
applied
sciences

Article

Spreadsheets as Interoperability Solution
for Business Process Representation

Piotr Wiśniewski * , Krzysztof Kluza and Edyta Kucharska and Antoni Ligęza

AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science
and Biomedical Engineering al. A. Mickiewicza 30, 30-059 Krakow, Poland; kluza@agh.edu.pl (K.K.);
edyta@agh.edu.pl (E.K.); ligeza@agh.edu.pl (A.L.)
* Correspondence: wpiotr@agh.edu.pl; Tel.: +48-12-617-50-64

Received: 17 December 2018; Accepted: 15 January 2019; Published: 20 January 2019
����������
�������

Abstract: Business process models help to visualize processes of an organization. In enterprises,
these processes are often specified in internal regulations, resolutions or other law acts of a company.
Such descriptions, like task lists, have mostly form of enumerated lists or spreadsheets. In this paper,
we present a mapping of process model elements into a spreadsheet representation. As a process
model can be represented in various notations, this can be seen as an interoperability solution
for process knowledge interchange between different representations. In presenting the details
of the solution, we focus on the popular BPMN representation, which is a de facto standard
for business process modeling. We present a method how to generate a BPMN process model
from a spreadsheet-based representation. In contrast to the other existing approaches concerning
spreadsheets, our method does not require explicit specification of gateways in the spreadsheet,
but it takes advantage of nested list form. Such a spreadsheet can be created either manually or
merged from the task list specifications provided by users.

Keywords: business process management; BPMN; process modeling; spreadsheets

1. Introduction

Process models are commonly used by organizations to depict the workflow of the company,
especially to specify alternative flows of tasks and events. Such aspects are often specified using
textual description in internal regulations, resolutions or other companies law acts. Such descriptions
consist of the specification of steps taken to achieve the specific goal. These steps can be easily specified
using a spreadsheet or an enumerated list (an ordered list of steps can be almost directly transformed
into a spreadsheet format). Business process management can be considered as a part of knowledge
management [1]. In process management, identification of business processes is a time consuming
task. According to the studies [2], up to 60% of the time spent on process management projects can be
consumed by the acquisition of process models, which mostly is done manually by process designers or
business analytics. In some cases, where there is a process description or some specification available,
it can be easier to model such a process. Thus, generating or transforming the existing representation
to models can shorten this time.

A process model may be obtained from natural language description [2–7]. In some cases,
a structured textual description, such as Semantics of Business Vocabulary and Business Rules
(SBVR), can be used to obtain the process model [8,9]. However, in comparison with natural
language description, over 60% of experienced BPMN modelers find creating process models easier if
a specification is facilitated with rule-mapped text [10]. Thus, preprocessing is a key issue in using
the existing specification. The representation in natural language (based on some documents such as
standards, ISO documents, user instructions or manuals) after processing can include inconsistencies.

Appl. Sci. 2019, 9, 345; doi:10.3390/app9020345 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3777-642X
https://orcid.org/0000-0003-1876-9603
https://orcid.org/0000-0001-6551-5062
https://orcid.org/0000-0002-6573-4246
http://dx.doi.org/10.3390/app9020345
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/2/345?type=check_update&version=3

Appl. Sci. 2019, 9, 345 2 of 25

Especially, some documents may provide incomplete or contradictory pieces of information that may
lead to the incapability of generating a correct model. Although there are some solutions for this,
e.g., semantization of processes [11], using e.g., semantic unification [12].

In this paper, we present a method of generating graphical process models from spreadsheet-based
representation. It extends our previous research discussed during the knowledge acquisition
workshop [13]. The original contribution is the specification of creating the spreadsheet with ordered
list and its transformation into a process model. Moreover, we provide the mapping between the
spreadsheet-based representation and various business process representations. Such a spreadsheet
can be created either manually or merged from the task list specifications provided by users. It also
can be generated from semi-formal or informal documents [14]. Our spreadsheet-based process
representation supports all basic BPMN elements which covers the most commonly used elements of
BPMN diagram [15].

The remaining part of the paper is structured as follows: Section 2 presents the current research
directions in terms of generating process models from various knowledge representations, focusing
on the approaches to business process modeling using spreadsheets. In Section 3, we give a detailed
specification of our spreadsheet representation for a business process model. The overview of the
proposed approach is presented in Section 4. Section 5 presents a mapping between spreadsheet
process representations and corresponding process model structures in other notations, focusing
mostly on BPMN. Moreover, it presents the details of the procedure of generating BPMN process
models based on a spreadsheet. Section 6 provides the evaluation of our approach. It compares it with
other interchange solutions as well as shows a case study example. The summary of the paper is given
in Section 7.

2. Background and Related Works

In the field of transforming some kind of process description into a process model, there are
various research directions. In the following section, we briefly overview of these solutions.

One of the existing methods is generating processes from text description. Such description
can be provided in natural language [2] or in structured language. A part of the SBVR standard
is SBVR Structured English [16]. There are methods of tranforming SBVR business rules into UML
activity diagrams [17] (which are similar to BPMN models) or BPMN [9,18]. Some papers consider
the extended versions of SBVR, like SBPVR (Semantics of Business Process Vocabulary and Process
Rules) [19] or sSBVRMM (simplified SBVR metamodel) [20].

The methods based on the natural language description have to be supported by some Natural
Language Processing (NLP) system and as of today, practical applications of such methods constitutes
a complex issue. In turn, translation from other representations requires models in designed using
these representations, what faces practical difficulties as such models often do not exist.

Another method which provides good quality models is translation from other representation.
An example of transformation approach is mapping of the Unified Modeling Language (UML) use
case diagrams into process models [21,22]. UML activity diagrams can be also represented in form
of logical expressions [23]. Thus, a mapping between workflow patterns and formal specification
is possible. Although its purpose is mainly to extract logical specification from the process model,
the set of mapping rules allows to generate a model based on a logical expression that defines relations
between activities.

The broad family of process model generation methods is process discovery. This is one of the
process mining techniques [24], which mostly do not require any human activity. Such techniques
consist in analyzing event logs from the system and extracting process structure from logs.
There are many existing algorithms, mostly implemented using the ProM process mining toolkit
(See: http://www.processmining.org/). It is important to noting that process mining discovers
process models as they are in reality. Thus, if the process in reality is different than the reference
model or specification, the process discovery techniques will not be able to discover a correct

http://www.processmining.org/

Appl. Sci. 2019, 9, 345 3 of 25

model. Most process mining algorithms discover Petri nets or some other simple representations.
However, nowadays, with the development of algorithms and tools, there are also algorithms to mine
BPMN models directly [25].

The most similar approach to ours was presented by Krumnow and Decker in [26,27]. The authors
presented three approaches for business process modeling using spreadsheets characterized by
different levels of complexity:

1. Simple approach—this solution concerns simple processes modeled only using sequences
of activities.

2. Branching approach—concerns not only sequences, but also more complex flow structures. It uses
such elements like successors in order to represent complex control flow, as well as gateways
and events. For specifying the condition, the “Description” column is used. In the case of
several successors, this can be realized by using a comma-separated string of row numbers as
property value.

3. More Properties approach—it extends the branching approach with additional properties specified
explicitly like the assigned roles, input documents, etc. Moreover, this approach allows for adding
customized properties as new columns to the spreadsheet. However, they will not be presented
in the model.

An example of transforming a spreadsheet to a process model according to the Branching approach
from [26] is presented in Table 1 and the corresponding process model in Figure 1. Rows of the table
represent model flow objects. Cells describe the properties of these objects (empty cell means that
a particular property is not defined).

As it can be noticed, the second and third approaches require from the user some kind of familiarity
with business process modeling notation. According to these approaches, the user has to specified such
elements like gateways or successors. What is more, the More Properties approach is so complex that
its efficiency gain is not worth the complexity that has to be taken into consideration when designing
the spreadsheet. Thus, the second approach can be considered as most efficient and useful.

Table 1. An example of a spreadsheet-based process model from [26].

1. Name Description Input Output Assignee Firm IT
System Successor (..)

2. Receive Order

3.
Pack ordered

goods Order Package
Case Doc Storage D Myshop ERP

4. XOR Is amount
> 25 e 5, 6

5.
Add vouchers

to package

Order,
Package
Case Doc

Archived
State Shipment D Myshop ERP 6

6. Ship Package Package
Case Doc

Package
Case Doc Shipment D Myshop DHL

Support

The main advantage of this approach is the clear overview of the represented workflow and as
a consequence, facility to transform such a representation into a BPMN model. However, declaring flow
objects or their relations explicitly, requires from the user a certain level of familiarity with business
process modeling notations. In order to overcome this issue and make the spreadsheet representation
more accessible for business users, we discussed the sketch of our approach in [13].

The detailed description of the approach is presented in the following section. Our approach
solves the problem of familiarity with business process modeling notation. It consists in dividing the
business process into phases and declaring branching flows implicitly, by indicating the appropriate
phase number. A correct spreadsheet-based representation can be then used to generate a business
process model.

Appl. Sci. 2019, 9, 345 4 of 25
spreadsheet-based-example

M
ys

ho
p

Myshop

Pack ordered
goods

Add vouchers to
package

Is amount > 25 €

Ship Package

Order

Package
Case Doc

Archived
State

Receive Order

ERP DHL Support

No

Ye
s

Figure 1. An example of an equivalent model to the spreadsheet-based process description presented
in Table 1 (based on [26]).

3. Spreadsheet Representation of a Business Process

To clarify the understanding of what a business process is and how it can reflect the real-life
workflows, Dumas et al. [28] identified common ingredients for business processes:

• activities—units of work performed manually or as an automated service, an atomic activity that
cannot be divided is called a task,

• events—circumstances that happen without measurable duration,
• decision points—situation when a decision is made which affects the execution of the process,
• actors—process participants, seen as people, organization or software systems,
• physical objects—equipment, materials or documents,
• immaterial objects—electronic data, people’s knowledge,
• outcomes—final products or services, as well as negative outcomes e.g., refusals or error messages,
• customer—internal or external recipient of the outcome.

Table 2 describes how the different process ingredients are represented in the mentioned notations.
The summary was based on [29–31]. The results of the comparative analysis show that, within the
selected languages, only BPMN and UML Activity Diagrams can satisfy the requirement to represent all
common process ingredients. However, according to the detailed comparison of UML and BPMN [32],
BPMN process models can cover a larger number of business cases, including not only the process
itself, but also specifications of the analyzed system in terms of its requirements and implementation.

Activities executed within a business process can be easily represented as an enumerated list in
a tabular form. Such forms can be then saved as spreadsheet files. Taking into account the fact that
spreadsheet editors are a popular means of storing and processing information in companies, they are
also used for process modeling.

In the proposed solution, a business process is represented by a spreadsheet table, where rows
correspond to tasks (or phases). Columns contain properties of the selected phase. Task and
condition names should start with a capital letter, while all instructions are written in lowercase.
Following column types are used:

• Order—the number of the corresponding phase (starting from one). If two or more tasks are
performed in parallel or alternatively, we use letters to distinguish different branches, e.g., “2b”,
“3a” etc. If a phase follows a logical gateway, its naming pattern is: NxM where N is the natural

Appl. Sci. 2019, 9, 345 5 of 25

number of the phase, x is a lowercase letter (a–z) representing the current branch and M is the
natural number of the phase in this branch. If the branch contains only one activity, the letter
M does not need to be included. In case when the process includes nested gateways, the names
of its sub-phases are defined by extending the main phase number with the appropriate branch
and sub-phase.

• Activity—name of the performed action or instruction. For example, if there is a need for a loop or
skipping the phase, this field should be filled with a “goto” statement and number of the desired
phase, e.g., “goto 7”.

• Condition—a condition needed to perform the selected action. If the task executes every time
this field should be left empty. In order to implement a XOR-gateway this field should be filled
with an appropriate condition and the word “else” for the other task performed in the same phase.
In order to implement an OR-gateway the fields mentioned before should be filled with two
separate conditions. This column is also used when events are triggered under certain conditions,
e.g., after a determined amount of time.

• Who—a department or person that executes the task. This field corresponds to a swimlane.
• Input—data objects required by the corresponding activity as its input.
• Output—data objects generated by the corresponding activity as its output.

Table 2. Business process ingredients represented by different modeling notations.

Ingredient BPMN Petri Nets EPC UML AD YAWL Spreadsheet

Activities Activities Transitions Functions Activities Tasks Activity

Events Events N/A Events Send/Receive N/A Activity
Signals

Decision OR/XOR Alternative Connectors Decision OR/XOR Condition
Points Gateways Paths Nodes Tasks

Actors Swimlanes N/A Organization Partitions N/A Who
N/A Units

Objects Artifacts N/A Information Object N/A Input/Output
Resources Nodes

Outcomes End Events Final Marking Final Events End Nodes Output Activity
Condition

Customer Pool N/A N/A Partitions N/A N/A

4. Approach Overview

Our approach consists in generating business process models from spreadsheet-based
representation. It is based on our preliminary workshop proposal presenting the method principles [13].
The context of the approach is presented in Figure 2. Our method consists of the following steps:

1. Task acquisition—set of tasks can be represented in the form of a task list or acquired from the
natural language description.

2. Creating a spreadsheet with a task list—storing the tasks in the required spreadsheet-based
representation:

(a) manual spreadsheet extraction from structured task specification,
(b) automated spreadsheet extraction from process description in natural language [14].

3. Transformation into a BPMN process model:

(a) for an ordered list of tasks—using rules for mapping spreadsheet representation into
a process model,

Appl. Sci. 2019, 9, 345 6 of 25

(b) for an unordered list of tasks—using model composition (e.g., using CSP solver and
process mining methods [33]).

Spreadsheet with
a task list

task spec.

transformation
rules

CSP solver

ordered
tasks

Task acquisition

Task A Task B

Task C

Task D

Task E

Process Model

Process Miner

Workflow log:
ABCE
ABDE
...

process
description
in natural
language

unordered
tasks

manual
extraction

automated
extraction

Figure 2. Overview of the spreadsheet-based approach and its place in the context of process modeling.

As a result, a process model is generated. The original contribution of this paper is the specification
of creating the spreadsheet with ordered list and its transformation into a process model (i.e., steps 2
and 3a, highlighted in red in Figure 2).

In our solution, a business process can be described using one of the spreadsheet applications
like MS Excel, Google Docs or OpenOffice Calc. Such a spreadsheet can be created either manually or
merged from the task list specifications provided by users. It also can be generated from semi-formal or
informal documents. Such solution was presented in [14], where this spreadsheet-based representation
was used as an intermediate model when generating business process models.

Based on a CSV (Comma-Separated Values) file, which is a common representation of spreadsheet,
of the model exported from the application, a graphical process model in BPMN can be generated
according to the specified transformation rules. This requires an ordered list of tasks, which syntax
is described in this paper. However, in the case of unordered list, it is also possible to solve the

Appl. Sci. 2019, 9, 345 7 of 25

problem using constraint programming and some process construction or discovery methods [33,34].
Our spreadsheet-based process representation supports all basic BPMN elements. The subset of
supported BPMN elements covers the most commonly used elements of BPMN diagram [15].

Although there are approaches providing the spreadsheet based representation for a process
model [26,27], the method presented in this paper takes advantage of a nested list form and does not
require explicit specification of gateways in the spreadsheet. Thus, a business user who defines tasks
does not have to be skilled in process modeling in any business process notation.

5. Mapping a Spreadsheet with a BPMN Model

The translation method presented in this section transforms a spreadsheet-based representation
into a BPMN 2.0 model. In the following subsections, we describe the requirements and assumptions
that have been taken into account during method development. This includes the supported
representation, as well as the detailed description of transformations to be performed.

5.1. Requirements

In order to make the solution widely applicable and simple to use, some assumptions were made.
The following requirements need to be considered while providing a spreadsheet-based representation
of a business process model:

• Users should be able to create a process model using one of the widely available spreadsheet
applications (e.g., MS Excel, Google Docs, OpenOffice Calc).

• A graphical model should be created based on a CSV file (an exported spreadsheet).
• Only one pool is considered and the term "Who" is used instead of swimlane to distinguish

different task performers.
• Logical gates are eliminated from the model. A process should be described as a set of phases.

If two or more tasks are executed in the same phase, it means that they are parallel or connected
by an alternative (OR/XOR). The relationship between tasks is determined by a condition
stored in a separate column (no condition—AND, different conditions—OR, conditions and
“else” statement—XOR). Table 3 shows how logical gates can be represented.

• Loops are represented by “goto” rows, which link one phase to another.

Table 3. Simple example of a XOR-gateway implementation.

Order Activity Condition (..)

4a Send Ticket Payment registered
4b goto 6 else
5
6

5.2. Supported Process Elements and Their Spreadsheet Model

The proposed approach supports the following process elements: start events, intermediate
events, end events, tasks, logical gateways, swimlanes and data objects. These individual elements
together with their spreadsheet model representation have been described in the subsections below
and listed in Table 4.

5.2.1. Start Events

In the proposed model an assumption is made, that a business process starts in one specified
moment, which is the so called “zero phase”. Table 5 presents examples of various start events.
For different types of start events, the Activity field can denote the type while the Condition field
describes the specific condition for the particular type of event.

Appl. Sci. 2019, 9, 345 8 of 25

Table 4. A concise overview of elements that can be modeled within the proposed solution.

Element Type Our Approach Additional Comment

Task yes no task types
Events yes

AND, OR and XOR Gateway yes
Pool, Lane partially only one pool considered

Data Object yes
Sequence Flow yes
Message Flow no

Table 5. Start event examples.

Spreadsheet Representation

Order Activity Condition (...)
0 [start]

Order Activity Condition (...)
0 start when message received Order received

Order Activity Condition (...)
0 start at time 7 AM

Order Activity Condition (...)
0 start when error Bad credit

Order Activity Condition (...)
0 start with signal Policy changed

BPMN Elements

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3

Task 1 Task 2

Task 1 Task 2

obj1 obj2

condition

condition

cond. 1

cond. 2

condition

In the case of general start event (without a specific type), the Activity field can be empty, and zero
in the Order column denotes the starting point. In BPMN, this is represented by None Start Event.
In other notations such a start event is represented just using an event at the beginning of the process.
The overview of simple start and end events (without types of events) in various notations is presented
in Figure 3.

Figure 3. Start and end events (without a specific type) in various process representations: (a) BPMN,
(b) EPC, (c) YAWL, (d) UML AD, (e) Petri Nets.

Appl. Sci. 2019, 9, 345 9 of 25

5.2.2. Intermediate Events

In the case of intermediate events, the “Activity” field should contain the name of the appropriate
event which starts with the lower case letter. Table 6 presents selected intermediate events and their
spreadsheet representation. As the specific types of intermediate events are available only in BPMN
and UML AD, we omit EPC, YAWL and Petri net representations. An intermediate event (without type)
can be represented using an event in EPC or place in Petri net, which are represented in the same way
as start or end events.

Table 6. Intermediate event examples.

Spreadsheet Representation

Order Activity Condition (...)
2 receiving message Order received

Order Activity Condition (...)
2 sending message Order sent

Order Activity Condition (...)
2 waiting 2 hours

Order Activity Condition (...)
2 receiving signal Policy changed

Order Activity Condition (...)
2 sending signal Policy changed

BPMN Elements

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3

Task 1 Task 2

Task 1 Task 2

obj1 obj2

condition

condition

cond. 1

cond. 2

condition

UML AD Elements

As boundary intermediate events exist only in the BPMN notation and are not the leading notation
elements, we provide only a proposal of their spreadsheet representation. They can be represented
simply just using the same number of process phase in the “Order” column, as presented in Table 7.
As our goal is to provide a simple representation for process elements, which will be understandable
for average business user, this is only a proposal not representing the full specification of the event
(e.g., interrupting/non-interrupting issues).

Table 7. Boundary intermediate event.

Spreadsheet Representation BPMN Structure

Order Activity Condition (...)
... ...
2 Task 1
2 waiting 2 hours
... ...

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3

Task 1 Task 2

Task 1 Task 2

obj1 obj2

O
rg

an
iz

at
io

n D
ep

ar
tm

en
t B

Task 1

D
ep

ar
tm

en
t A

Task 2

Task 1

2 hours

condition

condition

cond. 1

cond. 2

condition

Appl. Sci. 2019, 9, 345 10 of 25

5.2.3. End Events

For the end events the “Activity” field should contain the name of the appropriate end event. If this
is just an end of the process without any particular type, it should be the last activity and can remain
blank. Table 8 presents examples of various types of end events and their spreadsheet representation.

Table 8. End event examples.

Spreadsheet Representation

Order Activity Condition (...)
99 [end]

Order Activity Condition (...)
99 end with sending message Order sent

Order Activity Condition (...)
99 end with error Bad credit

Order Activity Condition (...)
99 end with signal Policy changed

Order Activity Condition (...)
99 terminate

BPMN Elements

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3

Task 1 Task 2

Task 1 Task 2

obj1 obj2

condition

condition

cond. 1

cond. 2

condition

5.2.4. Tasks

The name of a task is stored in the “Activity” column and should start with a capital letter. To skip
a phase or go back to a previous phase it is possible to use the “goto” statement in the activity field.

5.2.5. Parallel-, Exclusive- and Inclusive-Gateways

Gateways are represented by alternative branches in the sequence (phase) flow. A phase preceded
by a logical gateway is named as follows: NxM, where N is the (natural) number of the phase in the
main process branch, x is a letter (a–z) corresponding to the alternative branch and M is the number of
the phase in the selected branch. If the branch contains only one task M can be omitted. We assume
that the branching is always ended by the same type of gateway that started it. It may be perceived as
a limitation, but in fact it prevents model inconsistency.

The representation of a simple AND-gateway was presented in Table 9.
In order to implement a XOR-gateway the field “Condition” should be filled with an appropriate

condition and with the word “else” for the other task performed in the same phase, but in another
branch. An example of a simple XOR-gateway was presented in Table 10.

In order to implement an OR-gateway the fields mentioned before should be filled with
two separate conditions. An example of a simple OR-gateway was presented in Table 11.

A spreadsheet representation of multiple gateways was presented in Table 12.

Appl. Sci. 2019, 9, 345 11 of 25

Table 9. AND-gateway example.

Spreadsheet Representation BPMN Element

Order Activity Condition (...)
... ...
2a1 Task 1
2a2 Task 2
2b Task 3
... ...

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3
condition

condition

cond. 1

cond. 2

EPC Representation YAWL RepresentationEPC elements

Task 3

Task 1 Task 2

Task 2

Task 1

Task 3

Task 2

Task 1cond. 1
fulfilled

cond. 2
fulfilled

condition
fulfilled

condition
not fulfilled

Task 4

Task 2

Task 6

condition
fulfilled

condition
not fulfilled

Task 1start

Task 3

Task 5

end

event

UML AD Representation Petri Net Representation

Task 1 Task 2

Task 3

Petri nets

Task 1 Task 2

Task 3

Task 1

Task 2 Task 3

Task 4

Task 5

Task 6

Table 10. XOR-gateway example.

Spreadsheet Representation BPMN Element

Order Activity Condition (...)
... ...
2a Task 1 condition
2b1 Task 2 else
2b2 Task 3
... ...

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3
condition

condition

cond. 1

cond. 2

EPC Representation YAWL Representation

EPC elements

Task 3

Task 1 Task 2

Task 2

Task 1

Task 3

Task 2

Task 1cond. 1
fulfilled

cond. 2
fulfilled

condition
fulfilled

condition
not fulfilled

Task 4

Task 2

Task 6

condition
fulfilled

condition
not fulfilled

Task 1start

Task 3

Task 5

end

event

UML AD Representation Petri Net Representation

[condition]

[else]

Task 1

Task 2 Task 3

Petri nets

Task 1 Task 2

Task 3

Task 1

Task 2 Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 1

Task 2

Task 3

Appl. Sci. 2019, 9, 345 12 of 25

Table 11. OR-gateway example.

Spreadsheet Representation BPMN Element

Order Activity Condition (...)
... ...
2a Task 1 cond. 1
2b Task 2 cond. 2
... ...

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3
condition

condition

cond. 1

cond. 2

EPC Representation YAWL Representation

EPC elements

Task 3

Task 1 Task 2

Task 2

Task 1

Task 3

Task 2

Task 1cond. 1
fulfilled

cond. 2
fulfilled

condition
fulfilled

condition
not fulfilled

Task 4

Task 2

Task 6

condition
fulfilled

condition
not fulfilled

Task 1start

Task 3

Task 5

end

event

UML AD Representation Petri Net Representation

[cond. 1]

[cond. 2]

Task 1

Task 2

Petri nets

Task 1 Task 2

Task 3

Task 1

Task 2 Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 1

Task 2

Task 3

5.2.6. Loops in the Process

Although a loop in a process model is not an element, but usually a structure of part of the process
logic (In BPMN, a loop in a task or subprocess can be also represented using a loop marker. In such
a case, it is not explicitly modeled using control flow.) we consider it similarly to gateway structures as
one of the basic building block of a process model. Thus, in Table 13, we present a mapping between
the loop structure representations.

5.2.7. Pools/Lanes

Different swimlanes present in a BPMN model are represented using fields in the column “Who”
which contains the name of the appropriate department or the business entity that executes the
corresponding tasks. An example of such model representation, which is the same in BPMN as in
UML AD, is presented in Table 14.

Appl. Sci. 2019, 9, 345 13 of 25

Table 12. Multiple (nested) gateways example.

Spreadsheet Representation BPMN Representation

Order Activity Condition (...)
0 (start)
1 Task 1
2a1 Task 2 condition
2a2 Task 3
2b1a Task 4 else
2b1b Task 5 else
2b2 Task 6
3 (end)

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3
condition

condition

cond. 1

cond. 2

EPC Representation YAWL Representation

EPC elements

Task 3

Task 1 Task 2

Task 2

Task 1

Task 3

Task 2

Task 1cond. 1
fulfilled

cond. 2
fulfilled

condition
fulfilled

condition
not fulfilled

Task 4

Task 2

Task 6

condition
fulfilled

condition
not fulfilled

Task 1start

Task 3

Task 5

end

eventUML AD Representation Petri Net Representation

Task 4

Task 5

condition
yes

no

Task 2 Task 3Task 1

Task 6

Petri nets

Task 1 Task 2

Task 3

Task 1

Task 2 Task 3

Task 4

Task 5

Task 6

Table 13. Loop structure example.

Spreadsheet Representation BPMN Element

Order Activity Condition (...)
... ...
2 Task 1
3 Task 2
4 goto 2 condition
... ...

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3

Task 1 Task 2

condition

condition

cond. 1

cond. 2

condition

EPC Representation YAWL Representation

EPC elements

Task 3

Task 1 Task 2

Task 2

Task 1

Task 3

Task 2

Task 1cond. 1
fulfilled

cond. 2
fulfilled

condition
fulfilled

condition
not fulfilled

Task 4

Task 2

Task 6

condition
fulfilled

condition
not fulfilled

Task 1start

Task 3

Task 5

end

event

Task 1 Task 2

UML AD Representation Petri Net Representation

[condition]

Task 1 Task 2

Petri nets

Task 1 Task 2

Task 3

Task 1

Task 2 Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 1

Task 2

Task 3

Task 1 Task 2

Appl. Sci. 2019, 9, 345 14 of 25

Table 14. Swimlanes example.

Spreadsheet Representation BPMN/UML AD Representation

Order Activity (...) Who (...)
... ...
2 Task 1 Department B
3 Task 2 Department A
... ...

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3

Task 1 Task 2

Task 1 Task 2

obj1 obj2

O
rg

an
iz

at
io

n D
ep

ar
tm

en
t B

Task 1

D
ep

ar
tm

en
t A

Task 2

condition

condition

cond. 1

cond. 2

condition

5.2.8. Data Objects

There is possibility of representing data objects in process model in proposed approach. Table 15
presents the spreadsheet representation of input and output object.

Table 15. Data object example.

Spreadsheet Representation BPMN Representation

Order Activity Input Output (...)
... ...
2 Task 1 obj1
3 Task 2 obj2
... ...

BPMN elements

Order
received

7 AM Bad credit Policy
changed

Order
received

Order
sent

2 hours Policy
changed

Policy
changed

Order
sent

Bad credit Policy
changed

Task 2 Task 3

Task 1

Task 1 Task 2

Task 3

Task 1

Task 2

Task 1

Task 2

Task 4

Task 5

Task 6

Task 3

Task 1 Task 2

Task 1 Task 2

obj1 obj2

condition

condition

cond. 1

cond. 2

condition

5.3. Transformation Procedure

As it has been already mentioned before, the purpose of providing a spreadsheet-based
representation of business processes is to facilitate process modeling for people who are unfamiliar
with existing languages and notations. Therefore, an automated transformation of the exported
spreadsheet into a BPMN diagram is a significant feature. The proposed algorithm uses a CSV file
as input and generates a business process graph, which can be then mapped with a BPMN 2.0 XML
file. The tabular representation of the business process is imported as an array of structures, where
each row is a collection of elements which correspond to column names. An example transformation
algorithm, which does not include model validation, is presented in Algorithm 1.

In order to simplify the structure of the represented algorithm (see Algorithm 1), several
sub-procedures were used. Their meaning and usage is explained in the following points:

1. getPhase(order)—Retrieve the phase based on the current activity order without considering the
current branch. The result of this function is a vector of natural numbers, the length of which
corresponds to the branching depth. For example, in case of nested gateways as shown in Table 12,
the phase vector for Task 1 will be equal to [1 0 0], while for Task 4 it will be [2 1 1].

2. Graph.addVertex(uid, phase, name, type)—Insert an isolated vertex into the process graph,
identifiable by its alphanumeric Order.

3. Graph.connect(vertex1, vertex2, wv)—Create a directed edge between vertex1 and vertex2 with
weight vector wv.

4. precedence(vertex1, vertex2)—Determine the precedence relation between two activities.
This function returns a Boolean value which is true if the difference of the corresponding phase
vectors is negative.

5. Graph. f ilterEdges(edgeSet)—Select the set of edges with the lowest non-zero weight vectors and
keep them in the graph. Remove from GP all the remaining edges, unless the removal isolates
one of the graph vertices.

6. Graph.createSplitGatewayStructure/createMergeGatewayStructure(vertex)—Identify parallel
relations by grouping neighbour vertices in the same phase. If activities in a group have no or the

Appl. Sci. 2019, 9, 345 15 of 25

same conditions, then connect them with a parallel gateway. If among the conditions there is
a keyword “else” then use an exclusive gateway. Otherwise connect the group of vertices with
an inclusive (OR) gateway.

Algorithm 1: Generating a business process graph based on a spreadsheet description.
Input: Spreadsheet table Rows
Output: Business process graph GP
GP := new Graph();

. Add vertices to GP
foreach element r in Rows do

int[] phase = getPhase(r.Order);
if indexOf(r) == 0 then

GP.addVertex(r.Order, phase, r.Activity, type := "Start Event");
else if r.Terminated == "yes" then

GP.addVertex(r.Order, phase, r.Activity, type := "End Event");
else

GP.addVertex(r.Order, phase, r.Activity, type := "Task");
end

end
. Create connections between related activities

foreach vertex v1, v2 in GP where v1 != v2 do
if precedence(v1,v2) then

GP.connect(v1,v2, v1.phase - v2.phase);
end

. Remove “goto tasks” and unnecessary connections
foreach vertex v0 in GP do

outEdges := v0.getOutEdges();
if v0.Activity.startsWith("goto") then

GP.connect(GP.getPredecessors(v0), getVertex(v0.Activity.subString("goto "),0);
GP.remove(v0);

else
GP.filterEdges(outEdges);

end
end

. Add gateways to the model
foreach vertex v0 in GP do

if v0.getSuccessors().count() > 1 then
GP.createSplitGatewayStructure(v0);

else if v0.getPredecessors().count() > 1 then
GP.createMergeGatewayStructure(v0);

end

6. Evaluation

For evaluation of our solution, we compared it to the current interchange standards for business
process representation (Section 6.1). Moreover, we provided case study examples depicting how to use
the proposed approach (Section 6.2).

Appl. Sci. 2019, 9, 345 16 of 25

6.1. Interchange Solution

Currently, there are several interchange formats between different Business Process Modelling
(BPM) techniques. Most are based on XML and have different properties [35]. The below summary
presents an overview of the commonly used formats:

• BPEL4WS (Business Process Execution Language) also known as BPEL (Business Process Execution
Language) is an OASIS standard executable language using web services for specifying actions
within business processes. It is referred to as an interchange format only via an XML Schema [36].

• BPML (Business Process Modeling Language is an language for business process modeling based
on XML [37].

• BPMN (Business Process Model and Notation) offers two XML formats for storing BPMN
processes: a format defined using XML Schema Definition (XSD) and a format defined using XML
Metadata Interchange (XMI) [38].

• BPSS (Business Process Specification Schema) includes a metamodel and XML Schema for
Web Service choreography. It works on ebXML (Electronic Business using eXtensible Markup
Language) [39].

• EPML (Event-Driven Process Chain Markup Language) is XML-based interchange format for
event-driven process chains [40]. OWL-S (OWL-Services) is an ontology of services represented in
OWL (Ontology Web Language) and builds on an (input-output-preconditions-effects) quadruple
to describe services [41].

• PNML (Petri Net Markup Language) is an XML interchange format for Petri net models and
for High-level Petri nets in particular. The PNML is currently under the final ballot as ISO/IEC
Standard 15909-2 [42,43]. UML 2 Activity Diagram (Activity Diagrams of Unified Modeling
Language can be exchanged using XMI [44].

• WSCDL (W3C’s Web Service Choreography Description Language) is a choreography language
that describes peer-to-peer collaborations of participants by defining their common and
complementary observable behaviors from a global viewpoint [45].

• WSCI (W3C’s Web Service Choreography Interface) is focused on the choreography of Web
services and provides a set of extensions to WSDL in order to describe process behavior of
message exchanges [46].

• WSCL (Web Service Conversation Language) allows defining the abstract interfaces of web
services, i.e., the business level conversations or public processes supported by a web service and
specifies the XML documents being exchanged [47].

• WSFL (Web Services Flow Language) is an XML language, provided by IMB, for the description
of Web Services compositions where control flow is modelled via directed Graphs [48].

• XLANG (Web Services for Business Process Design) provided by Microsoft, is a block-structured
language which a strict nesting of control flow blocks is used to structure business processes [49,50].

• XPDL (XML Process Definition Language is a format standardized by the Workflow Management
Coalition to interchange business process definitions between different modeling tools, BPM suites,
workflow engines and other software applications [51].

The spreadsheet is compared with other BPM interchange formats in Table 16. Our goal in
this comparison is to show the place of spreadsheet-based representation in supporting common
process elements. Plus and minus signs denote if a particular structure or element is supported
(or not) by the interchange formats mentioned above. As one can observe, some interchange formats
support more elements, constructs or objects. However, these representation often require from user
much knowledge about the process modeling and the particular notation. Moreover, each of these
solutions has some limitations, e.g., BPEL4WS supports block-structured constructs, so the translation
of unstructured acyclic fragments of process models to BPEL4WS is a very complex task and such
a model can be illegible.

Appl. Sci. 2019, 9, 345 17 of 25

Table 16. A comparison of spreadsheet with BPM Interchange Formats (based on [35]).

BPEL4WS BPML BPMN BPSS EPML OWL-S PNML UML Act.D. WS-CDL WSCI WSCL WSFL XLANG XPDL Spreadsheet

Task + + + + - + - + + + + + + + +
Task Input/Output + + + + - + - + + + + + + + +

Task Address + + + - - + - - + + + + + + -
Quality Attributes - - - + - + - - - - - + - - -

Protocol + - + - - + - - + + + + + - -
Control Flow + + + + + + + + + + + + + + +

Data Handling + + + - - - - + + - - + - + +
Instance Identity + + - - - - - - - + - + + - -

Roles + + + + - + - + + + - + + + +
Events + + + - + - - - - - - + + + +

Exceptions + + + + - - - + + + - + + + +
Transactions + + + + - - - - + + - - + - -

Graphic Position - - + - + - + + - - - - - - -
Statistical Data - - - - - - - - - - - - - + -

Appl. Sci. 2019, 9, 345 18 of 25

6.2. Case Studies

For the evaluation of our method, we present an example of the “Bank account opening” business
process. Table 17 shows the spreadsheet describing the process. The corresponding diagram is
presented in Figure 4.

Table 17. Bank account opening.

Order Activity Condition Who

0 Bank

1 Get Customer Coordinates

2a1 Retrieve Customer Information Actual customer

2a2 Analyze Customer Relation

2b Build Customer Profile else

3 Identify Customer Account Selection

4 Select Account Type

5a Register Deposit Deposit when opening

5b goto 6 else

6 Prepare Account
Opening Document

7a Record
Customer Information

7b Propose Account Opening

7c1 Schedule Status Review

7c2a Review Account Status

7c2b Confirm Customer Identifier

8 Open Banking Account

9

One can noticed that our approach supports fewer elements than such complex approaches as
Branching or More Properties approaches. However, the other approaches support the elements in
a straightforward way, requiring the deeper knowledge of business process elements, even in the case
of such simple structures like gateways.

Moreover, there are several points, in which our approach has the advantage over the
existing approaches:

• We do not use explicit notion of XOR/OR/AND gateways, thus the user does not have to think
about the kind of flow branching. Instead, in our model it is modeled in the implicit way.

• For describing the condition, we use the “condition” column, what is more clear than using the
“description” field.

• We do not use the notion of “Successor” as it does not always show clearly the flow in the
spreadsheet representation. Thus, in our opinion, a well-known jump statement “goto” (one-way
control flow transfer), existing in many computer programming languages, in this particular
usage performs better, as it is clearly visible in the Activity field.

Appl. Sci. 2019, 9, 345 19 of 25

Figure 4. An example of an equivalent model to the spreadsheet-based process description presented
in Table 17.

Although we do not consider data flow in our model, it is possible to add this kind of perspective
in the exactly the same way, as it was proposed in [26]—by adding two new columns: Input and
Output column (as presented in Table 1).

To illustrate the idea of spreadsheet representation and its interoperability, a sample model of
tramway departure process was selected. The BPMN model of this process is shown in Figure 5, while
Figures 6–9 illustrate this process in different modeling notations, namely: EPC, Petri net, UML AD
and YAWL. The goal of this process is the preparation of a tramway car to leave the storage yard in the
morning. In the workflow, there are two organizational participants: the Depot which is responsible
for storing and servicing the rolling stock and the Traffic Department which controls and manages
the daily operations, as well as the human actor, represented by the driver. The desired outcome
of the process is the successful departure of the car from the depot which results in starting regular
service with passengers. Based on the departure time taken from the schedule, the Traffic Department
prepares and prints the Traffic Card which serves as the main document for the driver. In the next step,
two parallel chains of activities are executed. The Depot prepares the car for the daily service while the
Traffic Department awaits the driver. If the driver does not arrive, a next employee is called to come.
Then, the driver is tested fot alcohol level in the exhaled air. If alcohol is detected, a new driver is called
and the testing procedure is repeated. Finally, when the tramway car is ready for departure and the
driver is authorized to work, the car can be taken by the driver from the outbound track. The process
ends when the Traffic Department registers the departure in their systems.

Appl. Sci. 2019, 9, 345 20 of 25DDR Tram (P26 edit)

Tr
am

w
ay

 C
om

pa
ny

D
ep

ot

Depot

Wash CarTake Car
from Stock

Place Car
on Track

D
ri

ve
r

Driver

Take Car
from Track

Traffic
Card

Tr
af

fic
 D

ep
ar

tm
en

t

Traffic Department

Driver
arrived?

Authorize
Driver

Alcohol level OK?

Check
Alcohol LevelCall for DriverAwait DriverPrint

Traffic Card
Register

Departure
Registered
Departure

Scheduled
Departure

yesno

ye
s

no

Figure 5. An example of an equivalent model to the spreadsheet-based process description presented
in Table 18.

Table 18. Tramway Dispatching.

Order Activity Condition Who Input Output

0 start at time Scheduled Departure Traffic Department

1 Print Traffic Card Traffic card

2a1 Take Car from Stock Depot

2a2 Wash Car

2a3 Place Car on Track

2b1 Await Driver Traffic Department

2b2a goto 2b3 Driver arrived

2b2b Call for Driver else

2b3 Check Alcohol Level

2b4a Authorize Driver Alcohol level OK

2b4b goto 2b2b else

3 Take Car from Track Driver Traffic card

4 Register Departure Traffic Department

5 end Registered Departure

Table 19 presents the overall comparison of our approach to the existing approaches in in terms of
supported elements by these solutions.

Table 19. Comparison to the existing spreadsheet-based approaches (introduced in [26,27]) in terms of
supporting various business process constructs.

Element Type Simple Approach Branching Approach More Properties Approach Our Approach

Task l l l l

Events m l l l

AND, OR and XOR Gateways m l l l

Pool, Lane m wm wm wm

Data Object m wm l l

Sequence Flow wm l l l

Appl. Sci. 2019, 9, 345 21 of 25
Tram-EPC

Scheduled
Departure

Print
Traffic Card

ready to
take car

from
stock

ready
to wait

for driver
Await Driver

Take Car
from Stock

car taken
from
stock

driver
arrived

driver
not

present

Check
Alcohol Level

Call for Driver alcohol
detected

alcohol
level OK

Authorize
Driver

driver
authorized

Wash Car car
washed

Place Car
on Track

car on
track

Take Car
from Track

tramway
departed

Register
Departure

Departure
Registered

Figure 6. An example of an equivalent model to the spreadsheet-based process description presented
in Table 18.

Tram-PetriNet

Print
Traffic
Card

Take Car
from
Stock

Wash
Car

Place Car
on Track

Await
Driver

Call for
Driver

Check
Alcohol

Level
Authorize

driver

Take Car
from
Track

Register
Departu

re

Figure 7. An example of an equivalent model to the spreadsheet-based process description presented
in Table 18.

Print Traffic
Card

Take Car
from Stock

Await Driver Driver
arrived?

yes

no

Call for Driver

Check Alcohol
Level Authorize Driver

Take Car from
Track

Register
Dparture

Place Car on
Track

Alcohol
level OK?

yes

no

Wash Car

Figure 8. An example of an equivalent model to the spreadsheet-based process description presented
in Table 18.

Figure 9. An example of an equivalent model to the spreadsheet-based process description presented
in Table 18.

6.3. Additional Remarks

For correct interpretation, our spreadsheet-based representation requires at least two columns:
“Order” and “Activity”. Such a model will represent a simple workflow without swimlanes or gateways.
Other columns (“Condition”, “Who”, “Input”, “Output”) are optional. It is also possible to extend
the representation with custom columns, e.g., “Description” or “Comments”, which will be ignored,
unless additionally implemented.

Appl. Sci. 2019, 9, 345 22 of 25

If the process description is shorter then the complete process, it can be parsed normally. However,
it will lack of the end event (unless there is an end event row). The order numbers do not have to be
complete. However, in the case of the gateway representation, it requires consecutive letters in the
“Order” column.

In our approach we use the “goto” statement, although in software developer environment,
the “goto” statement is considered as outdated or deprecated. However, recent studies [52] show
that even today in programming languages, “goto” is used in projects. But it is mostly limited to the
cases where it actually offers an improvement over the alternatives. The jump instruction such as
“goto” is a popular way of dealing with loops or skipping some steps in algorithms. Thus, it is used
in instructions or manuals [53]. It can take various forms, such as: go back to the step A, see the point B,
check page C, contact D. Moreover, models are not always designed in a proper (elegant) way, and “goto”
can handle such situations. In our case, the “goto” statement makes the process spreadsheet more
readable and easier to follow. Such representation is also smaller because it gets rid of steps duplication.
The possibility of extending the representation with other structures replacing the “goto” statement
should be a part of the future extensive evaluation on users.

7. Conclusions

We presented a concept of mapping process model elements in various notations into
a spreadsheet representation. In our solution, we proposed a convenient knowledge representation
which can serve as an interchange format for different modeling languages. The idea is supported
by the method to automate the generation of BPMN models based on a provided spreadsheet-based
representation. A significant advantage of our approach is the possibility to design process models
using a variety of spreadsheet editors. Since a process modeler does not need to explicitly declare flow
objects such as gateways, this approach does not require a high level of familiarity with any of the
existing process notation.

As future works, we plan to extend the method in terms of the support of advanced business
process diagrams and their elements. At the first stage, we would like to represent collaboration
between multiple pools, including message flows. In the next steps, we are planning to develop
a software tool to enable transformation of different process models into a spreadsheet which can serve
as an interchange format as well as be a base for process comparison [54] or validation [55].

In parallel to the extension of the technical capabilities, we plan to verify the applicability of
our approach on a group of users from different companies within the Small and Medium-sized
Enterprises (SME) sector. The results of such an analysis will show us the suitability of the method
for modeling different kinds of business processes and the efficiency of using spreadsheet editors as
modeling tools.

Author Contributions: Conceptualization, P.W. and K.K.; Formal analysis, E.K. and A.L.; Funding acquisition,
E.K. and A.L.; Methodology, P.W. and K.K.; Project administration, E.K.; Resources, A.L.; Software, P.W.;
Supervision, A.L.; Validation, K.K. and A.L.; Visualization, P.W. and K.K.; Writing – original draft, P.W. and K.K.;
Writing—review & editing, E.K. and A.L.

Funding: The research reported in this paper as well as the open access charge were financed by the AGH
UST grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mercier-Laurent, E. Knowledge management &risk management. In Proceedings of the IEEE 2016 Federated
Conference on Computer Science and Information Systems (FedCSIS), Gdańsk, Poland, 11–14 September
2016; pp. 1369–1373.

2. Friedrich, F.; Mendling, J.; Puhlmann, F. Process Model Generation from Natural Language Text.
In Proceedings of the 23rd International Conference on Advanced Information Systems Engineering, London,
UK, 20–24 June 2011; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 482–496.

Appl. Sci. 2019, 9, 345 23 of 25

3. Ghose, A.; Koliadis, G.; Chueng, A. Process Discovery from Model and Text Artefacts. In Proceedings of the
2007 IEEE Congress on Services, Salt Lake City, UT, USA, 9–13 July 2007; pp. 167–174.

4. De AR Goncalves, J.C.; Santoro, F.M.; Baiao, F.A. Business process mining from group stories. In Proceedings
of the IEEE 2009 13th International Conference on Computer Supported Cooperative Work in Design
(CSCWD 2009), Santiago, Chile, 22–24 April 2009; pp. 161–166.

5. Yue, T.; Briand, L.C.; Labiche, Y. An Automated Approach to Transform Use Cases into Activity Diagrams.
In Proceedings of the 6th European Conference on Modelling Foundations and Applications, Paris, France,
15–18 June 2010; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; pp. 337–353.

6. Ferreira, R.C.B.; Thom, L.H.; Fantinato, M. A semi-automatic approach to identify business process elements
in natural language texts. In Proceedings of the 19th International Conference on Enterprise Information
Systems, Porto, Portugal, 26–29 April 2017.

7. Riefer, M.; Ternis, S.F.; Thaler, T. Mining process models from natural language text: A state-of-the-art
analysis. In Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI-16), Illmenau, Germany,
9–11 March 2016.

8. Njonko, P.B.F.; El Abed, W. From natural language business requirements to executable models via SBVR.
In Proceedings of the 2012 International Conference on Systems and Informatics (ICSAI), Yantai, China,
19–20 May 2012; pp. 2453–2457.

9. Kluza, K.; Honkisz, K. From SBVR to BPMN and DMN Models. Proposal of Translation from Rules
to Process and Decision Models. In Artificial Intelligence and Soft Computing; Lecture Notes in Computer
Science; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2016; Volume 9693, pp. 453–462.

10. De Oliveira, J.P.M.; Avila, D.T.; dos Santos, R.I.; Fantinato, M. Assisting Process Modeling by Identifying
Business Process Elements in Natural Language Texts. In Advances in Conceptual Modeling: ER 2017
Workshops AHA, MoBiD, MREBA, OntoCom, and QMMQ, Valencia, Spain, 6–9 November 2017; Springer:
Cham, Switzerland, 2017; Volume 10651, p. 154.

11. Kluza, K.; Nalepa, G.J.; Ślażyński, M.; Kutt, K.; Kucharska, E.; Kaczor, K.; Łuszpaj, A. Overview of selected
business process semantization techniques. In Advances in Business ICT: New Ideas from Ongoing Research;
Springer: Cham, Switzerland, 2017; pp. 45–64.

12. Sokolov, K.; Timofeev, D.; Samochadin, A. Process Extraction from Texts using Semantic Unification.
In Proceedings of the 7th International Conference on Knowledge Management and Information Sharing
(KMIS 2015), Lisbon, Portugal, 12–14 November 2015; pp. 254–259.

13. Kluza, K.; Wiśniewski, P. Spreadsheet-based Business Process modeling. In Proceedings of the
2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdańsk, Poland,
11–14 September 2016; pp. 1355–1358.

14. Honkisz, K.; Kluza, K.; Wiśniewski, P. A Concept for Generating Business Process Models from Natural
Language Description. In Proceedings of the International Conference on Knowledge Science, Engineering
and Management, Changchun, China, 17–19 August 2018; Springer: Berlin/Heidelberg, Germany, 2018,
pp. 91–103.

15. Zur Muehlen, M.; Recker, J. How much language is enough? Theoretical and practical use of the business
process modeling notation. In Proceedings of the International Conference on Advanced Information
Systems Engineering, Montpellier, France, 16–20 June 2008; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 465–479.

16. Levy, F.; Nazarenko, A. Formalization of Natural Language Regulations through SBVR Structured
English. In Theory, Practice, and Applications of Rules on the Web; Lecture Notes in Computer Science;
Morgenstern, L., Stefaneas, P., Levy, F., Wyner, A., Paschke, A., Eds.; Springer: Berlin/Heidelberg, Germany,
2013; Volume 8035, pp. 19–33, doi:10.1007/978-3-642-39617-5_5.

17. Raj, A.; Prabhakar, T.V.; Hendryx, S. Transformation of SBVR Business Design to UML Models.
In Proceedings of the 1st India Software Engineering Conference (ISEC’08), Hyderabad, India,
19–22 February 2008; ACM: New York, NY, USA, 2008; pp. 29–38.

18. Tantan, O.C.; Akoka, J. Automated transformation of Business Rules into Business Processes. In Proceedings
of the Twenty-Sixth International Conference on Software Engineering and Knowledge Engineering,
Vancouver, BC, Canada, 1–3 July 2014; pp. 684–687.

Appl. Sci. 2019, 9, 345 24 of 25

19. Raj, A.; Agrawal, A.; Prabhakar, T.V. Transformation of Business Processes into UML Models: An SBVR
Approach. Int. J. Sci. Eng. Res. 2013, 4, 647–661.

20. Steen, B.; Pires, L.; Iacob, M.E. Automatic Generation of Optimal Business Processes from Business Rules.
In Proceedings of the 2010 14th IEEE International Enterprise Distributed Object Computing Conference
Workshops (EDOCW), Vitoria, Brazil, 25–29 October 2010; pp. 117–126. [CrossRef]

21. Nawrocki, J.R.; Nedza, T.; Ochodek, M.; Olek, L. Describing Business Processes with Use Cases.
In Proceedings of 9th International Conference on Business Information Systems (BIS 2006), Klagenfurt,
Austria, 31 May–2 June 2006; pp. 13–27.

22. Lubke, D.; Schneider, K.; Weidlich, M. Visualizing Use Case Sets as BPMN Processes. In Proceedings of the
Requirements Engineering Visualization, 2008 (REV ‘08), Barcelona, Spain, 8 September 2008; pp. 21–25.

23. Klimek, R.; Faber, L.; Kisiel-Dorohinicki, M. Verifying data integration agents with deduction-based models.
In Proceedings of the 2013 Federated Conference on Computer Science and Information Systems (FedCSIS),
Kraków, Poland, 8–11 September 2013; pp. 1029–1035.

24. Van der Aalst, W.M.P. Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st ed.;
Springer: Berlin/Heidelberg, Germany, 2011.

25. Kalenkova, A.A.; de Leoni, M.; van der Aalst, W.M. Discovering, Analyzing and Enhancing BPMN Models
Using ProM? In Proceedings of the Business Process Management-12th International Conference (BPM),
Eindhoven, The Netherlands, 20 September 2014; pp. 7–11.

26. Krumnow, S.; Decker, G. A Concept for Spreadsheet-Based Process Modeling. In Business Process Modeling
Notation: Second International Workshop, BPMN 2010, Potsdam, Germany, October 13–14, 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 63–77.

27. Krumnow, S. Spreadsheet-based process modeling. In Business Processes in the Real World; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 55–70.

28. Dumas, M.; La Rosa, M.; Mendling, J.; Reijers, H.A. Fundamentals of Business Process Management; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 1,

29. Kluza, K.; Jobczyk, K.; Wiśniewski, P.; Ligęza, A. Overview of Time Issues with Temporal Logics for Business
Process Models. In Proceedings of the 2016 Federated Conference on Computer Science and Information
Systems, Gdansk, Poland, 11–14 September 2016; pp. 1115–1123. [CrossRef]

30. List, B.; Korherr, B. An evaluation of conceptual business process modelling languages. In Proceedings of
the 2006 ACM Symposium on Applied Computing, Dijon, Frankreich, 23–27 April 2006; pp. 1532–1539.

31. Weske, M. Business Process Management: Concepts, Languages, Architectures, 2nd ed.; Springer:
Berlin/Heidelberg, Germany, 2012.

32. Kluza, K.; Wiśniewski, P.; Jobczyk, K.; Ligęza, A.; Suchenia (Mroczek), A. Comparison of selected modeling
notations for process, decision and system modeling. In Proceedings of the 2017 Federated Conference
on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6 September 2017;
pp. 1095–1098.

33. Wiśniewski, P.; Kluza, K.; Ligęza, A. An Approach to Participatory Business Process Modeling: BPMN Model
Generation Using Constraint Programming and Graph Composition. Appl. Sci. 2018, 8, 1428. [CrossRef]

34. Parody, L.; Gómez-López, M.; Varela-Vaca, A.; Gasca, R. Business Process Configuration according to Data
Dependency Specification. Appl. Sci. 2018, 8, 2008. [CrossRef]

35. Mendling, J.; Neumann, G.; Nüttgens, M. A Comparison of XML Interchange Formats for Business Process
Modelling. EMISA 2004, 56, 129–140.

36. Andrews, T.; Curbera, F.; Dholakia, H.; Goland, Y.; Klein, J.; Leymann, F.; Liu, K.; Roller, D.; Smith, D.;
Thatte, S.; et al. Business Process Execution Language for Web Services. Technical Report. Microsoft, IBM,
Siebel Systems, BEA, and SAP. 2003. Available online: http://xml.coverpages.org/BPELv11-20030505-
20030331-Diffs.pdf (accessed on 20 January 2019).

37. Mili, H.; Tremblay, G.; Jaoude, G.B.; Lefebvre, É.; Elabed, L.; Boussaidi, G.E. Business process modeling
languages: Sorting through the alphabet soup. ACM Comput. Surv. (CSUR) 2010, 43, 4. [CrossRef]

38. Kurz, M. BPMN model interchange: The quest for interoperability. In Proceedings of the 8th International
Conference on Subject-oriented Business Process Management, Erlangen, Germany, 7–8 April 2016; p. 6.

39. Clark, J.; Casanave, C.; Kanaskie, K.; Harvey, B.; Smith, N.; Yunker, J.; Riemer, K. ebXML Business Process
Specification Schema Version 1.01. Technical Report, UN/CEFACT and OASIS. 2001. Available online:
http://www.ebxml.org/specs/ebBPSS.pdf (accessed on 20 January 2019).

http://dx.doi.org/10.1109/EDOCW.2010.40
http://dx.doi.org/10.15439/2016F328
http://dx.doi.org/10.3390/app8091428
http://dx.doi.org/10.3390/app8102008
http://xml.coverpages.org/BPELv11-20030505-20030331-Diffs.pdf
http://xml.coverpages.org/BPELv11-20030505-20030331-Diffs.pdf
http://dx.doi.org/10.1145/1824795.1824799
http://www.ebxml.org/specs/ebBPSS.pdf

Appl. Sci. 2019, 9, 345 25 of 25

40. Mendling, J.; Nüttgens, M. EPC markup language (EPML): An XML-based interchange format for
event-driven process chains (EPC). Inf. Syst. e-Bus. Manag. 2006, 4, 245–263. [CrossRef]

41. Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.; Narayanan, S.; Paolucci,
M.; Parsia, B.; Payne, T.; et al. OWL-S: Semantic markup for web services. W3C Member Submission.
Available online: https://www.w3.org/Submission/OWL-S/ (accessed on 20 January 2019).

42. Hillah, L.M.; Kordon, F.; Petrucci, L.; Treves, N. PNML Framework: An extendable reference implementation
of the Petri Net Markup Language. In Proceedings of the International Conference on Applications and
Theory of Petri Nets, Braga, Portugal, 21–25 June 2010; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 318–327.

43. Kindler, E. The ePNK: An extensible Petri net tool for PNML. In Proceedings of the International Conference
on Application and Theory of Petri Nets and Concurrency, Newcastle, UK, 20–24 June 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 318–327.

44. Unified Modeling Language; Object Management Group: Needham, MA, USA, 2001. Available online:
https://www.omg.org/spec/UML/1.4 (accessed on 20 January 2019).

45. Tasharofi, S.; Sirjani, M. Formal modeling and conformance validation for WS-CDL using Reo and CASM.
Electron. Notes Theor. Comput. Sci. 2009, 229, 155–174. [CrossRef]

46. Sheng, Q.Z.; Qiao, X.; Vasilakos, A.V.; Szabo, C.; Bourne, S.; Xu, X. Web services composition: A decade’s
overview. Inf. Sci. 2014, 280, 218–238. [CrossRef]

47. Chopella, V.; Govindarajan, K.; Karp, A.; Kuno, H.; Lemon, M.; Pogossiants, G.; Sharma, S.; Williams, S.
Web Services Conversation Language (WSCL) 1.0. Technical Report, W3C. 2002. Available online: https:
//www.w3.org/TR/wscl10/ (accessed on 20 January 2019).

48. Frank, L. Web Services Flow Language (WSFL 1.0). Technical Report. IBM Software Group.
2001. Available online: https://d3s.mff.cuni.cz/research/seminar/download/2002-04-24-Gergic-wsfl.pdf
(accessed on 20 January 2019).

49. Thatte, S. XLANG: Web Services for Business Process Design. Microsoft Corporation. 2001. Volume 2001.
Available online: http://xml.coverpages.org/XLANG-C-200106.html (accessed on 20 January 2019).

50. Weske, M. Business process management architectures. In Business Process Management; Springer: Berlin,
Germany, 2012; pp. 333–371.

51. Palmer, N. XML Process Definition Language. In Encyclopedia of Database Systems; Springer-Verlag: Boston,
MA, USA, 2016; p. 1.

52. Nagappan, M.; Robbes, R.; Kamei, Y.; Tanter, É.; McIntosh, S.; Mockus, A.; Hassan, A.E. An empirical study
of goto in C code from GitHub repositories. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, Bergamo, Italy, 30 August–4 September 2015; pp. 404–414.

53. Berry, E. How to get users to follow procedures. IEEE Trans. Prof. Commun. 1982, PC-25/1, 22–25. [CrossRef]
54. Armas-Cervantes, A.; Dumas, M.; García-Bañuelos, L.; Polyvyanyy, A. On the suitability of generalized

behavioral profiles for process model comparison. In Web Services, Formal Methods, and Behavioral Types;
Springer: Cham, Switzerland, 2014; pp. 13–28.

55. Mach, M.A.; Owoc, M.L. Validation as the integral part of a knowledge management process. In Proceeding
of Informing Science Conference, Krakow, Poland, 19–22 June 2001.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10257-005-0026-1
https://www.w3.org/Submission/OWL-S/
https://www.omg.org/spec/UML/1.4
http://dx.doi.org/10.1016/j.entcs.2009.06.034
http://dx.doi.org/10.1016/j.ins.2014.04.054
https://www.w3.org/TR/wscl10/
https://www.w3.org/TR/wscl10/
https://d3s.mff.cuni.cz/research/seminar/download/2002-04-24-Gergic-wsfl.pdf
http://xml.coverpages.org/XLANG-C-200106.html
http://dx.doi.org/10.1109/TPC.1982.6447739
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Works
	Spreadsheet Representation of a Business Process
	Approach Overview
	Mapping a Spreadsheet with a BPMN Model
	Requirements
	Supported Process Elements and Their Spreadsheet Model
	Start Events
	Intermediate Events
	End Events
	Tasks
	Parallel-, Exclusive- and Inclusive-Gateways
	Loops in the Process
	Pools/Lanes
	Data Objects

	Transformation Procedure

	Evaluation
	Interchange Solution
	Case Studies
	Additional Remarks

	Conclusions
	References

