAE
ratio of SVR (51.646%) and LR (55.048%). The root relative squared error indicated that the proposed
model has the lowest value (19.40%) among the other models (49.784% and 48.292%).

Table 7. The comparison between CFS-MLP, SVR and LR models.

CFS-MLP Model SVR Model LR Model

Correlation coefficient 0.980 Correlation coefficient 0.8668 Correlation coefficient 0.851
Mean absolute error (ppm) 0.896 Mean absolute error (ppm) 1.640 Mean absolute error (ppm) 1.851

Root mean squared error (ppm) 1.286 Root mean squared error (ppm) 2.752 Root mean squared error (ppm) 2.849
Relative absolute error (%) 21.99 Relative absolute error (%) 51.646 Relative absolute error (%) 55.048

Root relative squared error (%) 19.40 Root relative squared error (%) 49.784 Root relative squared error (%) 48.292
Total number of instances 247 Total number of instances 247 Total number of instances 247

Table 7 shows the comparison between CFS-MLP, SVR and LR model. The comparative analysis
was conducted by using the training data and the proposed models, i.e., SVR, LR, land use regression
model and dispersion model, i.e., CALINE4 model based on many criteria, not only RMSE. We also
compared the proposed model with other baseline models based on mean absolute error (MAE),
relative absolute error, root relative squared error and correlation coefficient. Results showed that the
proposed model is superior to the other models. The CO emission prediction rate can be justified as
highly accurate, where the accuracy is more than 90%; 90% to 80% is a good forecast; 80% to 50% is a
reasonable forecast; and more than 50% is an inaccurate forecast [48–50].

The correlation coefficient based on our proposed model was 0.980, which is higher than the SVR
(0.8668) and LR (0.851). The MAE of the proposed model was 0.896 ppm which is lower than SVR
(1.640 ppm) and LR (1.851 ppm). On the other hand, the RMSE results indicated that the proposed
model has the lowest RMSE (1.286 ppm) compared to SVR (2.752 ppm) and LR models (2.849 ppm).
The RAE ratio for the proposed model was calculated to be 21.99%, which was lower than the RAE
ratio of SVR (51.646%) and LR (55.048%). The root relative squared error indicated that the proposed
model has the lowest value (19.40%) among the other models (49.784% and 48.292%). Table 8 shows the
results of the prediction models when combining the correlation-based feature selection; the correlation
coefficients of the CFS-SVR and CFS-LR are 0. 0.7578 and 0.82, respectively. These values indicated
that there is decrease in the correlation coefficient. The MAE increased for the CFS-SVR and CFS-LR
and reached 1.972 ppm and 1.9713 ppm, respectively. The EMSE also increased to 3.7109 ppm and
3.1057 ppm. Figure 8 illustrates the variations of the traffic CO concentrations in the testing data.
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Table 8. The comparison between CFS-MLP, CFS-SVR and CFS-LR models.

CFS-MLP Model CFS-SVR Model CFS-LR Model

Correlation coefficient 0.980 Correlation coefficient 0.7578 Correlation coefficient 0.82
Mean absolute error (ppm) 0.896 Mean absolute error (ppm) 1.972 Mean absolute error (ppm) 1.9713

Root mean squared error (ppm) 1.286 Root mean squared error (ppm) 3.7109 Root mean squared error (ppm) 3.1057
Relative absolute error (%) 21.99 Relative absolute error (%) 64.3605 Relative absolute error (%) 64.333

Root relative squared error (%) 19.40 Root relative squared error (%) 67.2464 Root relative squared error (%) 56.2795
Total number of instances 247 Total number of instances 247 Total number of instances 247
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The first model that we compared with one of the baseline models is the CALINE4 model.
The ALINE4 model is a dispersion model, which depends on a plume dispersion model used to predict
the vehicular CO on roadways [48]. The CALINE4 model simulates the data based on a Gaussian
diffusion algorithm and characterizes the pollutants dispersion on roads. We defined the proposed
road network, weather data, traffic flow information, and receptor locations, and the prediction of
traffic CO emissions was obtained. The MAE and RMSE values were 2.376 ppm and 4.2254 ppm,
respectively, whereas and the correlation coefficient value was 0.6504. The prediction results appeared
worse than our proposed model. This may due to the fact that the Gaussian diffusion, which was
assumed in CL4, is not very realistic.

We also compared our work with the Land Use Regression (LUR) Model. This model is generally
applied to predict air pollutants depending on the land use, traffic flow information, meteorology data
and combined them based on a linear regression algorithm. The LUR model showed the following
values: MAE 2.21 ppm, RMSE 4.50 ppm and a correlation coefficient of 0.5989 (Figure 9).

The final LUR equation used is given below:

Predicted CO = 0.0018 × Car + 0.0423 × HV − 0.0219 ×Motorbike + 0.2211 ×
Temp/C + 0.0312 × Relative Humidity − 0.1315 ×Wind speed + 0.0018 ×Wind

Angle Degree − 0.0232 ∗ DSM + 0.0006 × Builtup area + 0.0064 × Highway −
8.6627.

There are many models developed based on GIS and machine learning, for example [26] designed
a model based on the integration of the ANN algorithm and the linear-chain conditional random field
algorithm to produce real-time and fine-grained air pollution prediction maps.



Appl. Sci. 2019, 9, 313 18 of 23

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 24 

 

Figure 9. Comparison between the proposed and other models. 

  

Figure 9. Comparison between the proposed and other models.



Appl. Sci. 2019, 9, 313 19 of 23

The air quality data were obtained from fixed air quality stations, the traffic data were collected
from vehicle trajectory, and the meteorology data were collected from monitoring stations. Other data
used were land use, road geometry and social information. Their results presented the prediction maps
with low resolution, cell size (1× 1) km2 in local scale. The limitation of this model can be summarized
in some points. The data collection from the standard fixed air quality monitoring stations may not be
able to measure the air quality that people are exposed on the ground level due to the limitation of
monitoring location and height. On the other hand, the data obtained from the fixed stations are not
suitable for high-resolution prediction maps such as microscale maps. Moreover, this study did not
contain information about the terrain and buildings.

The proposed model in this research is different from the aforementioned study based on some
points. We developed a GIS-based NN and data were obtained from a field survey. Moreover,
the land use and DSM were extracted from a very high resolution LiDAR data clouds. The proposed
methodology is designed to predict the vehicular CO and produce high-resolution maps at a microscale
level (5 × 5) m2 whereas the aforementioned paper estimated air pollutants based on a low-resolution
grid (1 × 1) km2.

Regarding the meteorology parameters shown in Table 4, it is evident that the correlation between
wind speed and vehicular emissions is 0.0016, which is considered weak in the short-term prediction
and in a small area compared to other factors. In addition, the temperature has the lowest correlation
with vehicular emissions 0.0014; therefore, the variation in the vehicular emissions (i.e., CO) may not
be significantly affected by the weather condition in the prediction in small areas. On the other hand,
the DSM, which was used to extract the terrain and building’s altitude in the study area, has a good
correlation with vehicular emissions (more than meteorology parameters). Therefore, the geographic
factors are important in prediction studies. This study adopted high-resolution elevation data in order
to extract results that are more accurate. In urban areas, building altitude is an important parameter
because it can resist vehicular emissions and prevent the distribution of pollutants in urban areas.

5. Conclusions

Traffic emissions (e.g., traffic CO) are considered the major source of air pollution in congested
urban areas, including road corridors in toll plaza areas. Traffic emission prediction models are utilized
to evaluate the impacts of traffic CO emissions on the population and environment and some models
are used to illustrate the spatial prediction of these emissions. In this paper, a hybrid prediction model
was proposed by combining three models (CFS, MLP and GIS) to predict the traffic CO emissions and
create micro-scale prediction maps in a small area at different times during the day. The final findings
have shown that the proposed model scored an accuracy of 80.6% and the correlation coefficient
of 0.980, RMSE of 1.2736 ppm and mean absolute error of 0.8925 ppm. We used CFS to identify
and remove highly correlated parameters so that redundancy was reduced to choose the optimum
parameters used in the prediction model through MLP. The simulation results showed that nine
predictors were reduced to six, which contributed to an increase in the prediction accuracy.

The data were collected from the field and remote sensing data (i.e., LiDAR and very
high-resolution WorldView-3 satellite image), and modelling was performed in a GIS environment.

In this study, we produced microscale maps for vehicular emissions. The simulated traffic
CO emissions ranged from 35 ppm inside the toll plaza area to 0 ppm for areas that were located
far away from the toll area. As per the microscale-prediction maps, high spatial variation in the
traffic CO emissions was identified. The highest value of CO concentrations is found in traffic jam
areas. Conversely, the lowest values of traffic CO emissions are distributed far from traffic activities.
The highest concentrations of traffic CO were located inside the toll plaza because of the traffic jam that
occurs daily in the toll areas these results give a clear indication about the relationship between the
traffic activities and the traffic CO emissions. The traffic CO emissions may have a significant impact
on the health of toll plaza workers, drivers and the passengers. Therefore, such a prediction model can
aid decision makers to implement plans to mitigate the traffic emissions that can protect people who
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are working, passing through or living near toll plaza areas; this will be the main advantage of the
proposed forecasting system.

Traffic CO emission prediction models and GIS modeling are both efficient tools for transportation
planning and traffic emission assessment. The prediction maps produced by the proposed model
can be used as an effective tool in the decision-making process to identify optimum solutions
which can be used to mitigate traffic jams in toll plaza areas as well as on highways and road
networks. As traffic emission pollution assessment by decision makers is very complicated and usually
expensive because of the high level of requirements for expert knowledge and the developed support
systems, the presented traffic CO assessment model is not expensive and can easily implemented.
Moreover, the traffic CO pollution concentrations vary based on the traffic condition and the number
of vehicles, which requires a periodic monitoring of traffic emissions by government agencies or
relevant departments. The best parameter selection analysis could be used to reduce the data collection
requirements, which can lead to reduced time required, resources utilized and processing time needed.
GIS modeling is a useful tool for non-expert users to implement the traffic CO impact assessments in
various applications. Finally, these models can be improved by using more advanced algorithms such
as deep learning algorithms and a large number of samples that can be used to increase the accuracy
of the prediction process.
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Abbreviations

GIS
A Geospatial Information System is a system designed to collect, manage, analyze, store and
produce different types of spatial data.

CO
Carbon Monoxide is a toxic gas and it has no has no color, taste, or smell, resulting from the
incomplete combustion of fuel.

RMSE
The algorithm of the root mean square is used to calculate the differences between values
estimated by a model and the observed values.

VISSIM
Software designed for traffic flow simulation at a micro-scale level, which is designed by
Planning Transport Verkehr (PTV), Germany.

EPR
The evolutionary polynomial regression, EPR, is one of the data-mining algorithms developed
based on evolutionary computing and the integration of numerical regression and
genetic algorithm.

CFS
A correlation-based feature selection algorithm, which is a type of filter algorithm that selects
features based on a heuristic (correlation-based) function.

LiDAR
Light Detection and Ranging is an advanced surveying technology usually used to create 3D
models by measure the distance between targets and the Laser Sensor.

ENVI
Environment for Visualizing Images: professional software used for image analysis and
remote sensing applications.

MLP
A multilayer perceptron (MLP) is a class of feedforward artificial neural networks. An MLP
consists of, at least, three layers of nodes: an input layer, a hidden layer and an output layer.
Except for the input nodes, each node is a neuron that uses a nonlinear activation function.

LULC
Land Use and Land Cover are data files that describe the land surfaces such as water,
vegetation and cultural features.

CFS-MLP
The proposed model that is the combination of two models, the correlation based feature
selection algorithm and multilayer perceptron Neural Network algorithm.
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CALINE4
California Line Source Dispersion is one of the dispersion models used to estimate carbon
monoxide emissions near roads based on various parameters related to geographic locations.

MAE

Mean Absolute Error, MAE, measures the average magnitude of the errors in a set of
predictions, without considering their direction. It is the average over the test sample of the
absolute differences between prediction and actual observation where all individual
differences have equal weight.

RAE
Relative Absolute Error is defined as the absolute error relative to the size of the measurement,
and it depends on both the absolute error and the measured value. The relative error is large
when the measured value is small, or when the absolute error is large.

ANN

An Artificial Neural Network is a computational model based on the structure and functions
of biological neural networks. Information that flows through the network affects the structure
of the ANN because a neural network changes—or learns, in a sense—based on that input
and output.
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