
applied  
sciences

Article

Model Updating Using Measurements from Sensors
Installed in Arbitrary Positions and Directions

Keunhee Cho , Young-Hwan Park and Jeong-Rae Cho *

Structural Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology, 283,
Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si 10223, Gyeonggi-Do, Korea; kcho@kict.re.kr (K.C.);
yhpark@kict.re.kr (Y.-H.P.)
* Correspondence: chojr@kict.re.kr; Tel.: +82-31-910-0663

Received: 3 September 2019; Accepted: 9 October 2019; Published: 14 October 2019
����������
�������

Abstract: The present study proposes a method for model updating using measurements from
sensors installed in arbitrary positions and directions. Modal identification provides mode shapes
for physical quantities (acceleration strain, etc.) measured in specific directions at the location of
the sensors. Besides, model updating involves the use of the mode shapes related to the nodal
degrees-of-freedom of the finite element analytic model. Consequently, the mode shapes obtained
by modal identification and the mode shapes of the model updating process do not coincide even
for the same mode. Therefore, a method for constructing transform matrices that distinguish the
cases where measurement is done by acceleration, velocity, and displacement sensors and the case
where measurement is done by strain sensors was proposed to remedy such disagreement among
the mode shapes. The so-constructed transform matrices were then applied when the mode shape
residual was used as the objective function or for mode pairing in the model updating process. The
feasibility of the proposed approach was verified by means of a numerical example in which the strain
or acceleration of a simple beam was measured and a numerical example in which the strain of a
bridge was measured. Using the proposed approach, it was possible to model the structure regardless
of the position of the sensors and to select the location of the sensors independently from the model.

Keywords: model updating; modal identification; measured data; measured mode shape

1. Introduction

In general, the model updating for a structure proceeds by minimizing the difference in the
responses of the structure and of the model. The response of the structure can be physical quantities
measured by sensors or be eigenvalues and mode shapes obtained by modal identification. Except for
the eigenvalues, the measured quantities and the mode shapes are values specific to the location of
the sensors. Considering that the location of the sensors does not generally coincide with the mesh
of the finite element model, it is necessary to perform a proper transform that makes the location
of the sensors match with the finite element model. Figure 1 shows a case where the location of
the acceleration and strain sensors does not coincide with the position of the nodes in the model.
In addition, the type of the measured physical quantities as well as the measurement direction shall
be considered.

Appl. Sci. 2019, 9, 4309; doi:10.3390/app9204309 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7635-8936
http://www.mdpi.com/2076-3417/9/20/4309?type=check_update&version=1
http://dx.doi.org/10.3390/app9204309
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 4309 2 of 16
Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 15 

 
Figure 1. Mismatch of measurement location and finite element mesh. 

The modal identification extracting the dynamic characteristics of the structure from the 
measured data can be done in both the frequency domain and time domain. Frequency domain 
decomposition (FDD) [1] is a modal identification method in the frequency domain. The eigensystem 
realization algorithm (ERA) [2] and subspace identification method [3,4] are modal identification 
methods in the time domain. Such modal identification provides the natural frequencies of the 
structure at hand and the mode shapes for the measured physical quantities in the measurement 
direction at the location of the sensors. 

The parameters of the numerical model can be derived by model updating using the so-obtained 
eigenvalues and mode shapes. The model updating methods can be divided into those relying on a 
deterministic approach [5,6] and those relying on a statistical approach [7–10]. The mode shapes 
obtained by eigen analysis in the model updating process are those related to the nodal degrees-of-
freedom (DOFs) of the analytic model and differ from the measured mode shapes obtained by modal 
identification. Accordingly, it is necessary to provide a solution to remedy such a mismatch. Sanayei 
and Saletnik [11] introduced a transform matrix for the strain measurement to make the measured 
DOFs and model DOFs coincide and used the strain generated by static loading to perform model 
updating. Esfandiari, et al. [12] defined a frequency response function for the strain to perform model 
updating. However, these studies are limited to the case where the measurement direction of the 
strain sensors coincides with the longitudinal direction of the member and cannot be applied for 
sensors installed in arbitrary directions. 

The survey shows that numerous studies were implemented on modal identification or model 
updating but stresses also the scarcity of studies on methods linking these two processes. 
Consequently, the present study intends to propose a systematic approach linking the modal 
identification results to model updating. Section 2 derives a method of achieving model updating 
using the data monitored by acceleration, velocity, displacement, and strain sensors installed in 
arbitrary locations and directions in the structure. Section 3 explains the proposed approach through 
a simple numerical example. In Section 4, the feasibility of the proposed approach is demonstrated 
through numerical examples for a bridge structure involving strain measurement with/without 
installation and measurement errors. 

2. Materials and Methods 

2.1. Measurement–Model Link 

The eigenvector obtained by modal identification corresponds to that at the output measurement 
location. Besides, the eigenvector obtained by the analytic model is the one at the node DOF. In 
general, the output measurement location and the location of the node do not coincide, which means 
that these eigenvectors are at different locations. Moreover, the measurement direction is likely to 
differ from the DOF direction of the node. The type of eigenvector also differs between the 
measurement and the analytic model when the strain is measured. Accordingly, a solution is required 
to remedy the mismatch in the location, direction, and type between the measurement and the 
analysis. To that goal, the relation between the node DOFs of the analytic model and the measured 
values were derived. 
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The modal identification extracting the dynamic characteristics of the structure from the measured
data can be done in both the frequency domain and time domain. Frequency domain decomposition
(FDD) [1] is a modal identification method in the frequency domain. The eigensystem realization
algorithm (ERA) [2] and subspace identification method [3,4] are modal identification methods in the
time domain. Such modal identification provides the natural frequencies of the structure at hand and
the mode shapes for the measured physical quantities in the measurement direction at the location of
the sensors.

The parameters of the numerical model can be derived by model updating using the so-obtained
eigenvalues and mode shapes. The model updating methods can be divided into those relying
on a deterministic approach [5,6] and those relying on a statistical approach [7–10]. The mode
shapes obtained by eigen analysis in the model updating process are those related to the nodal
degrees-of-freedom (DOFs) of the analytic model and differ from the measured mode shapes obtained
by modal identification. Accordingly, it is necessary to provide a solution to remedy such a mismatch.
Sanayei and Saletnik [11] introduced a transform matrix for the strain measurement to make the
measured DOFs and model DOFs coincide and used the strain generated by static loading to perform
model updating. Esfandiari, et al. [12] defined a frequency response function for the strain to perform
model updating. However, these studies are limited to the case where the measurement direction of
the strain sensors coincides with the longitudinal direction of the member and cannot be applied for
sensors installed in arbitrary directions.

The survey shows that numerous studies were implemented on modal identification or model
updating but stresses also the scarcity of studies on methods linking these two processes. Consequently,
the present study intends to propose a systematic approach linking the modal identification results to
model updating. Section 2 derives a method of achieving model updating using the data monitored by
acceleration, velocity, displacement, and strain sensors installed in arbitrary locations and directions
in the structure. Section 3 explains the proposed approach through a simple numerical example.
In Section 4, the feasibility of the proposed approach is demonstrated through numerical examples for
a bridge structure involving strain measurement with/without installation and measurement errors.

2. Materials and Methods

2.1. Measurement–Model Link

The eigenvector obtained by modal identification corresponds to that at the output measurement
location. Besides, the eigenvector obtained by the analytic model is the one at the node DOF. In general,
the output measurement location and the location of the node do not coincide, which means that these
eigenvectors are at different locations. Moreover, the measurement direction is likely to differ from
the DOF direction of the node. The type of eigenvector also differs between the measurement and
the analytic model when the strain is measured. Accordingly, a solution is required to remedy the
mismatch in the location, direction, and type between the measurement and the analysis. To that goal,
the relation between the node DOFs of the analytic model and the measured values were derived.
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The analytic model can be placed in any arbitrary position in the space, and various sensors such
as accelerometers and strain gauges can be installed in each element of the analytic model (Figure 2).
The spatial position in the analytic model is defined in the global coordinate system (GCS), and can be
transformed into the element coordinate system (ECS). The location of the sensors and the measurement

direction can be defined in the GCS or ECS. The measurement direction n =
[

nx ny nz
]T

in the

GCS is related to the measurement direction n′ =
[

n′x n′y n′z
]T

in the ECS as follows.

n′ = Rn (1)

n = RTn′ (2)

where the rotation matrix R is as follows:

R =


cos(x′, x) cos(x′, y) cos(x′, z)
cos(y′, x) cos(y′, y) cos(y′, z)
cos(z′, x) cos(z′, y) cos(z′, z)

 (3)
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2.1.1. The Case Where the Displacement, Velocity, and Acceleration are Measured

The displacement dn measured in the measurement direction n at the sensor location s
(
sx, sy, sz

)
satisfies the following relationship with the displacement d =

[
u v w

]T
in the GCS at the

sensor location.
dn = nTd (4)

where u, v, and w are the displacements in the directions x, y, and z of the GCS, respectively.

The displacement d in the GCS can be expressed in terms of the displacement d′ =
[

u′ v′ w′
]T

in
the ECS.

d = RTd′ (5)

where u′, v′, and w′ are the displacements in the directions x′, y′, and z′ of the ECS.
The displacement d′ in the ECS can be expressed as the product of the nodal displacement d̂′e of

the element and the shape function Ne.

d′ = Ned̂′e (6)

The DOFs and shape functions of an element vary according to the type of element used in the
analytic model. The shape function for the two-dimensional Euler–Bernoulli beam element is arranged
in Appendix A.
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The displacement d̂′eI of the Ith node of the element can be represented as follows by distinguishing
the translational DOFs and the rotational DOFs. Some DOFs may vanish according to the element type.

d̂′eI =
[

û′I v̂′I ŵ′I θ̂′xI θ̂′yI θ̂′zI

]T
(7)

d̂′e =
[
· · · d̂′TeI · · ·

]T
(8)

where û′I, v̂′I, and ŵ′I are the translational DOFs in the x′, y′, and z′ directions of the Ith node;
and θ̂′xI, θ̂

′

yI,
ˆand θ
′

zI are the rotational DOFs with respect to axes x′, y′, and z′ of the Ith node.

The corresponding displacement d̂eI of the Ith node in the GCS can also be expressed similarly.

d̂eI =
[

ûI v̂I ŵI θ̂xI θ̂yI θ̂zI
]T

(9)

d̂e =
[
· · · d̂T

eI · · ·

]T
(10)

where ûI, v̂I, and ŵI are the translational DOFs in the x, y, and z directions of the Ith node; and
θ̂xI, θ̂yI, and θ̂zI are the rotational DOFs with respect to axes x, y, and z of the Ith node. The node
displacement d̂′e in the ECS satisfies the following relationship with the node displacement d̂e in
the GCS.

d̂′e = Td̂e (11)

d̂′eI = TId̂eI =

[
R 0
0 R

]
d̂eI (12)

The displacement dn in the measurement direction at the sensor location can be expressed by the
node displacement in the GCS using Equations (4)–(12).

dn = Ñed̂e (13)

where
Ñe = nTRTNeT = n′TNeT (14)

The so-derived Ñe relates to one sensor. Denoting Ñe for the ith sensor by Ñei, matrix Ñd ∈ Rmd × nd

(where md = the number of displacement sensors, nd = the number of DOFs of the analytic model) can
be obtained for the whole set of displacement sensors by assembling the Ñei as follows.

Ñd =

md∑
i

Ñei (15)

Matrices Ñv ∈ Rmv × nd (mv = the number of velocity sensors) and Ña ∈ Rma × nd (ma = the
number of acceleration sensors) can be obtained using the same method for the velocity and the
acceleration, respectively.

The displacement ds ∈ Rmd , velocity vs ∈ Rmv , and acceleration as ∈ Rma in the measurement
direction and at the sensor location can be expressed in terms of the node displacement d̂ ∈ Rnd , node
velocity v̂ ∈ Rnd , and node acceleration â ∈ Rnd in the GCS. Moreover, the displacement, velocity, and
acceleration can also be expressed in terms of the eigenvector φi ∈ Rnd and the generalized coordinates
qdi, qvi, qai ∈ R for the displacement, velocity, and acceleration of the model, as shown in Equations
(16)–(18). In addition, the mode shapes φdsi ∈ Rmd , φvsi ∈ Rmv , and φasi ∈ Rma for the displacement,
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velocity, and acceleration at the measurement location corresponding to eigenvector φi can be defined
in terms of the transformation matrices Ñd, Ñv, and Ña, as shown in Equations (19)–(21).

ds = Ñdd̂ = Ñd

nd∑
i

φiqdi =

nd∑
i

φdsiqdi (16)

vs = Ñvv̂ = Ñv

nd∑
i

φiqvi =

nd∑
i

φvsiqvi (17)

as = Ñaâ = Ña

nd∑
i

φiqai =

nd∑
i

φasiqai (18)

where
φdsi = Ñdφi (19)

φvsi = Ñvφi (20)

φasi = Ñaφi (21)

2.1.2. The Case Where the Strain is Measured

The method derived in Section 2.1.1 can be applied similarly for the strain. The strain
εn measured at the sensor location s

(
sx, sy, sz

)
can be expressed in terms of the strain ε′ =[

ε′xx ε′yy ε′zz γ′xy γ′yz γ′xz

]T
in the ECS at the sensor location and the direction vector

n′ in the ECS.

εn = n′xn′xε
′
xx + n′yn′yε

′
yy + n′zn′zε

′
zz + n′xn′yγ

′
xy + n′yn′zγ

′
yz + n′xn′zγ

′
xz = (̃n′)Tε′ (22)

where
ñ′ =

[
n′xn′x n′yn′y n′zn′z n′xn′y n′yn′z n′xn′z

]T
(23)

The strain ε′ in the ECS can be rewritten in terms of the element node displacement d̂′e using the
displacement–strain transform matrix Be.

ε′ = Bed̂′e (24)

Matrix Be also varies according to the element type. The displacement–strain transform matrix for
the two-dimensional Euler–Bernoulli beam element is arranged in Appendix A. Following the process
formulated in Equations (7)–(12), the strain εn in the measurement direction and at the sensor location
can be expressed in terms of the node displacement in the GCS.

εn = B̃ed̂e (25)

where
B̃e = (̃n′)TBeT (26)

The so-derived matrix B̃e relates to one strain gauge. Denoting B̃e for the ith sensor by B̃ei,
matrix B̃ ∈ Rmε×nd (mε = the number of strain gauges) can be obtained for the whole set of sensors by
assembling the B̃ei as follows.

B̃ =

mε∑
i

B̃ei (27)

The strain εs ∈ Rmε in the measurement direction at the sensor location can be expressed by
means of the node displacement d̂ ∈ Rnd in the GCS using this process. Moreover, the strain εs can be



Appl. Sci. 2019, 9, 4309 6 of 16

expressed by means of the eigenvector φi defined at the node DOF or the mode shape φεsi ∈ Rmε for
the strain at the measurement location as shown in Equations (28) and (29).

εs = B̃d̂ = B̃
nd∑
i

φiqdi =

nd∑
i

φεsiqdi (28)

where
φεsi = B̃φi (29)

The above process makes it possible to express the measured displacement, velocity, acceleration,
and strain in terms of the node DOFs of the model. Moreover, the mode shapes φdsi, φvsi, φasi, and φεsi
for the measured values corresponding to the eigenvector φi of the node DOFs are also defined. The
transform matrices Ñ and B̃ bridging the measurement and the analysis were derived solely using
geometrical relations and are thus applicable, even in the case of change in the material’s characteristics.
For convenience in the following, φsi denotes the mode shape for the measured value and S̃ denotes
the transform matrix to reduce Equations (19), (21), and (29) into the unique form expressed hereafter.

φsi = S̃φi (30)

2.2. Model Updating

Model updating is the process by which the model parameters are updated using the measured
data to make the numerical model behave as close as possible to the actual structure. The mode shape
vector used during this process is the mode shape vector related to the node DOF. This is in contrast
with the mode shape vector obtained by modal identification in relation to the physical quantities
measured at the location and direction of the sensors. These two mode shape vectors thus have
different forms. Accordingly, a method to make them fit with each other is necessary. Among them,
model updating using the sensitivity method [5] is explained.

The basic formulation of model updating is as follows.

min
∣∣∣zmea − z(θ)

∣∣∣ (31)

where zmea, z(θ) ∈ Rnz (nz = the number of compared variables) are the values obtained, respectively,
by measurement and by analysis; and, θ ∈ Rnθ (nθ = the number of model parameters) is the model
parameter to be updated. This equation can be reformulated as follows for sensitivity analysis.

min
∣∣∣rk
−Gk∆θk

∣∣∣ (32)

with
rk = zmea − z

(
θk

)
(33)

Gk =

[
∂zi
∂θ j

]
θ=θk

(34)

where k is the number of iterations; rk
∈ Rnz is the residual; and, Gk

∈ Rnz × nθ is the sensitivity matrix.
The iteration proceeds by solving Equation (32) for ∆θk to obtain θk + 1 = θk + ∆θk of the next step
until convergence.

The ith eigenvalue λi ∈ R and eigenvector φi ∈ Rnd of the analytic model are obtained from the
stiffness matrix K(θ) and the mass matrix M(θ).

K(θ)φi = λiM(θ)φi (35)
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2.2.1. Eigenvalue Residual

Being a behavioral characteristic of the entire structure, the eigenvalue is practically not affected
by the location nor the type of sensor. However, the analytic mode shall be paired to its corresponding
measured mode by the modal assurance criterion (MAC) [13] in order to compare the eigenvalue for
the same mode. In such mode pairing, the analytic mode shape compared to the measured mode
shape φi,mea should be φsj

(
= S̃φ j

)
, j = 1, · · · , nd, obtained by Equation (30), and not φ j.

Once the analytic mode corresponding to the measured mode is obtained, the residual and
sensitivity matrices can be constructed as follows [14].

rk = λi,mea − λi
(
θk

)
(36)

∂λi
∂θ j

= φT
i

(
−λi

∂M
∂θ j

+
∂K
∂θ j

)
φi (37)

where M, K ∈ Rnd × nd are the mass and stiffness matrices of the analytic model; and, λi and φi are the
ith eigenvalue and eigenvector. Here, the eigenvector shall be normalized for the mass matrix.

2.2.2. Mode Shape Residual

The mode pairing is performed by the method explained in Section 2.2.1 to make the comparison
among corresponding modes. In addition, the measured mode shape φi,mea and the analytic mode
shape φsi

(
= S̃φi

)
that have been paired may differ by a definite ratio and should thus be scaled by an

appropriate method.
Mode scaling can be done for the measurement mode shape as well as for the analysis mode shape.

Here, the measurement mode shape is scaled with respect to the analysis mode shape. The scaled
measurement mode shape φsi,mea can be obtained as follows using the modal scale factor (MSF) [13] of
the analytic mode shape φsi for the measured mode shape φi,mea.

φsi,mea = MSF(φsi,φi,mea)φi,mea (38)

where

MSF(φsi,φi,mea) =
φT

siφ
∗

i,mea

φT
i,meaφ

∗

i,mea

(39)

where superscript * denotes the complex conjugate.
Once the scaled measurement mode shape is obtained, the residual and sensitivity matrices can

be constructed as follows.
rk = φsi,mea −φsi

(
θk

)
(40)

∂φsi

∂θ j
=
∂
(
S̃φi

)
∂θ j

= S̃
∂φi

∂θ j
(41)

where the derivative ∂φi
∂θ j

with respect to the eigenvector can be obtained by previous studies [14,15].
The method of Fox and Kapoor [14] necessitates the whole eigenvectors to obtain the derivative for the
ith eigenvector, whereas the method of Nelson [15] provides a higher calculation efficiency since it
uses only the ith eigenvector to obtain the derivative.

3. Numerical Example

The simple numerical example shown in Figure 3 was adopted to explain numerically the method
described in Section 2. The structure was a simply supported beam of 15 m with a height of 1 m
and width of 0.5 m. The beam was modeled by two-dimensional Euler–Bernoulli beam elements.
The elastic modulus was 25 GPa, the Poisson’s ratio was 0.2, and the density was 2300 kg/m3. The
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structural damping ratio for the 1st and 2nd modes was 5%. The strain gauges were installed at
positions S1(2.5, −0.05), S2(7.5, −0.3), and S3(12.5, −0.05). Assuming that the strain gauges were
installed on the tendon for the introduction of the pre-stress force in a concrete structure, this layout
allows not only the section strain but also the pre-stress force to be measured [16,17]. Accelerometers
were installed vertically at the top of the center of each element.
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3.1. Modal Identification

Data measured by sensors were needed for modal identification but were generated analytically
here. An initial velocity of −0.1 m/s was given vertically to nodes 2 and 3 in the model shown in
Figure 3 to obtain the time histories of the displacement and acceleration at the sensor locations. These
generated values were then adopted as measured data to perform modal identification, which provided
the mode shape φεi,mea for the strain, the mode shape φai,mea for the acceleration and the eigenvalue
λi,mea. For simplification, only the first mode was considered. For the first mode, λmea = 1738.8 sec−2

and the mode shapes for the strain and the acceleration are as follows.

φε,mea =
[

0.082 0.993 0.082
]T

(42)

φa,mea =
[

0.408 0.816 0.408
]T

(43)

3.2. Construction of Transform Matrices

Since the GCS and ECS coincide, the rotation matrix R was the identity matrix. The measurement

direction of the strain gauges was nS1 =
[

0.995 −0.100
]T

, nS2 =
[

1.0 0.0
]T

, nS1 =[
0.995 0.100

]T
and the measurement direction (n′ = Rn) in the ECS became n′S1 = nS1, n′S2 = nS2,

and n′S3 = nS3. The measurement direction of the accelerometers was nS4 = nS5 = nS6 =
[

0.0 1.0
]T

and was n′S1 = n′S2 = n′S3 =
[

0.0 1.0
]T

in the ECS.
The strain components of the two-dimensional Euler–Bernoulli beam element were the longitudinal

strain component (ε′xx) and the transverse strain component (ε′yy) induced by the Poisson effect.

Matrix Bei, which relates the strain (ε′ =
[
ε′xx ε′yy

]T
) of the element and the displacement (d̂′e =[

û′1 v̂′1 θ̂′1 û′2 v̂′2 θ̂′2

]T
) of the node (subscripts 1 and 2 indicate, respectively, the first and

second nodes of the element), can be obtained as follows using Equation (A3).

Be1 = Be3 =

[
0.2 0.0 −0.01 0.2 0.0 0.01
−0.04 0.0 0.002 −0.04 0.0 −0.002

]
(44)

Be2 =

[
0.2 0.0 −0.06 0.2 0.0 0.06
−0.04 0.0 0.012 −0.04 0.0 −0.012

]
(45)

Transforming Bei into B̃ei, which relates the node and measurement directions in the GCS, gives

B̃e1 =
[

0.203 0.0 −0.01015 0.203 0.0 0.01015
]

(46)
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B̃e2 =
[

0.2 0.0 −0.06 0.2 0.0 0.06
]

(47)

B̃e3 =
[

0.195 0.0 −0.00975 0.195 0.0 0.00975
]

(48)

Assembling the transform matrices obtained for the strain gauges with respect to the global DOFs
provides the transform matrix B̃ for the whole set of strain gauges.

φεs = B̃φ (49)

where
φ =

[
φû1 φv̂1 φθ̂1

φû2 φv̂2 φθ̂2
φû3 φv̂3 φθ̂3

φû4 φv̂4 φθ̂4

]T
(50)

B̃ =


0.203 0.0 −0.01015 0.203 0.0 0.01015 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 −0.06 0.2 0.0 0.06 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.195 0.0 −0.00975 0.195 0.0 0.00975

 (51)

In Equation (50), φû1 , φv̂1 , and φv̂4 , corresponding to the fixed DOFs, were 0 and could thus
be discarded.

The displacement components of the two-dimensional Euler–Bernoulli beam element were
the longitudinal component (u′) and the transverse component (v′). Matrix Nei, which relates the

element displacement (d′ =
[

u′ v′
]T

) and the node displacement, was obtained as follows using
Equation (A6).

Ne4 = Ne5 = Ne6 =

[
0.5 0.15 0.125 0.5 −0.15 0.125
0.0 0.5 0.625 0.0 0.5 −0.625

]
(52)

Transforming Nei into Ñei, which relates the DOFs of the GCS and the displacement in the
measurement direction, gives:

Ñe4 = Ñe5 = Ñe6 =
[

0.0 0.5 0.625 0.0 0.5 −0.625
]

(53)

Assembling the transform matrices obtained for the accelerometers with respect to the global
DOFs provided the transform matrix Ña for the whole set of accelerometers.

φas = Ñaφ (54)

where

Ña =


0.0 0.5 0.625 0.0 0.5 −0.625 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.625 0.0 0.5 −0.625 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.625 0.0 0.5 −0.625

 (55)

3.3. Model Updating

As explained in Section 2.2, the model updating process was practically similar to previous model
updating methods. The difference was that the mode shape of the node DOF of Equation (35) was not
used as it was, but was transformed into the measured values as shown in Equations (40) and (41)
when the residual for the mode shape was adopted as the objective function.

Model updating can be done for the measurement mode obtained from the strain sensors or for
the measurement mode obtained from the acceleration sensors or for the mixed measurement mode
from both types of sensors. Since model updating for the mixed measurement mode falls out of the
scope of the present study, this case was not considered here.
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Under the assumption that the initial elastic modulus of all the elements was 20 GPa, the model
updating using the eigenvalue λmea of the strain gauges, the measured mode φε,mea, and the transform
matrix B̃ gives an elastic modulus of 25 GPa for all the elements. This value corresponds to that of the
model and demonstrates the feasibility of the proposed approach. Figure 4a shows the model updating
process. The upper graph plots the change of the residual norm and the lower graph plots the changing
norm for the difference between the final updated parameter and the parameter at each iteration. Only
four iterations are needed to see that convergence was reached. In addition, the model updating using
the eigenvalue λmea of the accelerometers, the measured mode φa,mea, and the transform matrix Ña

provided similar results. The convergence process in Figure 4b shows a similar pattern to the case
where the strain was measured.
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Figure 4. Model updating process (a) when the strain was measured and (b) when the acceleration
was measured.

The proposed approach was seen to allow model updating not only by means of the acceleration
measurement but also by means of the strain measurement. There was also no need to limit the location
of the sensors to the location of the nodes in the model. This means that the sensors can be installed
at arbitrary locations inside the structure. Consequently, it was then possible to model the structure
regardless of the position of the sensors and to select the location of the sensors independently from
the model.

4. Numerical Application to Bridge

In order to verify the applicability of the proposed approach for large-scale structures, the numerical
example shown in Figure 5 was established. The structure was a pre-stressed concrete box girder bridge
with length of 50 m, height of 3 m, and width of 16.8 m. The bridge was composed of 19 segments and
the material density was 2500 kg/m3. The damping ratio for the 1st and 2nd modes was 5%. A total of
50 strain sensors were installed longitudinally along the section bottom centerline at a spacing of 1 m,
as shown in Figure 5b,c. This sensor layout can be achieved by only one quasi-distributed fiber optic
sensor [18] based on resonance frequency mapping.

The structure was modeled using 556 four-node shell elements giving a total of 569 nodes and
3414 DOFs. Identical elastic moduli were assumed for the elements inside each segment. Except for
segments No. 6 and No. 11, the elastic modulus of the segments was 30 GPa and was set to a value of
27 GPa for segments No. 6 and No. 11 with 10% damage. The eigenvalue analysis of the structure
gave a natural frequency of 2.083 Hz for the 1st mode. The mode shape is shown in Figure 5d.
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Figure 5. Numerical application: (a) shape of the bridge structure, (b) layout of the strain sensors,
(c) segments of the structure, and (d) first mode shape of the structure.

4.1. Without Uncertainties

An arbitrary load was applied vertically on the upper side of the structure and the strain was
measured at a sampling rate of 100 Hz during 100 s. Figure 6a plots the strains measured by the
50 sensors. The application of the subspace identification method [4] to the measured strains provides
the stabilization diagram shown in Figure 6b. The mode shape obtained when the system order was
two is shown in Figure 6c. Here, the analytic solution was obtained directly from the mass and stiffness
matrices of the structure. The mode shape obtained from the modal identification was seen to approach
the analytic solution. The natural frequency for the mode at hand was 2.065 Hz and showed an error
of merely 0.86% compared to the analytic solution (2.083 Hz).
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Figure 6. Modal identification: (a) measured strains; (b) stabilization diagram; and (c) mode shape
obtained by modal identification.

The elastic modulus of the model can be obtained by model updating using the eigenvalue and
strain measurement mode shape provided by the modal identification. Figure 7a presents the iterative
process shows fast convergence. Figure 7b compares the elastic moduli of the updated model with those
of the structure and shows good agreement. Figure 7c plots the error ratio of the structure-updated
model elastic moduli and reveals a maximum error of approximately 4%, which demonstrates that the
model was fairly updated.

In addition, the model updating using the eigenvalue and the strain measurement mode shape
of the structure instead of the eigenvalue and the measurement mode shape obtained by modal
identification resulted in elastic moduli identical to the exact solution of Figure 7a. This shows that the
error observed in the model updating was generated during the modal identification process.
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4.2. With Uncertainties

This section examines the effect of the various errors that may occur during the measurement
of the model updating results. Errors in the installation of the sensor were considered to be caused
by the uncertainties related to the position and the direction of the sensor. Error in the measurement
was considered as white noise. Each error was assumed to have a normal distribution N(0, σ), with
a zero mean and standard deviation σ. The standard deviation of the error in the installation of the
sensor was set to 0 mm, 50 mm, and 100 mm for the position of the sensor and 0◦, 2◦, and 4◦ for the
direction of the sensor considering the size of the error that may occur in a real situation. The standard
deviation for the error with white noise was set to comparatively low levels of 0 m/m, 1× 10−6 m/m,
and 2 × 10−6 m/m under the assumption that the FBG sensor was installed. Model updating was
performed 30 times for each considered case.

The following error was computed for each analyzed case and averaged for all identical cases to
obtain the mean error ratio for each case.

e =
1

nseg

nseg∑
i

∣∣∣∣∣∣Eupdated,i − Estructure,i

Estructure,i

∣∣∣∣∣∣ (56)

where Estructure,i and Eupdated,i are the elastic modulus and the updated elastic modulus of the ith
segment of the bridge; and, nseg is the number of segments (19 for the example). Figure 8 plots the
mean error ratio for each case. The mean error ratio of the model updating was seen to increase with
larger errors in the position of the sensor. On the other hand, the error relative to the direction of the
sensor appears to have no significant effect on the mean error ratio of the model updating. Moreover,
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a larger measurement noise increased the mean error ratio but seemed to be uncorrelated to the error
in the installation of the sensor.
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In Figure 8a, the case where the standard deviation for the position error was 0 mm and the
standard deviation for the direction was 0 degree, it corresponded to the case without uncertainties in
sub-Section 4.1. In such a case, the mean error ratio was 2.4%, which was the one produced during the
modal identification process as explained above. The mean error ratio rose to 3.8% according to the
increase of the error in the installation of the sensor. Note that, if the error introduced by the modal
identification process was discarded, the mean error ratio caused by the installation error dropped to
a minimal level of 1.4%. The mean error ratio, in the case with a standard deviation of 2 × 10−6 for
the measurement error in Figure 8c, ran between 3.0% and 4.2%. Here also, the error ratio caused
only by the uncertainties in the installation and measurement remained very minimal with a level of
approximately 0.6% to 1.8%. Consequently, the method proposed in this study is also applicable in
cases including sensor installation errors and measurement noises.

5. Conclusions

A systematic approach using modal identification results in model updating was proposed.
The mode shape obtained by modal identification and the mode shape of the model updating process
did not coincide even for the same mode. A method constructing transform matrices considering cases
where the measurement is done by acceleration, velocity, and displacement sensors and cases where
measurement is achieved by strain sensors was proposed to remedy this disagreement among these
mode shapes. The constructed transform matrices were applied when the mode shape residual was
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used as the objective function and for the mode pairing in the model updating process. The feasibility of
the proposed approach was demonstrated through numerical examples involving strain or acceleration
measurement with/without installation and measurement errors. The proposed approach allows the
sensors to be disposed at locations representing appropriately the behavior of interest since the layout
and direction of the sensors are not limited by the meshing of the model.
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Appendix A Two-Dimensional Euler–Bernoulli Beam Element

As shown in Figure A1, the two-dimensional Euler–Bernoulli beam element has two nodes with
the DOFs of Equation (A1).
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d̂′e =
[

û′1 v̂′1 θ̂′1 û′2 v̂′2 θ̂′2

]T
(A1)

The strain ε′ at an arbitrary position in the element is formed by the longitudinal strain ε′xx and
the strain ε′yy generated by the Poisson effect.

ε′ =
[
ε′xx ε′yy

]T
(A2)

Matrix Be relating the node DOF d̂′e of the element with the strain ε′ at an arbitrary position in the
element is as follows.

Be =

[
Bxx

−νBxx

]
(A3)

where

Bxx =
[
−

1
L −ye

(
−

6
L2 +

12xe
L3

)
−ye

(
−

4
L + 6xe

L2

)
1
L −ye

(
6

L2 −
12xe
L3

)
−ye

(
−

2
L + 6xe

L2

) ]
(A4)

The displacement d′ at an arbitrary position in the element is formed by the longitudinal
displacement u′ and the transverse displacement v′.

d′ =
[

u′ v′
]T

(A5)
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Matrix Ne relating the node DOF d̂′e of the element and the displacement d′ at an arbitrary position
in the element is as follows.

Ne =

 1− xe
L −ye

(
−

6xe
L2 +

6x2
e

L3

)
−ye

(
1− 4xe

L +
3x2

e
L2

)
xe
L −ye

(
6xe
L2 −

6x2
e

L3

)
−ye

(
−

2xe
L +

3x2
e

L2

)
0 1− 3x2

e
L2 +

2x3
e

L3 xe −
2x2

e
L +

x3
e

L2 0 3x2
e

L2 −
2x3

e
L3 −

x2
e

L +
x3

e
L2

 (A6)
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