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Featured Application: 5G (28 GHz) mobile handset communication

Abstract: In this paper, a 28 GHz fifth-generation (5G) phased array antenna with air-hole slots for
beam width enhancement is proposed. The proposed antenna consists of eight dipole radiators on a
mobile handset-sized ground with air-hole slots between the two adjacent elements for enhancing the
half power beam width (HPBW) in the elevation plane. The dimensions of the proposed antenna are
130 mm × 42 mm × 0.127 mm. The proposed array antenna satisfies a −10 dB reflection coefficient in
the frequency range from 27.2 to 29.2 GHz with a peak gain of 10.33 dBi and a side lobe level (SLL) of
13 dB. In addition to its good performance, the proposed antenna has a very wide HPBW (measured)
in the elevation plane, up to 219 degree with a scan coverage of ±45 degree in the azimuth plane.
The proposed antenna demonstrates excellent hemispheric beam coverage for 5G mobile handset
devices and can enable cost-effective mass production.
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1. Introduction

With the rapid development of wireless mobile communication technologies, the demand for
higher data rate services has significantly increased over the recent years. The fifth-generation (5G)
mobile communication system [1] was introduced and has been receiving considerable interest from
various industrial fields. Among many frequency bands, the millimeter band has been considered a
good candidate for 5G communication, since it provides higher data rate services because of increased
channel bandwidth compared to lower frequency bands [2]. A promising technology for utilizing
millimeter band communications is the phased array antenna with beam steering capability [3]. Most
studies have focused on the high peak gain, the wide reflection coefficient bandwidth, the wide scan
angle, or the low side lobe level, which are typical specifications of the phased array antenna for mobile
devices [4–6].

Very few, however, are interested in the half power beam width (HPBW) in the elevation plane [7–9],
which is normal to the azimuth plane (beam scanning plane), as illustrated in Figure 1a. Since mobile
communications require hemispheric beam coverage, as shown in Figure 1b [10], HPBW in the elevation
plane (XZ plane) is a crucial specification of the phased array antenna needed to minimize the fading
caused by the shaded area [11]. The antennas proposed in [7,8] employ substrate-integrated waveguide
structure as a cavity and used posts in order to shape the beam pattern of the antenna. The HPBWs
in the elevation plane of the antennas are 133.1 degree and 180 degree, respectively. The antenna
proposed in [9] introduced parasitic loop and mushroom-like element in order to broaden the beam
width up to 130 degree. However, such work either has high cost structure [7,8] or beam width which
is not wide enough for 5G application [9].
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Figure 1. The azimuth and elevation plane versus the radiation pattern: (a) half power beam width 
(HPBW) in the elevation plane and shaded area; (b) hemispheric beam coverage required by mobile 
handsets. 

This paper proposes a 1 × 8 phased array antenna for 5G applications operating at 28 GHz with 
enhanced HPBW in the elevation plane using air-hole slots. While showing adequate performances 
of the reflection coefficient bandwidth, the peak gain, the scan angle, and the side lobe level [12], the 
proposed antenna provides excellent HPBW in the elevation plane above 219 degree. The proposed 
array antenna has a relatively cost-effective structure compared with [7,8] and has the widest HPBW 
(up to 39 degree) among the three studies [7–10]. Therefore, the proposed work can play an important 
role as array antenna for a modern 5G mobile handset device. 

2. Design of the Two-Element Antenna Array 

Figure 2a illustrates the structure of the proposed two-element antenna array. The proposed 
antenna consists of an air-hole slot in the ground substrate in addition to two bent dipole antenna 
elements and a modified ground. The two-element array antenna has dimensions of 10.7 mm × 7.8 
mm × 0.127 mm and is printed on a Taconic RF-35 substrate with a relative permittivity of 3.5 and a 
loss tangent of 0.0018. 
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Figure 2. Structure of the proposed two-element array antenna: (a) top view (b) cross-sectional view. 

Figure 1. The azimuth and elevation plane versus the radiation pattern: (a) half power beam
width (HPBW) in the elevation plane and shaded area; (b) hemispheric beam coverage required by
mobile handsets.

This paper proposes a 1 × 8 phased array antenna for 5G applications operating at 28 GHz with
enhanced HPBW in the elevation plane using air-hole slots. While showing adequate performances
of the reflection coefficient bandwidth, the peak gain, the scan angle, and the side lobe level [12],
the proposed antenna provides excellent HPBW in the elevation plane above 219 degree. The proposed
array antenna has a relatively cost-effective structure compared with [7,8] and has the widest HPBW
(up to 39 degree) among the three studies [7–10]. Therefore, the proposed work can play an important
role as array antenna for a modern 5G mobile handset device.

2. Design of the Two-Element Antenna Array

Figure 2a illustrates the structure of the proposed two-element antenna array. The proposed
antenna consists of an air-hole slot in the ground substrate in addition to two bent dipole
antenna elements and a modified ground. The two-element array antenna has dimensions of
10.7 mm × 7.8 mm × 0.127 mm and is printed on a Taconic RF-35 substrate with a relative permittivity
of 3.5 and a loss tangent of 0.0018.
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Bending of the dipole arms is applied to enhance the isolation between radiating elements and
the front-to-back ratio (FBR) [13]. In addition, the ground plane is modified to improve the impedance
matching of the antenna elements [14]. Figure 3 shows the reflection coefficient and isolation level
of the proposed two-element array antenna. The proposed antenna exhibits a wide (15%) −10 dB
reflection coefficient bandwidth from 25.8 GHz to 31 GHz and an excellent isolation level higher than
21 dB over the desired frequency band. A slot (an air-hole slot) in the ground substrate is introduced to
create the complimentary current component necessary to obtain the wide beam width. Figure 4a,b
shows the operating mechanism of the proposed ground slot enhancing the HPBW in the elevation
plane of the two-element array. As shown in the dotted circle in Figure 4a, the slot in the ground with
length L, approximately half of the guided wavelength, forms a complementary λ/2-dipole originating
via the current distribution around the slot, as described in the following equation [15]:

L ' λg/2 (1)

where
λg =

λ0
√
εr

(2)
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Figure 3. Simulated reflection coefficient and isolation level of the proposed two-element array. 
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Figure 4. Implementation of the slot in the ground: (a) visualized mechanism of the slot as a 
complementary dipole source (b) multiplication effect of the complementary dipole source on the 
radiation pattern of the two-element array. 

Figure 3. Simulated reflection coefficient and isolation level of the proposed two-element array.
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Figure 4. Implementation of the slot in the ground: (a) visualized mechanism of the slot as a
complementary dipole source (b) multiplication effect of the complementary dipole source on the
radiation pattern of the two-element array.
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Therefore, the radiation pattern of the two-element dipole array is added to that of the
complementary dipole from the ground slot resulting in a wider radiation pattern in the elevation
plane, as shown in Figure 4b [16,17]. In addition, the width of the slot W is a key parameter for
determining the performance of HPBW in the elevation plane.

Figure 5 illustrates the parametric study of the width W. The optimized value of W is 0.5 mm
since the peak gain starts to decrease at W = 0.6 mm and the HPBW becomes extremely narrow at
W = 0.7 mm, which implies that the slot does not operate properly as a complementary dipole radiator.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 11 

Therefore, the radiation pattern of the two-element dipole array is added to that of the 
complementary dipole from the ground slot resulting in a wider radiation pattern in the elevation 
plane, as shown in Figure 4b [16,17]. In addition, the width of the slot W is a key parameter for 
determining the performance of HPBW in the elevation plane. 

Figure 5 illustrates the parametric study of the width W. The optimized value of W is 0.5 mm 
since the peak gain starts to decrease at W = 0.6 mm and the HPBW becomes extremely narrow at W 
= 0.7 mm, which implies that the slot does not operate properly as a complementary dipole radiator. 

Theta [deg]
-45 0 45 90 135 180 225

R
ea

liz
ed

 g
ai

n 
[d

B]

0

3

6

9

12

15
W=0.4mm
W=0.5mm
W=0.6mm
W=0.7mm

 

Figure 5. Realized gain for various values of the slot width (W). 

To enhance the parasitic effect of the complementary dipole, an air-hole slot in the ground is 
introduced, as shown in Figure 2a. The air-hole slot consists of a slot on the ground and an air-hole 
made by puncturing the substrate. The air-hole has an identical location and size of the slot, and is 
laid on the top of the slot. The effect of such an air-hole slot can be simply explained by the 
complementary theory in which all the materials should be completely complemented for thorough 
implementation [18]. Such a theory can be further expanded upon using Maxwell’s equations as 
following [19]: 

EH J
t

ε ∂∇ × = +
∂

 (Ampere’s Law) (3) 

HE
t

μ ∂∇ × = −
∂

 (Faraday’s Law) (4) 

Qualitatively, the total surface current around the slot is increased since the focusing of E field 
caused by the difference of relative permittivity between air hole and the substrate reinforces the 
second term on the right hand side of the equation of Amperes’ Law. This also increases the total 
magnetic field around the slot which is the left hand side of the Ampere’s Law. Since the H field is 
time-varying, the right-hand side of the Faraday’s Law increases and causally induces stronger total 
E field which is the left-hand side of the Faraday’s Law. Eventually, the induced stronger E field 
around the slot enables the radiation of the complementary dipole to be enhanced. Because of the 
pattern summing mechanism illustrated in Figure 4b, the HPBW of the proposed array antenna in 
the elevation plane is improved. This is verified through observing the difference of the intensity of 
the surface current around the slot with and without the air hole. Figure 6b shows the plot of the 
surface current (y-axis) versus the distance around the slot (x-axis) when it is applied alone and along 
with the air hole. 

Figure 5. Realized gain for various values of the slot width (W).

To enhance the parasitic effect of the complementary dipole, an air-hole slot in the ground is
introduced, as shown in Figure 2a. The air-hole slot consists of a slot on the ground and an air-hole made
by puncturing the substrate. The air-hole has an identical location and size of the slot, and is laid on the
top of the slot. The effect of such an air-hole slot can be simply explained by the complementary theory
in which all the materials should be completely complemented for thorough implementation [18].
Such a theory can be further expanded upon using Maxwell’s equations as following [19]:

∇×H = J + ε
∂E
∂t

(Ampere′s Law) (3)

∇× E = −u
∂H
∂t

(Faraday′s Law) (4)

Qualitatively, the total surface current around the slot is increased since the focusing of E field
caused by the difference of relative permittivity between air hole and the substrate reinforces the second
term on the right hand side of the equation of Amperes’ Law. This also increases the total magnetic
field around the slot which is the left hand side of the Ampere’s Law. Since the H field is time-varying,
the right-hand side of the Faraday’s Law increases and causally induces stronger total E field which
is the left-hand side of the Faraday’s Law. Eventually, the induced stronger E field around the slot
enables the radiation of the complementary dipole to be enhanced. Because of the pattern summing
mechanism illustrated in Figure 4b, the HPBW of the proposed array antenna in the elevation plane
is improved. This is verified through observing the difference of the intensity of the surface current
around the slot with and without the air hole. Figure 6b shows the plot of the surface current (y-axis)
versus the distance around the slot (x-axis) when it is applied alone and along with the air hole.
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3. Design of the Eight-Element Array on a Mobile Handset 

To verify the performance of a 5G phased array antenna on a typical mobile platform, the 
number of dipole elements is increased up to eight on a ground having the size of a typical mobile 
handset, as shown in Figure 8. The 1 × 8 phased array antenna is located at the top side of the ground 
with the total dimensions of 130 mm × 42 mm × 0.127 mm. The detailed antenna parameters and 
the substrate material are identical to those of the two-element array case. 

Figure 6. Introduction of the air-hole superposed with the slot in the ground: (a) top view of the
simulation environment for surface current intensity around the slot (b) comparison of surface current
intensity from the supposed two cases.

Figure 7 shows the radiation patterns of two-element arrays for three cases (i.e., without the slot,
with the slot, and with the air-hole slot in the ground) in the YZ plane at 28 GHz. As we can see
from the radiation pattern plot, the HPBW of the two-element array applied with the ground slot is
increased from 190 degree to 203 degree compared with that without the ground slot. The HPBW is
further increased to 207 degree in the YZ plane by introducing an air-hole slot instead of a ground slot.
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3. Design of the Eight-Element Array on a Mobile Handset

To verify the performance of a 5G phased array antenna on a typical mobile platform, the number
of dipole elements is increased up to eight on a ground having the size of a typical mobile handset, as
shown in Figure 8. The 1 × 8 phased array antenna is located at the top side of the ground with the
total dimensions of 130 mm × 42 mm × 0.127 mm. The detailed antenna parameters and the substrate
material are identical to those of the two-element array case.
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Figure 9. Reflection coefficient of the proposed antenna and isolation between the elements. 

Figure 8. Top view of the proposed 1 × 8 phased array antenna on a mobile handset ground.

As shown in Figure 9, the proposed antenna exhibits a −10 dB reflection coefficient bandwidth of
5.1 GHz while having the worst-case isolation level of 22 dB within that frequency bandwidth range.
Figure 10a,b illustrate the radiation pattern of the proposed array antenna at 28 GHz with a 0 degree
phase difference between ports in the azimuth (XY plane) and elevation (YZ plane) planes, respectively.
As shown in the figure, the peak gain in the azimuth plane is 11.15 dBi toward +y direction with a
side lobe level (SLL) of 13 dB. On the other hand, the proposed antenna exhibits a very wide HPBW
of 221 degree in the elevation plane with a peak gain of 11.15 dBi. Regarding such results, the air
holes superposed with the slots in the ground can provide a wide HPBW to the array antenna in the
elevation plane regardless of the number of elements. Figure 11 shows the beam-scanning performance
of the proposed array antenna in the azimuth plane. As shown in the figure, the proposed antenna has
a probable scan angle of ±45 degree (i.e., a total of 90 degree resulting from the symmetric structure)
while maintaining the worst-case peak gain and SLL of 10 dBi and 12 dB, respectively.
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Figure 11. Radiation pattern of the proposed phased array antenna at 28 GHz in the XY plane (azimuth)
when the phase difference between element ports is varied from 0 degree to 120 degree with a step of
60 degree.

In summary, the proposed antenna exhibits adequate performances of reflection coefficient
bandwidth, isolation level, peak gain, scan angle, and SLL [13] while having very wide HPBW, up to
221 degree in the elevation plane. Therefore, the proposed antenna can provide coverage of more than
half of a hemisphere as a sub-array element, since it covers 90 degree in the azimuth plane with beam
scanning and 221 degree HPBW in the elevation plane. If four proposed 1 × 8 phased array antennas
are mounted on four corners of the mobile handset device, they can thoroughly cover the whole
isotropic sphere without having a shaded area, as shown in Figure 1. Such characteristics can be a very
crucial advantage when developing an array antenna system for 5G mobile handset applications.

4. Experimental Results

To verify the beam-steering performance, the proposed antenna was fabricated as a 1 × 8 mobile
handset array antenna, as shown in Figure 12a. Etching process was applied to print the metal patterns
on both sides of the substrate while simple drilling was used to realize the air-hole slot. Two types of
fixed microstrip feeding networks were implemented to represent the linear phase differences of 0
degree and 120 degree for a 0 and 45 degree scan, respectively, as shown in Figure 12b. The substrate
material and detailed antenna parameters for the proposed array antenna are identical to those of the
two-element array design.
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9.64 dBi in the XY plane with an SLL of 10.1 dB. As shown in the figures, the measured radiation 
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value of approximately 0.8 dB, which can be interpreted as an experimental error, including loss from 
the feeding connector. In summary, the fabricated antenna shows very wide HPBW in the elevation 
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Figure 12. Fabricated 1 × 8 array antenna: (a) top view (b) bottom view

For measuring the reflection coefficient and the radiation pattern, Agilent N5230A vector network
analyzer with Agilent/HP 85056D calibration kit and millimeter-wave anechoic chamber equipped
with MTG operating software were used, respectively.

Figure 13 illustrates the measured reflection coefficients at the input port of the 1 8 array antenna
with fixed microstrip feeding networks. The proposed array antenna has a 10-dB reflection coefficient
bandwidth from 27.2 GHz to 29.2 GHz. As show in Figure 13, the measured results agree reasonably
well with the simulated ones implemented with the fixed feeding network. A slight discrepancy
between the simulated and measured results can be explained as an outcome of errors from measuring
and manufacturing.
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Figure 13. Measured and simulated reflection coefficient of the proposed array antenna.

Figure 14 shows the measured radiation patterns of the proposed array antenna at 28 GHz along
with the simulated results. Since the available anechoic chamber was technically specified to provide
accurate results only for a rotational range from −120 to +120 degree relative to the boresight, plots in
Figure 14 are illustrated within that range. As shown in Figure 14a,b, the measured peak gain of the
array antenna with a 0-degree scan is 10.33 dBi in the XY plane with a HPBW of 219 degree in the YZ
plane. As shown in Figure 14c, the measured peak gain of the array antenna with a 45 degree scan
is 9.64 dBi in the XY plane with an SLL of 10.1 dB. As shown in the figures, the measured radiation
patterns reasonably agree well with the simulated results, except for a small discrepancy in the gain
value of approximately 0.8 dB, which can be interpreted as an experimental error, including loss from
the feeding connector. In summary, the fabricated antenna shows very wide HPBW in the elevation
plane, while maintaining adequate performance in the other criteria, and agreeing reasonably well
with the simulated results.
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5. Conclusions

A 1 × 8 phased array antenna for 5G applications operating at 28 GHz with enhanced HPBW
is proposed in this paper. The proposed design is proven to have sufficient impedance matching,
sufficient peak gain, a low sidelobe level, suitable scan coverage, and very wide HPBW in the elevation
plane. The HPBW improvement over 20 degree is achieved by introducing air-hole slots, as compared
to that without air-hole slots. Such enhancement of the HPBW in the elevation plane can be explained
by the qualitative causality of two Maxwell’s equations. Relatively good agreement between simulated
and measured results can be explained by the simple structure of the proposed antenna since it has
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less factors for possible errors. Because of the very wide HPBW in the elevation plane along with
reasonably good other radiation performances, the proposed array antenna can be a good candidate for
the mm-wave 5G mobile handset applications. Future work will involve introduction of actual mobile
handset model including metal chassis, circuit elements, and LCD panel. Since the performance of the
antenna will be strongly affected by such inclusion, certain counter measures for minimizing the effect
needs to be assessed. In addition, the effect of materials (dielectric or ferrite) that might be used to fill
the air hole in actual situation, may also be taken into account.
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