
applied  
sciences

Article

A Typical Distributed Generation Scenario Reduction
Method Based on an Improved Clustering Algorithm

Sitong Lv 1, Jianguo Li 1,*, Yongxin Guo 2 and Zhong Shi 1

1 College of Electrical Engineering, Shanghai Dianji University, Shanghai 20136, China;
sitonglv@163.com (S.L.); shizhongsd@126.com (Z.S.)

2 Training Center of Jilin Province, State grid Corporation of China, Jilin 130062, China; dufufu34@163.com
* Correspondence: lijiang@sdju.edu.cn; Tel.: +86-199-2126-6168

Received: 10 September 2019; Accepted: 7 October 2019; Published: 11 October 2019
����������
�������

Abstract: In recent years, distributed generation (DG) technology has developed rapidly.
Renewable energy, represented by wind energy and solar energy, has been widely studied and
utilized. In order to give full play to the advantages of distributed generation and to meet the
challenges of DG access to the power grid, the multi-scenario analysis method commonly used
in DG optimal allocation method is studied in this paper. In order to solve the problems that
may arise from using large-scale scenes in the planning of DG considering uncertainties by using
multi-scene analysis method, the cluster analysis method suitable for large-scale scene reduction in
scene reduction method is introduced firstly, and then an improved clustering algorithm is proposed.
The validity of the scene reduction method is tested, and the feasibility of the reduction method
is verified. Finally, the method mentioned in this paper is compared with other commonly used
methods through IEEE-33 node system.
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1. Introduction

With the rapid development of the global economy in the 21st century, the demand for energy in
various countries is also increasing. The excessive use of traditional energy sources like petroleum
and coal has caused serious environmental pollution. Under such circumstances, it is necessary to
improve the development and utilization of existing non-renewable energy resources, develop and
utilize new environmentally friendly energy resources, and provide necessary supplementary power
and innovations to the existing energy system. Therefore, distributed generation (DG) has received
extensive attention and support [1–3]. It is of great significance to vigorously develop distributed
energy and give full play to the role of DG in the power grid [4–8].

At this stage, a lot of research work [9–11] has been done on the output of distributed generation
considering uncertainties, including DG location and capacity, demand side response, network
reconfiguration, power and voltage quality, etc. A control algorithm based on improved amplitude
adaptive notch filter (AANF) is proposed for generation management of different energy sources in
autonomous micro-grid. The main objective of the proposed modified AANF (MAANF)-based control
algorithm is to control the flow of active and reactive powers among the different energy sources and
the load, along with the regulation of the point of common coupling (PCC) voltages and mitigation
of the source current harmonics [9]. The voltage-controlled oscillator (VCO) less phase-locked loop
(PLL)-based control of voltage source converter was presented to improve power quality. Using the
proposed control, the reactive power compensation, harmonics reduction and load balancing are
carried out in the system [10]. A new attempt of utilizing the sunflower optimization (SFO) algorithm in
solving the problem of optimal power flow (OPF) in the field of power systems was introduced in order
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to optimize the generating units’ fuel cost under the system constraints. The SFO algorithm is used to
minimize the fitness function and yields the best solutions of the problem [11]. A decision-making
algorithm that has been developed for the optimum size and placement of DG units in distribution
networks. The algorithm that is very flexible to changes and modifications can define the optimal
location for a DG unit (of any type) and can estimate the optimum DG size to be installed, based on
the improvement of voltage profiles and the reduction of the network’s total real and reactive power
losses [12]. An economic study is carried out to analyze the economic feasibility for the integration of
flywheel energy storage systems (FESS) with a wind power plant. It was concluded that the installation
of the FESS is only feasible with the government subsidy in renewable energy projects, if considering
that installation costs would not be reduced more than 10% of the estimated value [13]. The impact of
three different types of distributed generation (diesel generator, wind turbine and photovoltaic (PV))
on distribution networks’ voltage profile and power losses is studied. The obtained results show that
different types of DG influence differently the distribution network and that their precise location and
size are vital in reducing power losses and improving the voltage stability [14].

Wind power output and photovoltaic output have seasonal and diurnal periodicity [15,16].
Based on the daily and annual characteristics of wind and solar energy resources, a large number of
scenarios need to be calculated and analyzed in order to comprehensively evaluate the feasibility and
rationality of the planning and operation scheme. In power systems with large-scale distributed energy,
if we can extract representative typical scenarios from a large number of historical resources data of
distributed energy, then we can use typical scenario sets to reflect the changing characteristics
of distributed energy in the cycle. This method is of great significance to the evaluation of
distributed energy acceptance capacity, power planning, energy storage planning, operation planning
and scheduling.

The existing scenario analysis methods can be divided into three categories: (1) scenario subtraction
for day-ahead scheduling, which generates a large number of prediction scenarios based on scenario
generation technology, and then reduces the large-scale prediction scenarios by scenario subtraction
technology, and merges a large number of scenarios into a few typical scenarios [17]; (2) mid-and
long-term power planning for the purpose. In the typical Japanese method, the method often chooses
a day or a specific day which is close to the average value of the cycle as a typical day based on user
experience and the research purposes [18]. (3) Time series simulation method for medium and long
term power planning [19]. This method can characterize the time series variation characteristics of
load/wind power output in the cycle, and provide realistic simulation scenarios and rich results for the
whole network optimization of unit start-up and shutdown. Although time series simulation method
has engineering application value, it generally needs to simulate the whole year time series, which has
the problem of low computational efficiency.

Scenario analysis has been widely used in the optimal configuration of DG at this stage. In the
process of scenario analysis, all historical data are used for multi-scenario analysis. Although the result
of analysis is comprehensive, it will lead to a sharp increase in computational complexity and difficulty
in solving problems. Therefore, it is necessary to reduce large-scale scenarios. In this paper, a scene
reduction method based on improved clustering algorithm is proposed to reduce large-scale scenes
in order to take into account both the efficiency and accuracy of computation and to form a scene
reduction set that can reflect the data characteristics of the original scene set.

In view of the above analysis, this paper mainly studies the following work aspects:

(1) The uncertainties of wind power and photovoltaic distributed energy are modeled.
The characteristics of annual scenarios, seasonal scenarios, continuous multi-day scenarios
and typical day scenarios are analyzed. The uncertainties and time series characteristics of the
two types of distributed energy are analyzed.

(2) In order to fully reflect the timing characteristics of two types of intermittent DGs and to avoid the
difficulties caused by large-scale data in multi-scenario analysis. In this paper, a typical scenario
set generation method based on improved clustering algorithm is proposed to reduce the wind
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power and photovoltaic data in the computing cycle and form a typical scenario set that can
reflect the historical data characteristics in the computing cycle.

(3) The proposed scenario reduction method based on improved clustering algorithm is validated by
using the wind power output scenarios obtained from uncertain modeling.

2. Characteristics of Typical Intermittent Distributed Generation

2.1. Uncertainty Model of Wind Power Generation and Photovoltaic Power Generation

Wind energy resources are among the most abundant and mature intermittent distributed power
sources. Wind power is affected by many factors, which can be roughly divided into atmospheric
characteristics, terrain characteristics, wind power, behavior index, other indexes and geographical
conditions. Wind power has more influence and is greatly influenced by the change of natural
environment, which leads to the obvious uncertainty of wind power output.

In this paper, Weibull distribution with two parameters, which has the best application effect in
engineering practice, is adopted. Its probability density function [20,21] is:

f (v) =
k
c

(v
c

)k−1
exp[−

(v
c

)k
] (1)

where k is the shape parameters, c is the scale parameters, and v is the wind speed. The wind speed
data used in this paper are from China National Meteorological Data Center.

Scale parameter c and shape parameter k can be determined by Equation (2):

k =
(
σw

Ew

)−1.086
, c =

v
Γ(1 + k−1)

(2)

where σw is the variance of v; v is the average value of v; Ew is the generation capacity; Γ is the gamma
function. The turbine used here is a W2000-116-90 unit produced by the Shanghai Electric Group
(Shanghai, China).

When the cut-in wind speed is reached, the turbine starts to produce its power. As the wind speed
increases, the turbine output will also increase. When the wind speed is too high, in order to protect
the turbine, the turbine equipment will be automatically removed. Therefore, the output power of the
turbine can generally be expressed by a piecewise function, as shown in Equation (3):

PWTG(v) =


0, 0 ≤ v ≤ vci

Pr(v−vci)
vr−vci

, vci < v ≤ vcr

Pr, vcr < v ≤ vco

0, v > vco

(3)

where PWTG(v) is the turbine output, vci is the cut-in wind speed, vcr is the rated wind speed, vco is the
cut-out wind speed, and Pr is the rated active power. The cut-in wind speed is 3 m/s, the cut-out wind
speed is 25 m/s and the rated wind speed is 6.7 m/s.

Solar energy is the most abundant of all renewable energy sources. Photovoltaic power generation
has remarkable flexibility, and its installation is simple and flexible. It is an important form and component
of distributed power generation. At the same time, with the continuous development of photovoltaic
power generation and the increase of investment, the cost of photovoltaic power generation has decreased
significantly in recent years. The continuous increase of grid-connected photovoltaic power generation
has also brought many impacts on the current grid scheduling and control, and this impact will continue
to increase with the increase of grid-connected photovoltaic power generation. Similar to wind power,
photovoltaic power generation has obvious randomness and uncertainty.

In this paper, Beta distribution in probability model is used to describe the uncertainty of
illumination intensity. Its probability density function [22,23] is shown in Equation (4):
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f (S) =
Γ(α+ β)

Γ(α)Γ(β)

( S
Smax

)α−1
(1−

S
Smax

)
β−1

(4)

where S is the illumination intensity; Smax is the maximum illumination intensity; α and β is the two
parameters corresponding to Beta distribution. The illumination intensity data in this paper are from
China National Meteorological Data Center.

α and β can be calculated by the expected µ and variance σ2 of illumination intensity over a certain
period of time, as shown in Equations (5) and (6):

α = µ[
µ(1− µ)
σ2 − 1] (5)

β = (1− µ)[
µ(1− µ)
σ2 − 1] (6)

The output power of photovoltaic power generation equipment will gradually increase with the
increase of illumination intensity until it reaches the rated power. The relationship between output
power and illumination intensity can be expressed by Equation (7):

PPVG =

{
PPVG,rS/Sr , S ≤ Sr

PPVG,r , S > Sr
(7)

2.2. Characteristic Analysis of Typical Intermittent Distributed Generation Scene

Wind power output is affected by wind speed uncertainties, while photovoltaic output is mainly
affected by illumination intensity uncertainties. Therefore, both wind power output and photovoltaic
output have obvious volatility and randomness. This section will analyze the scene characteristics of
two kinds of DGs and study their inherent characteristics.

2.2.1. Characteristic Analysis of Wind power Output Scene

According to the uncertain modeling results of wind speed, the corresponding wind power output
curve can be obtained. Figure 1 is the annual wind power output variation curve of a certain area.
In order to observe its variation more intuitively, the fitting curve is made. Figure 2 is the average
wind power output variation curve in different seasons, Figure 3 is the continuous multi-day wind
power output variation curve drawn randomly, and Figure 4 is the typical wind power output curve.
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Figure 4. Typical wind power output curve.

The characteristics of the above wind power output curves are analyzed and summarized as follows:

(1) Random. As shown in Figure 1, the fitting curve of the annual wind power output curve can
be clearly observed. For the hourly statistics of wind power output, the output at each moment
shows obvious uncertainty.

(2) Intermittence. The wind speed has obvious intermittence, and is affected by the cutting-in speed
and cutting-out speed of wind turbines, so there are some points in the curve where the output of
wind turbines is zero. The point where the output of these turbines is zero may be due either to
the failure to reach the cut-in wind speed or to the fact that the turbine has been removed because
the cut-out wind speed has been reached, thus the output of wind power is not continuous.

(3) Seasonal variation characteristics. As shown in Figure 2, wind power output has a certain seasonal
variation characteristic. Wind power output is relatively large in autumn and relatively small
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in summer, and the difference is relatively obvious. At the same time, the output curve of each
season is quite different from the typical solar output curve, and the typical solar output curve
cannot reflect well the characteristics of the output variation in each season.

(4) Time series characteristics and similarity. It can be seen from the continuous multi-day variation
curve and typical sunrise curve that the wind power output has obvious time series characteristics
and similarity. The output of wind power is large at night and small at daytime, which has good
peak regulation characteristics. The sunrise curve in continuous time has certain similarity, which
means that it can reduce the scene effectively.

From the above analysis, it can be seen that the wind power output has obvious time series
characteristics, and the wind power output has obvious differences with different seasons and different
periods of the day. The typical daily method cannot adequately express all the information contained
in the annual output curve of wind power. At the same time, its contribution has some similarities,
which means that it can reduce the necessary scene.

2.2.2. Characteristic Analysis of Photovoltaic Output Scene

According to the uncertain modeling results of illumination intensity in the previous section,
the corresponding photovoltaic output curve can be obtained. Illumination intensity data can be
obtained from the Data Sharing Center of the National Meteorological Administration of China.
Figure 5 is the annual photovoltaic output variation curve and its fitting curve of a region. Figure 6 is
the photovoltaic output curve of different seasons. Figure 7 is the continuous multi-day photovoltaic
output variation curve. Figure 8 is the typical solar output variation curve.
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Figure 8. Typical photovoltaic output curve.

The characteristics of the above photovoltaic output curves are analyzed and summarized as follows:

(1) Periodicity. From the solar photovoltaic output curve, it can be clearly observed that the
photovoltaic output has obvious periodicity, increasing from the morning until about noon to
reach the maximum photovoltaic output, and declining in the afternoon. This periodicity is
evident in all curves.

(2) Seasonal variation characteristics. Photovoltaic output is mainly affected by light intensity.
Generally speaking, the photovoltaic output is higher in summer than in winter because of the
highest illumination intensity.

(3) Time series characteristics and similarity. From the continuous multi-day curve and typical daily
curve, it can be seen that the photovoltaic output changes obviously with time. On sunny days,
the continuous multi-day curves sampled randomly have obvious similarities. This also means
that the effort scenario can be reduced.

From the above analysis, it can be seen that the photovoltaic output has obvious time-series
characteristics, and the photovoltaic output has obvious differences with different seasons and intra-day
periods. A typical daily method cannot adequately express all the information contained in the annual
output curve of photovoltaic. At the same time, its contribution also has certain similarity, which
means that it can reduce the scene.

3. Scene Reduction Method Based on Improved Clustering Algorithm

Cluster analysis is a common method for scene analysis in the DG planning process.
Cluster analysis groups the same or similar scenarios in DG and load output scenarios, and obtains
the classes of similar elements. Clustering algorithms have been widely used in data analysis.
For different sets, different classes are needed, so the clustering algorithms have been improved from
the corresponding aspects in the specific application at this stage. In this section, we will introduce the
common clustering algorithms. In view of the shortcomings of clustering algorithms and the set of
scenarios used in this paper, we propose a kind of improved clustering algorithm.
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3.1. Improved Clustering Algorithm

According to the scenario characteristics of two kinds of DGs [24], it can be seen that the number
of scenario sets in the whole year is large and has certain similarities. Through the introduction of
related scene reduction methods, this paper chooses a clustering algorithm to reduce the annual scene
set. Intra-class similarity and inter-class difference are the criteria for evaluating clustering algorithm.
In order to test the clustering results effectively, this paper chooses BWP index to test the clustering
results to judge the reliability of clustering scenarios. This index can also give the optimal number of
clustering that traditional clustering algorithm cannot provide.

Let k = {X, R} be the clustering space, X = {x1.x2, . . . , xn}, Assuming that n objects are eventually
clustered into class c, the minimum distance b( j, i) of the sample i in class j is the minimum average distance
from the sample to all other types of samples. The concrete expression is shown in Equation (8):

b( j, q) = min1≤k≤c,k, j(
1
nk

nk∑
p=1

‖x(k)p − x( j)
i ‖

2) (8)

where x( j)
i is the sample i in class j; x(k)p is the sample p in class K; nk is the number of samples in class k;

and ‖ ‖2 is the square Euclidean distance.
The intra-class distance w (j, i) of the sample i in class j is the average distance from the sample to

all other samples in class j. The concrete expression is shown in Equation (9):

w(i, j) =
1

n j − 1

n j∑
q=1,q,i

‖x( j)
q − x( j)

i ‖
2 (9)

where x( j)
q is the sample q in class j, and q , i, n j is the number of samples in class j.

baw( j, i) is the sum of the minimum class-to-class distance and the intra-class distance of the sample:

baw( j, i) = b( j, i) + w( j, i) (10)

bsw( j, i) is the difference between the minimum class-to-class distance and the intra-class distance
of the sample:

bsw( j, i) = b( j, i) −w( j, i) (11)

The index BWP( j, i) of the sample i in class j is the ratio of the clustering distance to the clustering
distance of the sample:

BWP( j, i) =
bsw( j, i)
baw( j, i)

=
b( j, i) −w( j, i)
b( j, i) + w( j, i)

(12)

According to the definition of the BWP index, the bigger the value of BWP index is, the better
the clustering result is. The average value of BWP index can reflect the quality of clustering results.
When the average value of BWP index is the largest, k is the optimal clustering number. avgBWP(k) is
used to represent the average value of BWP indices of all samples when data set D is clustered into k
class, and kopt is used to represent the optimal clustering number:

avgBWP(k) =
1
n

k∑
j=1

ni∑
i=1

BWP( j, i) (13)

kopt = argmax2≤k≤n
{
avgBWP(k) } (14)

BWP index is used to improve the maximum and minimum distance k-means algorithm, and the best
clustering result is determined according to the BWP value. The improved algorithm steps are as follows:
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(1) Choosing a center according to the maximum and minimum distance criterion described above
(2) Clustering according to k-means clustering method based on maximum and minimum distance
(3) Calculate the BWP value of the clustering result and turn to step 2
(4) Comparing the BWP value of clustering results, the k value of clustering results is the best

clustering number when the BWP value is maximum
(5) Clustering results corresponding to the maximum output BWP value

In the process of clustering research and application, there are usually two problems to be solved.
One is how to divide a given data set so as to optimize the result. The other is how to divide the data
set into the most suitable categories. Among them, the first problem is solved by a clustering algorithm,
and the second problem is clustering validation. Although in some applications, the number of clusters
can be estimated by a user’s experience and domain knowledge, in general, the number of clusters
cannot be known in advance, so it is difficult to determine the optimal number of clusters [25].

According to the different components of clustering validity index, it can also be divided into
clustering validity index considering only the geometric structure information of data sets, clustering
validity index considering only membership degree, and clustering validity index considering both
geometric structure information and membership degree of data sets. Among them, data set geometric
structure information refers to information extracted from data partition features, such as compactness,
separation, connectivity and overlap. Clustering validity index considering only geometric structure
information of data sets can be used not only for hard clustering, but also for validity evaluation of
fuzzy clustering. Clustering validity index considering only membership degree or considering both
geometric structure information and membership degree of data sets can only be used for validity
evaluation of fuzzy clustering [26].

Common indicators for k-means clustering algorithm include DB index, I index, CH index,
Xie-Beni index, Dunn index, Sil index and so on. The above indicators are tested by artificial simulated
data sets and UCI real data sets, respectively [27].

According to the experimental results, the Xie-Beni index, DB index, Dunn index and Sil index
give good results only when evaluating the best clustering number of clustering structure features
which are far apart and completely separated, but not for other clustering features. Because of the
complexity of clustering structure of real data sets, only CH index and I index have significant effect.
Xie-Beni index, DB index, Dunn index and Sil index are only good for data sets with 2 clustering
numbers because of their own limitations. Therefore, CH index and I index are two good choices when
evaluating the optimal clustering number of k-means algorithm.

It should be pointed out that when the scene reduction method based on improved clustering
algorithm is used to reduce the specific scene, the reduced scene with larger BWP value can be selected
according to the actual scene reduction requirement rather than the maximum value. Choosing the
reduced set corresponding to the high k value can make use of the time series characteristic of retaining
the original scene set to a greater extent.

3.2. Validity Test

3.2.1. Scene Reduction Process Based on Improved Clustering Algorithm

Scene reduction is the process of classifying and merging objects to be clustered. According to
the results of past research and the analysis of scenario characteristics in Section 2, the wind farm
scenario set is divided into four scenarios corresponding to spring, summer, autumn and winter.
The photovoltaic scenic set is divided into 12 scenarios in spring, summer, autumn, winter and three
weather types: cloudy, sunny and rainy. When scene reduction of DG is carried out, scene reduction
is carried out with day as the basic unit of clustering. Assuming that the total number of individual
scenarios n(1, 2, . . . , N) is N. A single scenario has T-period scenario data. The data contained in all
scenarios can be represented by matrix N ∗ T. By improving the clustering algorithm to merge the
same kind of scene into K scenes, the reduced scene data can be represented by K ∗ T. Typical scenes
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obtained after reduction have the same temporal characteristics as the original scenes, so as to ensure
the temporal characteristics of the scenes before reduction. Scenario reduction of two types of DGs and
loads is carried out by using the above method. This paper takes the wind power generation scenario
as an example to test the effectiveness of the improved clustering algorithm proposed.

The scene reduction process based on improved clustering algorithm is shown in Figure 9.
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3.2.2. Validity Test of Wind Power Output

In this paper, wind power generation scenarios are taken as an example to verify the effectiveness
of the reduced scenarios. According to the four seasons of spring, summer, autumn and winter,
all scenes are divided. The improved clustering algorithm proposed in this paper is used to reduce the
partitioned scenes, and the BWP value of clustering results is calculated to select the optimal result.
Figure 10 shows the change curve of BWP value with k value after clustering.

According to the change curve of BWP value, the BWP value is the largest in spring, autumn and
winter scenarios when k = 2, and in summer, when k = 3, the BWP value is the largest. But in order to
reflect the temporal characteristics of the original scene to the greatest extent, this paper chooses the
case where the k value is relatively large and the number of scenes is relatively large. Taking spring
as an example, when k = 2 and k = 5, the k value is larger. Choosing k = 5 here, the scenarios to be
reduced are divided into five categories. The output curves of these five scenarios are given below,
as shown in Figure 11.
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According to the law of large numbers, the corresponding probability of each scene at k = 5 is
shown in Table 1.

Table 1. The probability of typical temperatures throughout one year.

Season
Scene Reduction

1 2 3 4 5

Spring 0.57 0.21 0.07 0.12 0.03

In order to reflect the relationship between the reduced scene and the original scene more
clearly, scene No. 5 is selected, and two scenes are randomly selected from the reduced scene set for
comparative analysis, as shown in Figure 12.
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According to the reduced output, nearly half of the wind power output in Figure 11 is as shown in
Scenario 1. In the other scenarios, the wind power output shows obvious peak reversal characteristics.
In the second section of this paper, the intra-day variation characteristics of wind power output obtained
from scenario characteristics analysis are better reflected in different reduced scenarios. Through the
verification of BWP value, and from Figure 12, we can see that the reduced scene obtained by the
improved clustering algorithm in this paper has better coincidence with the original scene and can
better reflect the temporal characteristics of the original scene.

3.2.3. Scene Reduction for Two Kinds of Intermittent DG

The scene reduction method based on improved clustering algorithm is used to reduce the output
curves of two kinds of DGs, and the validity test is carried out. The results of scene reduction are given
directly here:

δi(t) = Pwav(t)/PT (15)

After reducing and normalizing the wind generator scenes divided by seasons, the typical daily
scenes are shown in Figure 13.
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After reducing and normalizing the photovoltaic power generation scenarios divided by season
and weather, the typical daily scenarios are shown in Figures 14–17, respectively.
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4. Examples and Analysis

In the existing DG planning model, the influence of active management mode on the distribution
network planning is generally considered. However, the ADN active control is generally not considered
in the model to maintain the safe and stable operation of islands under the failure state. This paper
establishes an upper-level programming model aiming at minimizing the annual comprehensive cost.
In the upper-level planning, ADN operation strategy in fault scenario is considered, and the comprehensive
safety index is introduced and converted into upper-level constraints. To minimize the amount of active
power cut-off, this paper adopts the following three kinds of active management measures [24]:

(1) Distributed generator output control
(2) Switching of reactive power compensation
(3) Adjustment of on load transformer

4.1. Upper Level Programming Model and Lower Level Programming Model

The upper-level programming model considers DG layout and installation capacity planning.
The objective function is to minimize the annual life cycle investment cost:

minC1 = CI + COM + CP + CAM + CL (16)
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The specific expressions of each cost are as follows:

(1) DG Equivalent Investment Annual Cost

CI = (

Nbus∑
i=1

CWTG,iSWTG,i +

Nbus∑
i=1

CPVG,iSPVG,i)
r(1 + r)y

(1 + r)y
− 1

(17)

where Nbus is the number of nodes in the distribution network, r is the discount rate, y is the life span
of DG for 20 years, CWTG,i and CPVG,i are fixed investment costs of unit capacity of wind power and
PV installed at the i node respectively, SWTG,i and SPVG,i are the rated capacity of wind power and PV
installed at the i node respectively.

(2) DG annual operation and maintenance costs

COM =
12∑

n=1

pn × 365(
24∑

t=1

(

Nbus∑
i=1

CWTG,iEWTG,in(t) +
Nbus∑
i=1

CPVG,iEPVG,in(t))) (18)

where Pn is the scenario probability of the n scenario, CWTG,i and CPVG,i are the operation and
maintenance costs of the wind power and the photovoltaic unit electricity received by the i node,
EWTG,in(t) and EPVG,in(t) are the wind power received by the i node and the photovoltaic unit electricity
generated during the t period of the n typical day, respectively.

(3) Annual Electricity Purchase Cost

CP =
12∑

n=1

Pn × 365(
24∑

t=1

EntPt) (19)

where Ent is the t time of n typical days to buy electricity from a higher power grid. Pt is the unit cost
of operators purchasing electricity from a higher power grid.

(4) DG annual active management cost

CAM =
12∑

n=1

pn × 365(
24∑

t=1

(

Nbus∑
i=1

CAWTG,iEWTG,in(t) +
Nbus∑
i=1

CAPVG,iEPVG,in(t))) (20)

where CAWTG,i and CAPVG,i are the active management costs of the wind power and the photovoltaic at
the i node respectively.

(5) Network Loss Cost

CL =
12∑

n=1

Pn × 365(
24∑

t=1

QntLPntL) (21)

where QntL is the net loss of the n typical day t period, PntL is the unit network loss cost.
The constraints are:

(1) DG Installation Capacity Limitation

0 ≤ RWTGi ≤ RWTGmax
0 ≤ RPVGi ≤ RPVGmax

(22)

where RWTGi and RPVGi are the wind capacity and PV capacity node i respectively. RWTGmax and
RPVGmax correspond to the maximum access capacity of DG, respectively.
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(2) Capacity Limitation of DG Total Installation

NWTG∑
i=1

RWTGi +

NPVG∑
i=1

RPVGi ≤ RDGmax (23)

where RDGmax is the maximum installed capacity. The determination of maximum access capacity
needs to consider different adjustment strategies.

(3) Constraints of Comprehensive Safety Indicators

Ccsi =
1
2
(

1
NTS

N∑
n=1

T∑
t=1

S∑
s=1

Cn,t,s + min{Cn,t,s}) (24)

where Cn,t,s is the index of safe power supply rate of branch s of the n scenario at t period.

Cn,t,s = 1−

∑tT
t=1

∑
y∈ϕnt f

γySn,t,y∆Tn,t,y∑tT
t=1

∑
i∈ϕntl

γySn,t,y∆Tn,t
(25)

where tT is the period of system failure elimination. ϕnt f is the n scenario of t period outage load set.
γy is the grade factor of Class y load. Sn,t,y is the Capacity of Class y Load. ∆Dn,t,y is the outage time of
y-load in the nth scenario at t period. ϕntl is t period load set for the n scenario.

The lower level planning model mainly considers the operation constraints related to the operation
of distribution network. At this stage, DG access to power grid costs higher. In order to maximize the
utilization of DG, the lower level objective is to minimize the amount of active power cut-off of DG,
and its expression is as follows:

minC2 =
12∑

n=1

Pn × 365(
24∑

t=1

Pcnt) (26)

The constraints are:

(1) Node Power Balance Constraints

Pci,i,t,n + Pco,i,t,n − PWTG,i,t,n − PPVG,i,t,n =

Ui,t,n

Nbus∑
j=1

U j,t,n(Gi jcosθt,n,i j + Bi jsinθt,n,i j)
(27)

Qci,i,t,n + Qco,i,t,n −QWTG,i,t,n −QPVG,i,t,n −Qc,i,t,n =

Ui,t,n

Nbus∑
j=1

U j,t,n(Gi jsinθt,n,i j − Bi jcosθt,n,i j)
(28)

where PWTG,i,t,n and PPVG,i,t,n are the active output of the t time of the n scenario, respectively. Pci,i,t,n
and Pco,i,t,n are the active power of residential and commercial loads at the first time of t in the first n
scenario, respectively.QWTG,i,t,n and QPVG,i,t,n are the reactive power of DG at the t time of the n scenario,
respectively.Qci,i,t,n and Qco,i,t,n are the reactive power of resident load reactive power and commercial
load at the t time of the n scenario, respectively, supplied by the reactive power compensation device.
Ui,t,n and U j,t,n are the voltage amplitude of node i and the voltage amplitude of node j at the t time
node of the n scenario, respectively. θt,n,i j is the phase difference between node i and node j of t in the n
scenario, respectively.

(2) Node Power Balance Constraints

Uimin ≤ Ui ≤ Uimax (29)
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where Ui is node voltage. Uimin and Uimax are the minimum voltage values and maximum voltage
values allowed by node I, respectively.

(3) Branch power constraints
Si ≤ Simax (30)

where Si is the apparent power of branch L. Simax is the limit of branch transmission capacity.

(4) DG output control constraints

Pimin ≤ Pi ≤ Pimax (31)

where Pimin and Pimax are the minimum active power output of node i and the maximum active power
output of distributed generation respectively.

(5) Constraints of reactive power compensation

Qimin ≤ Qi ≤ Qimax (32)

where Qimin and Qimax are the minimum value of reactive power compensation device of node I and
the maximum value of the reactive power compensation device.

(6) Regulation constraints of on-load tap-changer

Timin ≤ Ti ≤ Timax (33)

where Ti is the tap position of transformer i. Timin and Timax are the tap values of transformer i and the
maximum tap value of i, respectively.

4.2. Bi-Level Programming Model Solving Algorithms

The solution of mixed non-integer programming problem is a common problem in the process
of optimal allocation of distributed power supply, and its essence is a NP-hard problem. At present,
heuristic algorithm and deterministic algorithm are the main solving methods. Particle swarm
optimization (PSO), genetic algorithm (GA) and related improved algorithms are widely used in DG
programming. In this paper, a cuckoo search algorithm is used to solve the upper model, and the lower
model is solved by the original dual interior point method.

4.2.1. Cuckoo Search Algorithms

The cuckoo search algorithm was first proposed in 2009 by Yang and Deb. The CS algorithm can
efficiently search the optimal solution of the problem by simulating the parasitic brooding of some
species of cuckoo. At the same time, CS also uses the relevant Levy flight search mechanism.

In the process of cuckoo reproduction, the nest location of cuckoo’s offspring is uncertain. In the
process of simulating its search for bird’s nest, three principles need to be recognized:

(1) Cuckoos lay only one egg at a time of reproduction, and then they choose their nests arbitrarily
for hatching and rearing.

(2) The most suitable nest will be extended to the next generation of reproduction in a randomly
selected set of options.

(3) The total number of nests available N is a fixed value, and the probability that the original owner
of the nest has Pa ∈ [0, 1] can identify a non-self-laid bird’s egg.

Based on these three principles, the path and location of cuckoo nest selection are determined by
Equation (34):

xe+1
i = xe

i + α ∗ L(λ), i = 1, 2, . . . , n (34)
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where, xe
i is the position of the i nest in the selection of the e generation; ∗ is point-to-point multiplication;

α is the step size control in the process of choosing nests for cuckoos, which obeys the normal distribution;
L(λ) is the path through which Levy searches bird’s nest arbitrarily, and L(d,λ) ∼ s−λ(1 < λ ≤ 3), d is
the random step obtained by Levy’s flight.

4.2.2. Bi-Level Programming Model Solving Process

The detailed flow chart of solving multi-objective bi-level programming model by CS algorithm
and PDIPM method is shown in Figure 18. Among them, G is the number of iterations.
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4.3. Introduction of Examples

The proposal is verified on using the IEEE33 node system which is shown in Figure 19 (Figure 19).
The system voltage is 12.66 kV, total active load is 3.715 MW, total reactive load is 2.300 MW, Weibull
distribution parameter k = 2.30, C = 8.92, wind power access cost 6500 yuan/kW, operation and
maintenance cost 0.3 yuan/kW·h, environmental protection subsidy 0.1 yuan/kW·h, rated lighting
intensity of photovoltaic generator is 1 kW/m2, shape parameter B of beta distribution is 0.85,
photovoltaic access The cost is 10,000 yuan/kW, the operation and maintenance cost is 0.2 yuan/kW·h,
the rated capacity of a single distributed power supply is 125 kW, the equipment life is 20 years, and the
discount rate is 0.1. The repair time of N-1 fault is 4 h, and the comprehensive safety index value is set
to 0.5. Wind power installation nodes are 5, 7, 11, 12. The photovoltaic installation nodes are 20 and 23.
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On the premise of considering both comprehensive security indicators and active management
mode, the economic and technical comparison of DG optimal allocation under the annual time series
scenarios, typical day scenarios and reduced scenarios is made. Full-time scenarios are selected as
benchmarks to test the planning schemes under the other two scenarios. The annual average of each
period is selected as the data of typical day scenes. A summary of the three plans is shown in Table 2.

Table 2. Comparison of three kinds of scene set planning schemes.

Pattern DG Installation
Node

Installation
Capacity/kW

Annual Life Cycle
Investment Cost/¥

Active Power
Excision MW · h

Computing
Time/s

Annual
Sequence

Scene

WG

5 125

5,123,600 48.26 1803

7 125
11 375
12 250

PV
20 125
23 250

Typical Day
Scene

WG

5 125

6,145,600 31.48 8

7 125
11 250
12 125

PV
20 125
23 125

Scene
Reduction

WG

5 125

4,547,400 45.77 60
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11 250
12 250

PV
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23 250
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5. Discussion

From the comparison results of three scenario planning schemes, it can be concluded that:
Most directly, when using reduced scene set for DG planning, the computational time is reduced

from about 1803 s to only about 60 s, and the computational efficiency has been significantly improved.
Although the time spent in DG planning using reduced scene sets is slightly longer than that using
typical day scenes, the calculation accuracy is higher. In this paper, DG with fixed capacity is used to
access the corresponding nodes. Under this assumption, the DG access capacity in reduced scenarios
is the same as that in annual sequential scenarios, and the typical daily scenario with average value
is smaller than the other two scenarios. Compared with the typical Japanese method, the annual
comprehensive cost and the amount of effective removal of reduced scenes are closer to the annual
time series scenes. In DG planning process, the access capacity and location of the reduced scene are
close to that of the year-round sequential scene. In summary, the scene reduction method based on
improved clustering algorithm proposed in this paper has better retention effect for the original scene
time series data, and the economic and technical indicators can basically accurately reflect the sequence
status of the scene before reduction.

6. Conclusions

The main purpose of this paper is to propose a scene reduction method based on improved
clustering algorithm. The main problem solved in this paper is how to use the multi-scenario analysis
method to analyze the output characteristics of distributed power supply, taking into account the
calculation efficiency and accuracy. In this paper, the validity of the related algorithms is verified,
and the scene reduction method is compared with the common methods by using ieee-33 node system.
The details are as follows:

(1) Uncertainty modeling of two kinds of distributed generators is carried out. The scene output
characteristics of DG are analyzed. The analysis shows that both DGs have obvious uncertainties
and time series characteristics, therefore, the typical scenes composed of the average method or
the maximum sunrise of peak-valley difference cannot effectively reflect the characteristics of
DG. At the same time, the output of distributed generation has some inherent similarities, which
means that it can be effectively reduced.

(2) To overcome the shortcomings of large-scale scene clustering algorithms, a scene reduction
method based on an improved clustering algorithm is proposed, and its validity is tested. The test
results show that the improved clustering algorithm can effectively retain the characteristics of
the original output scenario.

(3) Through a specific example, the scene reduction method is verified by using IEEE33 node system.
The three scenario sets show that the proposed scenario reduction method is feasible. The scenario
constructed by this method has good preservation effect on the original scenario, and can take
into account both the computational efficiency and the computational accuracy in the process of
distributed generation optimal configuration.
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