iriried applied
L sciences

Article

Pick and Place Operations in Logistics Using
a Mobile Manipulator Controlled with Deep
Reinforcement Learning

Ander Iriondo V*@©, Elena Lazkano 2, Loreto Susperregi 1, Julen Urain !, Ane Fernandez ! and
Jorge Molina !

1 Department of Autonomous and Intelligent Systems, Fundacién Tekniker, Ifiaki Goenaga,

5-20600 Eibar, Spain; loreto.susperregi@tekniker.es (L.S.); julen.urain@tekniker.es (J.U.);
ane.fernandez@tekniker.es (A.F.); jorge.molina@tekniker.es (J.M.)

Faculty of Computer Science, P° Manuel Lardizabal, 1-20018 Donostia-San Sebastidn, Spain;
elazkano@ehu.es

* Correspondence: ander.iriondo@tekniker.es

check for
Received: 30 December 2018; Accepted: 17 January 2019; Published: 21 January 2019 updates

Abstract: Programming robots to perform complex tasks is a very expensive job. Traditional path
planning and control are able to generate point to point collision free trajectories, but when the tasks
to be performed are complex, traditional planning and control become complex tasks. This study
focused on robotic operations in logistics, specifically, on picking objects in unstructured areas using
a mobile manipulator configuration. The mobile manipulator has to be able to place its base in a
correct place so the arm is able to plan a trajectory up to an object in a table. A deep reinforcement
learning (DRL) approach was selected to solve this type of complex control tasks. Using the arm
planner’s feedback, a controller for the robot base is learned, which guides the platform to such a
place where the arm is able to plan a trajectory up to the object. In addition the performance of two
DRL algorithms ((Deep Deterministic Policy Gradient (DDPG)) and (Proximal Policy Optimisation
(PPO)) is compared within the context of a concrete robotic task.

Keywords: deep reinforcement learning; mobile manipulation; robot learning

1. Introduction

Logistics applications demand the development of flexible, safe and dependable robotic solutions
for part-handling including efficient pick-and-place solutions.

Pick and place are basic operations in most robotic applications, whether in industrial setups
(e.g., machine tending, assembling or bin picking) or in service robotics domains (e.g., agriculture or
home). In some structured scenarios, picking and placing is a mature process. However, that is not
the case when it comes to manipulating parts with high variability or in less structured environments.
In this case, picking systems only exist at laboratory level, and have not reached the market due to
factors such as lack of efficiency, robustness and flexibility of currently available manipulation and
perception technologies. In fact, the manipulation of goods is still a potential bottleneck to achieve
efficiency in the industry and the logistic market.

At the same time, the market demands more flexible systems that allow for a reduction of costs in
the supply chain, increasing the competitiveness for manufacturers and bringing a cost reduction for
consumers. The introduction of robotic solutions for picking in unstructured environments requires the
development of flexible robotic configurations, robust environment perception, methods for trajectory
planning, flexible grasping strategies and human-robot collaboration.

Appl. Sci. 2019, 9, 348; d0i:10.3390/app9020348 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2760-435X
http://www.mdpi.com/2076-3417/9/2/348?type=check_update&version=1
http://dx.doi.org/10.3390/app9020348
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 348 20f19

This study focused specifically on the development of adaptive trajectory planning strategies for
pick and place operations using mobile manipulators. A mobile manipulator is a mobile platform
carrying one or more manipulators. The typical configuration of mobile manipulators in industry
is an anthropomorphic manipulator mounted on a mobile platform complemented with sensors
(laser, vision, and ultrasonic) and tools to perform operations. The mobility of the base extends the
work-space of the manipulator, which increases the operational capacity.

Currently, mobile manipulators implementation in industry is limited. One of the main challenges
is to establish coordinated movements between the base and the arm in a unstructured environment
depending on the application.

Although navigation and manipulation are fields where much work has been done, mobile
manipulation is a less known area because it suffers from the difficulties and uncertainties of both
previously mentioned fields. We propose to solve the path planning problem using a reinforcement
learning (RL) strategy. The aim is to avoid explicit programming of hard-to-engineer behaviours,
or at least to reduce it, taking into account the difficulty of foreseeing situations in unstructured
environments. RL-based algorithms have been successfully applied to robotic applications [1] and
enable learning complex behaviours only driven by a reward signal.

Specifically, this study focused on learning to navigate to such a place that the mobile
manipulator’s arm is able to pick an object from a table. Due to the limited scope of the arm, not all
positions near the table are feasible to pick the object and to calculate those positions analytically is
not trivial. The goal of our work was to evaluate the performance of deep reinforcement learning
(DRL) [2] to acquire complex control policies such as mobile manipulator positioning by learning
only through the interaction with the environment. Specifically, we compared the performance of two
model-free DRL algorithms, namely Deep Deterministic Policy Gradient (DDPG) and Proximal Policy
Optimisation (PPO) algorithms, in two simulation tests.

The simulated robot we used is the mobile manipulator miiwa, depicted in Figure 1, which has
been used in industrial mobile manipulation tasks (e.g., [3]).

Figure 1. Kuka miiwa.

Appl. Sci. 2019, 9, 348 30f19

2. Literature Review

There are different approaches to establishing coordinated movements between the base and the
arm depending on the application. Nassal et al. [4] specified three types of cooperation, which differ in
the degree of cooperation, the associated complexity and the potential for manipulation capabilities:
(1) Loose cooperation is when the mobile base and the manipulator are considered two separate
systems, and the base serves as transport. There are several very well-known methods for navigation
and trajectory planning [5]. (2) Full cooperation is when the two systems are seen as one (with nine
degrees of freedom), and both the base and the arm move simultaneously to position the tool center.
There are various approaches to solve the path planning problem [6,7], however, in these cases, the
computational cost is very high. (3) Transparent cooperation is the combination of the previous two:
the manipulator control compensates for the base and the base moves accordingly to maximise a cost
function related to the positioning of the manipulator to perform the task. In [4], an approach to this
type of control is proposed.

In general, current robotic solutions follow the loose cooperation approach. The coordination of the
two subsystems for mobile manipulation depends on the task that needs to be solved. Berntorp et al. [8]
addressed the issue of pick and place where the robotic system must take a can of a known position
and place it in another combining the movement of the arm and the base. In [9], the problem of
opening doors is considered where the movement of the arm and base are coupled by sensing the
forces generated between the arm and the door, and coordinating the forward movement of the base.

One of the principal goals of artificial intelligence (Al) is to enable agents to learn from their
experience to become fully autonomous. This experience is obtained by interacting with the
environment. Thus, the agent should continue improving its behaviour through trial and error
until it behaves optimally. Deep learning enables reinforcement learning to face decision-making
problems that were previously infeasible. The union of both of them, namely DRL, makes it possible
to learn complex policies guided by a reward signal and has been applied to learn multiple complex
decision making tasks in a wide variety of areas. For instance, in [10], the authors learn a chess player
agent by self playing that is able to defeat a world champion. In [11], DRL is used to learn an intelligent
dialogue generator agent. It also has been successfully applied to computer vision, for example to
train a 2D object tracker agent that outperforms state-of-the-art real-time trackers [12].

The field of DRL applied to robotics is becoming more and more popular, and the number of
published papers related to that topic is increasing quickly. Applications extend from manipulation [13-16]
to autonomous navigation [17,18] and locomotion [19,20].

DRL has been successfully applied in some robotic path planning and control problems.
For example, Gu et al. [16] used DRL to learn a low-level controller that is able to control a robotic
arm to perform door opening. On the one hand, 25 variables are used to represent the environment’s
state. More specifically, those variables correspond to the joint angles and their time derivatives,
the goal position and the door angle together with the handle angle. On the other hand, the action is
represented by the torque for each joint. Robot navigation is another area where DRL also has been
applied successfully; for example, in [18], DRL is applied to learn a controller to perform mapless
navigation with a mobile robot. In this work, a low dimensionality state representation is also used,
specifically 10-dimensional laser range findings, the previous action and the relative target position.
The action representation includes linear and angular velocities of the differential robot.

Alternatively, several methods use 2D or 3D images instead of low-dimensional state
representations. In [15], for example, 2D images are used with the goal of learning grasping actions.
The authors tried to map images directly with low-level control actions and, in addition, the developed
system is able to generalise and pick objects that the model has not been trained with. Moreover, other
applications (e.g., [21]) use 3D depth images as state representation, but instead of learning directly
from pixels, they encode the images to a lower dimensional space before training the model. This
encoding enables to accelerate the training process.

Appl. Sci. 2019, 9, 348 40f19

Although there are multiple works about learning to control either robotic arms and mobile
bases, to the best of our knowledge, references about DRL applied to mobile manipulation are few.
The goal of this paper is to show that it is possible to use the arm path planner’s feedback to learn a
low-level controller for the base. The learned controller is able to guide the robot to a feasible pose in
the environment to do the picking trial. To do that, a low-dimensional state representation is used.

In [22], the authors proposed to learn, through interaction with the environment, which place
is the best to locate the base of a mobile manipulator, in such a way that the arm is able to pick an
object from a table. In that way, the robot takes into account its physical conditions and also the
environment’s conditions to learn which is the optimal place to perform the grasping action. In this
case, they acquire experience off-line, and, after applying some classifiers, such as support vector
machines, they are able to learn a model that maps the state of the robot with some feasible places in
the environment to do the picking trial. Then, the trained model is used on-line.

In comparison with the previous approach, the goal of the RL-based algorithms is to learn on-line,
while the agent interacts with the environment, improving its policy until it reaches to the optimal
behaviour. In addition, the goal of our work is to learn a controller, which gives a low-level control
signal in each state to drive the mobile robot, while, in [22], instead of learning a controller to drive the
robot up to the optimal pose, they tried to find directly which is the optimal pose.

3. Methodological Approach

According to Sutton and Barto [23], a reinforcement learning solution to a control problem is
defined as a finite horizon Markov Decision Process (MDP). At each discrete time-step f, the agent
observes the current state of the environment s; € S, takes an action a; € A(s;), receives a reward
r:S X A — R and observes the new state of the environment s, 1. At each episode of T time-steps,
the environment and the agent are reset to their initial poses. The goal of the agent is to find a policy,
deterministic 7ry(s) or stochastic 7g(als), parameterised by 6 under which the expected reward is
maximised.

Traditional reinforcement learning algorithms are able to deal with discrete state and action spaces
but, in robotic tasks, where both state and action spaces are continuous, discretising those spaces
does not work well. Nevertheless, most state-of-the-art algorithms use deep neural networks to map
observations with low-level control actions to be able to deal with continuous spaces. In our approach,
a DRL algorithm is used to learn where to place the mobile manipulator to make a correct picking
trial through the interaction with the environment. Those DRL algorithms need a huge amount of
experience to be able to learn complex robotic behaviours and, thus, it is infeasible to train them
acquiring experience in real world. In addition, the actions taken by the robot in the initial learning
iterations are nearly random and both the robot and the environment might end up damaged as a
result. Therefore, DRL algorithms are usually trained in simulation. Learning in simulation enables a
faster experience acquisition and avoids material costs. Our study used a simulation-based approach,
and we based it on open source robotic tools such as Gazebo simulator, Robot Operating System (ROS)
middleware [24], OpenAl Baselines DRL library [25] and Gym/Gym-gazebo toolboxes [26,27].

DRL algorithms follow value-based, policy search or actor—critic architectures [28]. Value
based-algorithms estimate the expected reward of an state or state—action pair and are able to deal
with discrete action spaces, typically using greedy policies. To be able to deal with continuous action
spaces, policy search methods use a parameterised policy and do not need a value function. Usually,
those methods have the difficulty of not easily being able to evaluate the policy and they have high
variance. Actor—critic architecture is the most used one in the state-of-the-art algorithms and combines
the benefits of the two previous algorithm types. On the one hand, actor—critic-based methods use
a parameterised policy (actor), and, on the other hand, use a value or action-value function that
evaluates the quality of the policy (critic).

The proposed approach follows the actor—critic architecture. On the one hand, a parameterised
policy 7y is used to be able to deal with both continuous state and action spaces in stochastic

Appl. Sci. 2019, 9, 348 50f 19

environments, encoded by the parameter vector 6. On the other hand, a parameterised value function
is used to estimate the expected reward at each state or state—action pair, where w is the parameter
vector that encodes the critic. The state value function V;,(s) estimates the expected average reward of
all actions in the state s. The action-value function Qy (s, a), instead, estimates the expected reward
of executing action a in state s. Then, the critic’s information is used to update both actor and critic.
In DRL algorithms, both actor and critic are parameterised by deep neural networks, and the goal is to
optimise those parameters to get the agent’s optimal behaviour.

In addition, DRL algorithms are divided into two groups, on-policy and off-policy, depending
on how they are able to acquire experience. On-policy algorithms expect that the experience used
to optimise their behaviour policy is generated by the same policy. Off-policy methods, instead,
can use experience generated by another policy to optimise its behaviour policy. Those methods
are said to be able to better explore the environment than on-policy methods because they use a
more exploratory policy to get experience. In this study, we compared an on-policy algorithm and
an off-policy algorithm, to see which type of methods adjusts better to our mobile manipulation
behaviour learning. Specifically, PPO and DDPG were used, being those on-policy and off-policy,
respectively. The first one learns stochastic policies, which maps states with actions represented by
Gaussian probability distributions. DDPG, instead, is able to deterministically map states with actions.
Both algorithms follow actor—critic architecture.

3.1. Algorithms
In this section, we describe the theoretical basis of PPO and DDPG.

3.1.1. PPO

PPO [29] follows the actor—critic architecture and it is based on the trust-region policy optimisation
(TRPO) [30] algorithm. This algorithm aims to learn a stochastic policy 7 (a¢|s;) that maps states with
Gaussian distributions over actions. In addition, the critic is a value function V;,(s;) that outputs the
mean expected reward in state s;. This algorithm has the benefits of TRPO and in general of trust
region based methods but it is much simpler to implement it. The intuition behind trust-region based
algorithms is that, at each parameter update of the policy, the output distribution cannot diverge too
much from the original distribution.

To update the actor’s parameters, a clipped surrogate objective is used. Although another loss
function is also proposed, using a Kullback-Leibler (KL) divergence [31] penalty on the loss function
instead of the clipped surrogate objective, the experimental results obtained are not as good as with
the clipped one. Let r;(6) denote the probability ratio defined in Equation (1), so that r¢(6,;;) = 1.

1o (at|st)

n0) = o (arls)

)

0,14 is the actor’s parameter vector before the update. The objective of TRPO is to maximise
the objective function L(6) defined in Equation (2). Here, E|...] indicates the average over a finite
batch of samples. The usage of the advantage A; in policy gradient algorithms was popularised by
Schulman et al. [32] and indicates how good the performed action is with respect to the average actions
performed in each state. To compute the advantages, the algorithm executes a trajectory of T actions
and computes them as defined in Equation (3). Here, t denotes the time index [0, T] in the trajectory of
length T and v is the discount factor.

L(0) = E[W&] @)

7014 (as]s)

A

Ay = —Vi(st) + e+ 11 + oo £ 9T g + 9T WV (s7) 3)

Appl. Sci. 2019, 9, 348 6 of 19

At each policy update, if the advantage has a positive value, the policy gradient is pushed in that
direction because it means that the action performed is better than the average. Otherwise, the gradient
is pushed in the opposite direction.

Without any constraint, the maximisation of the loss function L(8) would lead to big changes in
the policy at each training step. PPO modifies the objective function so that penalises big changes in
the policy that move r¢(0) away from 1. Maintaining r¢(0) near to 1 ensures that, at each policy update,
the new distribution does not diverge to much from the old one. The objective function is defined in
Equation (4).

LEHP(9) = E[min(ri(0) Ay, clip(re(6),1 —€,1 4 €)) A4 4)

Here, € is a hyper-parameter that changes the clip range.
To update the value function V4, (s) (the critic), the squared-error loss function is used (Equation (5))
between the current state value and a target value. The target value is defined in Equation (6).

J(w) = (Va(st) — V{"%)? 5)

V"8 = Ay + Vio(st) ©6)

The PPO algorithm is detailed in Algorithm 1. Although this algorithm is designed to be able to
have multiple parallel actors getting experience, only one actor is being used.

Algorithm 1 Proximal Policy Optimisation (PPO).

1: for e € episodes do
2 for a € actors do
3: Run policy 714,,, in environment for T time-steps
4: Compute advantage estimates A;... At

5 end for

6

Optimise actor’s loss function L¢LIP

with regard to 8, with K epochs and minibatch size N

< T -actors
7: Gold — 0
8: end for

3.1.2. DDPG

DDPG [33] combines elements of value function based and policy gradient based algorithms,
following the actor—critic architecture. This algorithm aims to learn a deterministic policy 7y(s) = a
and it is derived from the deterministic policy gradient theorem [34].

Following the actor—critic architecture, DDPG uses an action—-value function Qy (s, a) as critic to
guide the learning process of the policy and it is based on the deep Q-network (DQN) [35]. Prior to
DQN, it was believed that learning value functions with large and nonlinear function approximators
was difficult. DQN is able to learn robust value functions due to two innovations: First, the network is
trained off-policy getting experience samples from a replay buffer to eliminate temporal correlations.
In addition, target networks are used, which are updated more slowly, and this gives consistent targets
during temporal difference learning.

The critic is updated according to the gradient of the objective defined in Equation (7).

L(w) = E[(Qu(st,ar) —)] @)

where
yt = V(St, at) + ,YQw(st-'rl/at-‘rl)|ar+]:n9(st+]) (8)

Appl. Sci. 2019, 9, 348 7 of 19

The actor is updated following the deterministic policy gradient theorem, defined in Equation (9).
The intuition is to update the policy in the direction that improves Qy (s, 2) most .

VJ(0) = E[Vera(st) VaQuw(st, at)|a=rey(s)])

As mentioned before, the target value defined in Equation (8) is calculated using the target
networks 77), and Q! ,, which are updated more slowly and this gives more consistent targets when
learning the action—-value function.

As DDPG is an off-policy algorithm, the policy used to get experience is different from the
behaviour policy. Despite the behaviour policy being deterministic, typically, a stochastic policy is
used to get experience, being able to better explore the environment. This exploratory policy is usually
achieved adding noise to the behaviour policy. Although there are common noises such as normal
noise or Ornstein—Uhlenbeck noise [36], which are added directly to the action generated by the policy,
in [37], Plapperta et al. proposed adding noise to the neural network’s parameter space to improve the
exploration and to reduce the training time. The DDPG algorithm is described in Algorithm 2.

Algorithm 2 Deep Deterministic Policy Gradient (DDPG).

1: Initialise the actor 71y(s) and the critic Qy (s, a) networks.

2: Initialise the target networks Q" y 7t/ with the weights 6’ + 6, w’ + w
3: Initialise the replay buffer

4: fore € episodes do

5: Initialise noise generation process

6: Get the first observation

7: fort € steps do

8: Select the action a; = 71g(st) + N

9: Execute the action a;, get the reward r; and the observation s;;
10: Store the transition < s, a4, 1, 5141 > in replay buffer
11: Get M experience samples < s;,4;,14,5;41 > from the replay buffer
12: Yyi = 1i+7Qu, (Sit1, 7y (si41))
13: Update the critic minimising the loss :

1
L=+, Zi:(]/i — Qu(si, ;)
14: Update the policy of the actor:
1
Vo] =~ M 2 ViaQuw (S/ a) |s:si,a:ng(si)v9n9 (S) |5=5i
1
15: Update target networks:
0« 10+ (1—1)¢'
w' < tw+ (1-1)w

16: end for
17: end for

3.2. Simulated Layout

To model our world, we used the Gazebo model based simulator. The elements that are placed
in this simulated world are the robot miiwa, the table and an object, which is on top of the table,
as depicted in Figure 2.

Appl. Sci. 2019, 9, 348 8of 19

Figure 2. Simulated world in Gazebo.

The mobile manipulator miiwa is composed of a 7 DoF arm and a 3 DoF omnidirectional mobile
base. To be able to control the mobile base, the gazebo planar move plugin was used.

To test if our environment was modelled correctly and to know if the algorithms could learn
low-level control tasks in that environment, the learning process was divided into two simulation tests.
In both, the algorithm must learn to control the mobile base with velocity commands, such that, at each
discrete time-step, the algorithm gets the state of the environment and publishes a velocity command.
The objective of those tests was to learn a low-level controller to drive the robot to a place where the
arm can plan a trajectory up to the object on the table. To learn those controllers, the feedback of the
arm’s planner was used. The summary of the tests is listed in Table 1.

Table 1. Test setup summary.

Test Robot Initial Pose Box Initial Pose Objective

Test1 Variable Variable The arm to be able to plan a trajectory up to the box
Test2 Variable Constant To plan a trajectory with an obstacle in the table

4. Implementation

The application was implemented in a modular way using ROS for several reasons. On the one
hand, it enabled us to modularise the application and to parallelise processes. On the other hand,
Gazebo is perfectly integrated with ROS and offers facilities to control the simulation using topics,
services and actions.

OpenAl Gym is a toolkit to do research on DRL algorithms and to do benchmarks between
DRL algorithms. This library includes some simulated environments that are used to test the quality
of new algorithms and its use is widespread in the DRL community. Gym offers simple functions
to interact with the environments, which are mostly modelled in the Mujoco [38] simulator. Due
to the simplicity of the interface that Gym offers, it has become a standard way to interact with
environments in DRL algorithms. Gym-gazebo is an extension of Gym that enables the user to create
robotic environments in Gazebo and offers the same simple interface to the algorithm to be able to
interact with the environment. All the environments we modelled were integrated with Gym-gazebo,
which enabled us to straightforwardly use OpenAl Baselines DRL library, which is designed to
work with Gym.

Gym-gazebo wraps the used DRL algorithms in ROS nodes and enables interaction with the
environment. Nevertheless, another ROS node has been developed that is in charge with controlling all
the elements of the simulation and works as bridge between the Gym-gazebo node and the simulator.
To be able to control the simulation physic updates and to compute them as fast as possible, we
developed a Gazebo plugin, which in turn is a ROS node. Thus, using ROS communication methods,
we could control each simulated discrete time-step and we simulated those steps faster than real time.

Appl. Sci. 2019, 9, 348 90f19

Specifically, this node takes care of all time-steps being of the same length, executing a fixed number of
physic updates at each step.

The tf broadcaster node uses the tf tool that ROS offers to keep track of all the transformations
between frames. We used this node to publish some transformations such as the transformation
between the object and world frames. Consequently, the robot is always aware of where the object is in
order to be able to navigate up to it. The implemented architecture is shown in Figure 3.

GYM GAZEBO

STEP CONTROL PLUGIN

SIMULATION + ARM TF BROADCASTER
CONTROL

Figure 3. Implemented architecture. ROS: Robot Operating System.
4.1. Simulation

The learning process was carried out during a fixed number of time-steps, which were divided
into episodes of 512 time-steps. Gazebo’s max step size Ty, is an important parameter that indicates
the time-step at which Gazebo computes successive states of the model. The default value is 1 ms,
but, in this case, T, = 2 ms was used, which gave enough stability and enabled a faster simulation.
Thus, each iteration of the physic engine meant 2 ms of simulated time and those iterations could be
computed as quickly as possible to be able to accelerate the simulation. Besides, the real time update rate
U, parameter indicates how many physic iterations will be tried in one second. The real time factor is
defined in Equation (10) and indicates how much faster the simulation goes in comparison with the
real time. Thus, rtf = 1 indicates that the simulation is running on real time.

rtf =Ty - U, (10)

In addition, a frame-skip N, was defined to be able to get a reasonable control rate. In this
application, N1, = 4 was used so the discrete time-step size is defined in Equation (11) and doing that
we achieve a control rate of 125 Hz.

Ts = Ty - N1, = 8 ms (11)

Thus, the length of each discrete time-step is 8 ms and those steps are computed faster than real
time. Gazebo does not allow the control of the physics engine iterations, so a Gazebo plugin was
developed to be able to execute the simulation for some iterations and to be able to compute those
iterations as fast as possible. When the plugin was told to run a time-step, it ran Nt, physics iterations
and the real time update rate was set to 0 to compute those iterations as quickly as possible. Doing
this, the real time factor increased and enabled us to run the simulation about 5-10 times faster than in
real time.

Appl. Sci. 2019, 9, 348 10 0f 19

At each step, the learning algorithm generates an action, specifically a velocity command, which is
sent to the mobile base. After executing it and at the end of the step, a reward signal is given evaluating
the quality of the action performed by the base. The action is the same for all the experiments and is
defined in Equation (12).

a=[vy vy w (12)

To be able to control the mobile base, the gazebo planar move plugin was used, which enabled the
sending of velocity commands to the omnidirectional base. In addition, it published the odometry
information, which was used to know where the robot is respect to a parent coordinate frame. The
path planning and control of the arm was made using Movelt! [39] and enabled us to plan collision
free trajectories. Besides that, Movelt! uses an internal planning scene where objects can be added to
be taken into account when the trajectory is planned.

4.2. Network Architectures

The library of DRL algorithms used is OpenAl Baselines. This library offers high quality
implementations of many state-of-the-art DRL algorithms implemented in Tensorflow [40]. Although
the implementation offers complex networks such as convolutional neural networks (CNN) or recurrent
neural networks (RNN), we used fully connected multi-layer perceptrons (MLP) to parameterise both
policies and value functions.

4.2.1. PPO

The network architecture used in this algorithm is the one proposed by Schulman et al. [29] in
the original paper. To parameterise both the policy 7g(a¢|s¢) and the value function Vi, (s¢), a four
layered MLP was used. In both actor and critic, the first layer’s size depends on the size of the state
encoding, which was different in each test. The actor’s input layer is followed by two hidden layers of
64 neurons each. The output layer’s size depends on the action space’s size. In this case, the action was
a vector of three elements representing the velocity command, which has to be sent to the mobile base.
Specifically, the velocity command is composed of the linear velocities in x and y axes, and the angular
velocity in z axis. As mentioned before, this algorithm uses a stochastic policy and, thus, each action
is defined by a Gaussian distribution. Each distribution is characterised by a mean and a standard
deviation. Hence, the neurons of the last hidden layer are fully connected with the mean of each action.
In addition, three variables are used to store and update the standard deviation.

The activation function applied to the output of each neuron of the hidden layers is Tanh. Instead,
no activation function is applied to the output of the neurons of the last layer.

Regarding the value function Vi, (s¢), the first three layers have the same architecture as the
actor’s first three layers. The output layer, instead, is composed of a single neuron, which is fully
connected with each neuron of the last hidden layer and outputs the expected average reward of a
state. The activation function used in the hidden layers is Tanh as well.

4.2.2. DDPG

The network architecture used is the default implementation that the OpenAl Baselines library
offers, which is very similar to the architecture proposed by Lillicrap et al. [33]. As in PPO,
to parameterise both the policy 7y (s¢) and the action—value function Q(s¢, 4¢), a four layered MLP was
used. This algorithm aims to learn a deterministic policy so each state will be mapped with a concrete
action. The actor’s input layer also depends on the state encoding and it is followed by two hidden
layers, composed of 64 neurons each. Concerning the output layer, it is composed of three neurons,
one per action, and each neuron is fully connected with each neuron of the last hidden layer.

With respect to the activation functions, the Rectified Linear Unit (ReLU) function is used in each
neuron of the hidden layers. In the output layer, instead, Tanh is used to bound the actions between
—1and 1. In addition, a process called layer normalisation [41] is applied to the output of each hidden

Appl. Sci. 2019, 9, 348 110f19

layer to simplify the learning process and to reduce the training time. DDPG is an off-policy algorithm,
hence it uses a more exploratory policy to get experience. As explained in the algorithm’s description
(Section 3.1.2), there are multiple types of noise but, in this application, the noise is added in the neural
network’s parameter space.

The action—value function Qy (s, a) receives as input the state and the action and outputs the
expected future reward of executing action 4; in state s;. The input layer depends on the size of the
state codification. The input layer is followed by two hidden layers of 64 neurons each and actions
are not included until the second hidden layer. The output layer only has one neuron and outputs
the g-value. The activation function used in the critic network is ReLU for each neuron of the hidden
layers. The last layer’s neurons do not have any activation function, because the action—value does not
have to be bounded.

To minimise the complexity of the critic and to avoid over-fitting, a L2 regularisation term is added
to the critic’s loss function [42]. This penalises the model for having parameters with high values.

4.3. Test Setup

Here, we describe the simulation setup in addition to the state codification and the reward
function we used in each test. For both PPO and DDPG, the setup and reward functions were the same
in all tests.

The robot’s work-space is limited and a new episode starts when it goes out of limits. Those limits
are defined in Equation (13).

xy =[-1.0,3.0] y¥ =[-15,0.0] (13)

In addition, although the robot was penalised by navigating with high speed, the environment
bounds the velocities applied to the mobile base. The maximum linear velocity in x and y axes was 1
m/s and the maximum angular velocity in z axis was 1 rad/s. Thus, if the algorithm predicted velocities
higher than those, the limit velocities were applied and the agent was penalised proportionally. Besides,
high accelerations were also penalised proportionally, but in this case the environment did not bound
them.

The learning process was divided into episodes where the robot had T time-steps to complete the
task. The episode length was T = 512 time-steps, which is about 4 s, and a discrete time-step t was
terminal if:

e The robot collides with the table.
e Robot poses out of limits.
. t=T.

The tuning hyper-parameters used in each algorithm are described in Table 2 and were not
changed across tests.

Appl. Sci. 2019, 9, 348 120f19

Table 2. Hyper-parameters.

PPO Setup Hyper-Parameters

Actor/Critic learning rate f(step) = step - 3 x 1074
Clip-range 0.2
Discount factor y 0.99
Batch size 512
Mini-batch size 64
training time_steps
Updates batch_size
Training epochs per update 10
DDPG Setup Hyper-Parameters
Actor’s learning rate 1x1074
Critic’s learning rate 1x1073
Batch size 128
Discount factor y 0.99
Critic 12 regularisation 1x1072
Running epochs 500
Cycles per epoch 10
Rollouts per cycle 512
Updates epochs - cycles
Training iterations per update 100

4.3.1. Test 1

Here, the objective was to learn a controller that guides the robot to a place near the table so that
the arm could plan a trajectory up to the object. The robot and object initial poses were variable, which
are defined in Equations (14) and (15). The robot’s initial y¥ coordinate was constant so that the robot
always began at the same distance from the table. The state codification is defined in Equation (16)
and it is composed of the following 10 variables:

Robot’s position in world coordinate system: x’, x}’
Robot’s rotation on z axis in world coordinate system: yaw}’
Robot’s linear velocities on x and y axes: vy, vy

Robot’s angular velocity in z axis: w,

Object’s position in world coordinate system: x{; " U i
Distance between the robot and the object: d(py, poy;)
Remaining time steps to end the episode: ¢

x¥ =10.0,30] y¥=-15 vyaw) =[-m, 7| (14)
x =[05,25 b =[05075 24 =12 (15)
s=[x" vy yaw)’ vx vy wz Xg; Yo A(PrsPoby) t € R' (16)

The linear and the angular velocities included in the state were the velocities sent in the previous
time-step to the robot (previous action). The reward function used is defined in Equation (17).
A nonlinear function was used to give higher rewards when the robot was close to the object and high
velocities and accelerations were penalised to encourage smooth driving. Here, Av means the velocity
difference (acceleration) between current and previous action. Instead, v_high penalised each linear
or angular velocity being higher than a threshold. As mentioned before, the maximum linear and
angular velocities were 1 m/s and 1 rad/s, respectively. In addition, in the last time-step of the episode,
an additional reward was given if the arm could plan a trajectory up to the object. The number of
remaining time-steps was included in the state for robot to be aware when this last step was coming.
The collision variable was equal to 1 when a collision occurred, and 0 otherwise.

1

—— - (1 —collision) — 0.5 - Av — 0.5 - v_high(a;) + 100 - success (17)
d(pr, Pobj)

r(se, ar) =

Appl. Sci. 2019, 9, 348 13 0f 19

3
v_high(a;) = Zati, ifa;, >k (18)
i=1

4.3.2. Test2

In this test, as in the previous one, the robot had to navigate to a place near the table such that
the arm could plan a trajectory up to the object in the table. In this case, a wall was placed near the
object to see if the algorithm could discard poses that were behind the wall. The robot’s initial pose
was variable (Equation (19)) and the object’s initial pose was constant (Equation (20)). As in the first
test, the robot’s initial y¥ coordinate was constant so that the robot always began at the same distance
from the table. The state codification defined in Equation (21) is composed of the following 8 variables:

Robot’s position in object’s coordinate system: xfhj , xgbj

Robot’s rotation on z axis in object’s coordinate system: yuw?b]

Robot’s linear velocities on x and y axes: vy, vy

Robot’s angular velocity in z axis: w,

Distance between the robot and object’s coordinate system origin: d(p,, Q)
Remaining time steps to end the episode: t

x¥ =10.0,30] y¥=-15 vyaw) =[-m, 7| (19)
=17 4 =075 24 =1.005 (20)
s = [x‘,’bj yfhj yawfbj vy vy w: d(pr,0) t] €R® (21)

The used reward function is defined in Equation (22). In this case, the distance was computed
between the robot’s position p, and object’s coordinate system origin O.

r(st, a) = m - (1 — collision) — 0.5 - Av — 0.5 - v_high(a;) + 100 - success (22)

The environments used in the first and second tests are depicted in Figure 4a,b, respectively.

(a) Environment 1. (b) Environment 2.

Figure 4. Simulated environments.
5. Results

The learning process was carried out during a fixed number of time-steps and, to be able to
evaluate the performance of the algorithms, several evaluation periods of 10 episodes each were made.
Specifically, 500 evaluation periods were made uniformly distributed over the learning process and
the metrics used to evaluate the performance were the mean accumulated reward and the success rate,
which are the most used ones in the DRL community.

Appl. Sci. 2019, 9, 348 14 of 19

5.1. Test 1

The goal of this test was to learn a low-level controller that could drive the mobile manipulator’s
base close to the table, so that the arm could plan a trajectory up to the object. The learning process
was carried out during 5M time-steps approximately, and an evaluation period was performed every
20 episodes. The results obtained with both PPO and DDPG algorithms are depicted in Figure 5.
Figure 5a shows the mean accumulated rewards obtained in each of the 500 evaluation periods.
The obtained success rates are depicted in Figure 5b. Due to the unstable nature of DRL algorithms,
the obtained success rates vary considerably. Thus, to better understand the results, the mean value
and the maximum/minimum values are shown per 10 test periods.

Mean rewards Succes rates
1.0 — PPO
30001 —— DDPG
0.8
2500 - IH I |
|
= LA L 0561
5 2000 Iy I >0
H Tl \ g
& 1500 ‘ | g
g i < 044
1000 | ‘
0.2
500
0.0
04— , T T T T T T T T r T
0 100 200 300 400 500 0 100 200 300 400 500
Test periods Test periods
(a) Accumulated mean rewards. (b) Success rates.

Figure 5. Test 1 results.

Concerning the accumulated mean rewards, DDPG converged faster than PPO but, when the
learning process moved along, PPO obtained higher rewards. The fact that DDPG obtained higher
initial rewards is explained by two main reasons: (1) The policy bounds the actions between —1 and 1
so that it is not penalised for high velocities. (2) From the initial learning steps, this algorithm predicts
smooth velocity changes across consecutive time-steps and, thus, is not penalised for high accelerations.
Instead, PPO does not bound the actions and that is why it is penalised for high velocities and
accelerations in the initial learning steps. Nevertheless, this algorithm is able to understand that lower
velocities/accelerations are not penalised and, once learned, it obtains higher rewards than DDPG.

Regarding the success rates, it can be seen clearly that DDPG approximated the goal faster than
PPO. Although, in some evaluation periods, it succeeded 100% of the time, it presented an unstable
behaviour. As explained before, PPO takes more time to approximate the goal but, when it learns to
drive smoothly, it shows a more stable behaviour. Besides, it could get 100% success rate considerably
more times than DDPG. Off-policy algorithms are said to be able to better explore the environment than
on-policy algorithms. In our environment, due to the initial random poses and the limited work-space
of the robot, the exploration problem decreased considerably. PPO is an on-policy algorithm and
takes more time to explore the environment than DDPG and that is another reason DDPG approaches
the goal faster than PPO. Nevertheless, PPO relatively quickly improves enough for its policy to be
able to succeed.

DRL has been applied to goal reaching applications either in manipulation or in navigation.
Typically, those goals are not surrounded by obstacles and this makes the learning process easier.
In this case, the goal (the object) was on top of the table and the robot had to learn to approximate to
it without colliding with the obstacle. The reward function defined in this test encouraged the robot
approximating to the object as much as possible and the robot had to use the contact information to
learn where the table was to not collide with it. Although an additional reward was given when the

Appl. Sci. 2019, 9, 348 15 0f 19

arm’s planning succeeded, it first tried to get as close as possible to the table, sometimes colliding with
it and that is one of the reasons that caused the unstable behaviour of both algorithms.

Due to the variable pose of the object, in some episodes, if the object was near to table’s edge,
it had the possibility to get closer, scoring higher rewards. In addition, the initial poses of both the
robot and the object in every test period were totally random and thus the accumulated rewards
and/or success rates varied considerably.

5.2. Test 2

The goal of this test was to learn a low-level controller that could drive the mobile manipulator’s
base close enough to the table for the arm to be able to plan a trajectory up to the object. In this case, a
wall was placed near the object with the aim of making the decision making problem more difficult.
The learning process was carried out during 2.5M time-steps and an evaluation period aws performed
every 10 episodes. In Figure 6, the results obtained with both PPO and DDPG algorithms are depicted.

Mean rewards Succes rates
— PPO 1.0{ — PPO
3000{ —— DDPG — DDPG
0.8
2500 4
° 4
§ 2000 5061
o 8
= =]
S 1500 §
2 0.4
1000
0.2 1
500
04 0.0
0 100 200 300 400 500 0 100 200 300 400 500
Test periods Test periods
(a) Accumulated mean rewards. (b) Success rates.

Figure 6. Test 2 results.

Concerning the accumulated mean rewards (Figure 6a), DDPG’s performance was better than
PPO’s for the overall learning process. Due to the bounded actions and the smooth output of DDPG, it
could get higher rewards in the initial learning steps. Thanks to the fact that this algorithm is off-policy,
it is able to better explore the environment and, thus, it learns to locate the robot’s base much closer
to the object than PPO. In addition, the constant pose of the box simplified the exploration problem,
since the base always had to navigate to the same area of the environment and, consequently, the mean
rewards were not as irregular as in the first test.

The success rates depicted in Figure 6b indicate that DDPG’s performance was much better than
PPO’s, being the former able to score 100% success rate multiple times. DDPG could learn relatively
quickly where the grasping zone is, discarding the poses over the wall. After navigating to the grasping
zone, the learned policy stoped the robot sending near to zero velocities to the base. In addition,
the deterministic behaviour of the algorithm enabled the robot to learn a more stable behaviour near
the table, avoiding collisions. Even though PPO could learn to drive the robot near the correct grasping
zone, it could not learn to stop it and continued sending velocities high enough to get the robot out of
the grasping zone. Besides, due to the stochastic policy, the robot’s performance near the table was not
as robust as DDPG’s, sometimes colliding with it.

Appl. Sci. 2019, 9, 348 16 of 19

6. Discussion and Future Work

In this work, we successfully implemented several DRL algorithms for learning picking operations
using a mobile manipulator. It is shown that it is possible to use the arm’s feedback to learn a low-level
controller that drives the base to such a place that the arm is able to plan a trajectory up to the object.

Two state-of-the-art DRL algorithms were applied and compared to learn a mobile manipulation
task. Specifically, the arm planner’s feedback was used to learn to locate the mobile manipulator’s
base. To the best of our knowledge, this is the first approach that uses the arm’s feedback to acquire a
controller for the base.

Although DRL enables the learning of complex policies driven only by a reward signal,
the unstable nature of those algorithms makes it difficult to obtain a robust behaviour. In addition,
the sensitivity of DRL algorithms to hyper-parameters hinders finding the best parameter combination
to get a robust and stable behaviour. Even though an optimisation over those hyper-parameters could
be made, the large training times makes this process very expensive and commonly the default values
proposed in the literature are used. Concerning the algorithms tested in this work, the results obtained
show that the behaviour of the algorithms is dependant on several properties of the environment
such as the state/action codification and the reward function definition. In addition, the network
architecture used to encode either policies and the value-function has a large effect in the learning
process. Even though the same network architecture and hyper-parameters were used in both tests,
the results obtained are very different. Therefore, each environment needs the algorithm to be tuned in
the best way to solve the problem, which is why the learned policies are not reproducible.

The reward function definition is another key point of the learning process, since it is entirely
guided by this signal. A logical approach could be to give a reward to the robot in the last step only if
the arm plans a trajectory, but, unfortunately, using only sparse rewards does not work well. In several
goal reaching applications, either with arms or mobile bases, a distance dependant reward is proposed.
In our application, this encourages the robot to navigate close to the object so the arm can plan a
trajectory. After some tests, we saw that a nonlinear distance function accelerates the learning process.

Although DRL algorithms are typically trained in simulation, the experience acquisition is still the
bottleneck of DRL based applications applied to robotics. Even though we accelerated the simulation,
the entire learning process took several hours. Nevertheless, to be able to transfer the learned policy
to a real robot and reduce the reality gap, the robot must be simulated accurately. Thus, a balance
between simulation accuracy and training time acceleration should be found.

Moreover, it is complex to tune the algorithms to get a robust performance. We intend to increase
the perception capabilities of the robot to be able to navigate in a more secure way and to be aware
of the dynamical obstacles placed in the environment, using 2D/3D vision for example. Most of
the applications in the literature map observations directly with low-level control actions and this
black-box approach is not scalable. To be able to learn multiple behaviours and to combine them,
hierarchical DRL proposes to learn a hierarchy of behaviours in different levels. In that vein, our goal
is to learn a hierarchy of behaviours and, after training them in simulation, test those behaviours in a
real robot.

Author Contributions: Conceptualisation, A.IL. and L.S.; methodology, A.L, LS., and E.L.; software, A.L; formal
analysis, AL, J.U.,, AF, and].M,; data curation, A.L; writing—original draft preparation, A.L; writing—review
and editing, E.L. and L.S.; and supervision, E.L., L.S.

Funding: This Project received funding from the European Union’s Horizon 2020 research and Innovation
Programme under grant agreement No. 780488.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2019, 9, 348 17 0f 19

Abbreviations

The following abbreviations are used in this manuscript:

RL Reinforcement learning

DRL Deep reinforcement learning

MDP Markov Decision Process

ROS Robot Operating System

CNN Convolutional Neural Network

RNN Recurrent Neural Network

MLP Multi Layer Perceptron

DDPG Deep Deterministic Policy Gradient

PPO Proximal Policy Optimisation

References

1. Kober, |.; Bagnell, J.A; Peters,]. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013,
32, 1238-1274. [CrossRef]

2. Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274.

3. Domel, A; Kriegel, S.; Kalecker, M.; Brucker, M.; Bodenmidiller, T.; Suppa, M. Toward fully autonomous mobile
manipulation for industrial environments. Int.]. Adv. Robot. Syst. 2017, 14. [CrossRef]

4. Nassal, U,; Damm, M; Liith, T. A mobile platform supporting a manipulator system for an autonomous
robot. In Proceedings of the 5th World Conference on Robotics Research, Cambridge, MA, USA,
27-29 Spetember 1994.

5. Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin, Germany, 2016.

6. Padois, V.; Fourquet,].Y.; Chiron, P. From robotic arms to mobile manipulation: On coordinated motion
schemes. In Intelligent Production Machines and Systems; Elsevier: Amsterdam, The Netherlands, 2006;
pp. 572-577.

7. Tan, J.; Xi, N.; Wang, Y. Integrated task planning and control for mobile manipulators. Int.]. Robot. Res.
2003, 22, 337-354. [CrossRef]

8. Berntorp, K.; Arzén, K.E.; Robertsson, A. Mobile manipulation with a kinematically redundant manipulator
for a pick-and-place scenario. In Proceedings of the 2012 IEEE International Conference on Control
Applications (CCA), Dubrovnik, Croatia, 3-5 October 2012; pp. 1596-1602.

9. Meeussen, W.; Wise, M.; Glaser, S.; Chitta, S.; McGann, C.; Mihelich, P.; Marder-Eppstein, E.; Muja, M.;
Eruhimov, V.; Foote, T.; et al. Autonomous door opening and plugging in with a personal robot.
In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage,
AK, USA, 3-8 May 2010; pp. 729-736.

10. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, L.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.;
Graepel, T.; et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arXiv 2017, arXiv:1712.01815.

11. Li, J.; Monroe, W.; Ritter, A.; Galley, M.; Gao,].; Jurafsky, D. Deep reinforcement learning for dialogue
generation. arXiv 2016, arXiv:1606.01541.

12. Yoo, S.; Yun, K,; Choi, J.Y.; Yun, K.; Choi, J. Action-Decision Networks for Visual Tracking with Deep
Reinforcement Learning. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017.

13. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421-436. [CrossRef]

14. Popov, I.; Heess, N.; Lillicrap, T.; Hafner, R.; Barth-Maron, G.; Vecerik, M.; Lampe, T.; Tassa, Y.; Erez, T;
Riedmiller, M. Data-efficient deep reinforcement learning for dexterous manipulation. arXiv 2017,
arXiv:1704.03073.

15. Quillen, D.; Jang, E.; Nachum, O.; Finn, C.; Ibarz, J.; Levine, S. Deep Reinforcement Learning for

Vision-Based Robotic Grasping: A Simulated Comparative Evaluation of Off-Policy Methods. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21-25 May 2018.

http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/1729881417718588
http://dx.doi.org/10.1177/0278364903022005004
http://dx.doi.org/10.1177/0278364917710318

Appl. Sci. 2019, 9, 348 18 0f 19

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.
37.

Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates. In Proceedings of the 2017 IEEE International Conference on Robotics
and Automation (ICRA), Singapore, 29 May-3 June 2017; pp. 3389-3396, d0i:10.1109/ICRA.2017.7989385.
[CrossRef]

Chen, Y.E; Everett, M.; Liu, M.; How,].P. Socially aware motion planning with deep reinforcement learning.
In Proceedings of the 2017 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24-28 September 2017; pp. 1343-1350.

Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots
for mapless navigation. In Proceedings of the 2017 IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, Canada, 24-28 September 2017; pp. 31-36.

Peng, X.B.; Berseth, G.; Yin, K.; Van De Panne, M. Deeploco: Dynamic locomotion skills using hierarchical
deep reinforcement learning. ACM Trans. Graph. (TOG) 2017, 36, 41. [CrossRef]

Heess, N.; Sriram, S.; Lemmon, J.; Merel,].; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, A.; Riedmiller, M.; et al.
Emergence of locomotion behaviours in rich environments. arXiv 2017, arXiv:1707.02286.

Breyer, M.; Furrer, F; Novkovic, T.; Siegwart, R.; Nieto, J. Flexible Robotic Grasping with Sim-to-Real
Transfer Based Reinforcement Learning. arXiv 2018, arXiv:1803.04996.

Stulp, F.; Fedrizzi, A.; Beetz, M.; Autonomous, I.; Group, S. Learning and Performing Place-Based Mobile
Manipulation. In Proceedings of the 2009 IEEE 8th International Conference on Development and Learning,
Shanghai, China, 5-7 June 2009; pp. 1-7.

Sutton, R.S.; Barto, A.G. Reinforcement Learning: An introduction; MIT press: Cambridge, UK, 1998; Volume 1.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T,; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
May 17 2009; VoLume 3, p. 5.

Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert, M.; Radford, A.; Schulman, J.; Sidor, S.;
Wu, Y. OpenAl Baselines. 2017. Awvailable online: https://github.com/openai/baselines (accessed on
18 January 2019).

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Openai, W.Z. OpenAl
Gym. arXiv 2016, arXiv:1606.01540.

Zamora, I.; Gonzalez Lopez, N.; Vilches, VM.; Herndndez Cordero, A.; Robotics, E. Extending the
OpenAl Gym for Robotics: A Toolkit for Reinforcement Learning Using ROS and Gazebo. arXiv 2017,
arXiv:1608.05742v2.

Arulkumaran, K.; Deisenroth, M.P,; Brundage, M.; Bharath, A.A. A brief survey of deep reinforcement
learning. arXiv 2017, arXiv:1708.05866.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms.
arXiv 2017, arXiv:1707.06347.

Schulman, J.; Levine, S.; Moritz, P,; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. arXiv 2015,
arXiv:1502.05477.

Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79-86. [CrossRef]
Schulman, J.; Moritz, P; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using
generalized advantage estimation. arXiv 2015, arXiv:1506.02438.

Lillicrap, T.P; Hunt, J.].; Pritzel, A.; Heess, N.; Erez, T; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control
With Deep Reinforcement Learning. arXiv 2016, arXiv:1509.02971v5.

Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient
Algorithms. In Proceedings of the 31st International Conference on Machine Learning (ICML 2014), Beijing,
China, 21-26 June 2014.

Mnih, V;; Kavukcuoglu, K;; Silver, D.; Rusu, A.A.; Veness,].; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529-533. [CrossRef]

Uhlenbeck, G.E.; Ornstein, L.S. On the theory of the Brownian motion. Phys. Rev. 1930, 36, 823. [CrossRef]
Plappert, M.; Houthooft, R.; Dhariwal, P; Sidor, S.; Chen, R.Y,; Chen, X.; Asfour, T.; Abbeel, P.; Openai, M.A.
Parameter Space Noise for Exploration. arXiv 2018, arXiv:1706.01905v2.

https://doi.org/10.1109/ICRA.2017.7989385
http://dx.doi.org/10.1109/ICRA.2017.7989385
http://dx.doi.org/10.1145/3072959.3073602
https://github.com/openai/baselines
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1103/PhysRev.36.823

Appl. Sci. 2019, 9, 348 19 0f 19

38.

39.
40.

41.
42.

Todorov, E.; Erez, T.; Tassa, Y. Mujoco: A physics engine for model-based control. In Proceedings of the
2012 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal,
7-12 October 2012; pp. 5026-5033.

Chitta, S.; Sucan, I.; Cousins, S. Moveit![ROS topics]. IEEE Robot. Autom. Mag. 2012, 19, 18-19. [CrossRef]
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,]J.; Devin, M.; Ghemawat, S.; Irving, G.;
Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, USA, 2—4
November 2016; Volume 16, pp. 265-283.

Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.

Ng, A.Y. Feature selection, L 1 vs. L 2 regularization, and rotational invariance. In Proceedings of the
Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4-8 July 2004; ACM:
New York, NY, USA, 2004; p. 78.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MRA.2011.2181749
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Methodological Approach
	Algorithms
	PPO
	DDPG

	Simulated Layout

	Implementation
	Simulation
	Network Architectures
	PPO
	DDPG

	Test Setup
	Test 1
	Test 2

	Results
	Test 1
	Test 2

	Discussion and Future Work
	References

