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Abstract: In order to achieve a high-quality machining process with superior productivity, it is very
important to tackle the phenomenon of chatter in an effective manner. The problems like tool wear
and improper surface finish affect the milling process and are caused by self-induced vibration
termed as chatter. A strategy to control chatter vibration actively in the milling process is presented.
The mathematical modeling of the process is carried out initially. In this paper, an innovative
technique of discrete time sliding mode control (DSMC) is blended with the type-2 fuzzy logic system.
The proposed active controller results in a significantly high mitigation of vibration. The DSMC is
linked to the time-varying gain which is an innovative approach to mitigate chattering. The theorem
is laid down which validates that the system states are bounded in the case of DSMC-type-2 fuzzy.
Stability analysis is carried out using Lyapunov candidate. The nonlinearities linked with the
cutting forces and damper friction are handled effectively by using the type-2 fuzzy logic system.
The performance of the DSMC-type-2 fuzzy concept is compared with the discrete time PID (D-PID)
and discrete time sliding mode control for validating the effectiveness of the controller. The better
performance of DSMC-type-2 fuzzy over D-PID and DSMC-T1 fuzzy in the minimization of milling
chatter are validated by a numerical analysis approach.

Keywords: sliding mode control; vibration control; fuzzy logic

1. Introduction

Self-generated vibration in the machining process degrades the quality of the finished product
and should be given due consideration as it is an important factor associated with manufacturing
industries [1]. The self-induced vibration termed as chatter is an important phenomenon which effects
the machining process resulting in dimensional inaccuracy and minimization in the removal rate of
the material (MRR). The chatter phenomenon also results in low quality finish with significant tool
wear [2]. The chatter in the milling process generates a significant amount of vibration which incurs an
improper finish due to the change in surface roughness resulting in less production and high delivery
time [3].

Machining chatter can be mitigated by utilizing three different techniques. The first option is
the utilization of stability lobe diagram (SLD) where the parameters of the machine are choose from
outside the stability lobes thus compensating the chattering phenomenon [4] . The second option
is to tweak the regenerative effect with the approach of machine parameter change in a continuous
manner. The main methodology associated with the second option is spindle speed variation (SSV) [5].
The third option is the alteration of machine tool dynamics for expanding the chatter boundary by
implementing active or passive strategies. The most common type of passive devices used for vibration
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mitigation of the machining process are tuned mass damper (TMD) and dynamic vibration absorber
(DVA) [6]. Yang et al. [7] have depicted an innovative concept for the mitigation of chatter in the
milling process by making use of TMD. The main positive aspect of passive devices is it is very
much flexible with easy instillation, also it is of low cost and does not make the system unstable.
However, the main constraint encountered by passive devices is the necessity to tune it accurately
at particular frequencies for superior vibration mitigation. So it is not always advantageous to use
passive devices due to minimal robustness while handling changing machining conditions. The active
control system is a combination of suitable controllers, efficient sensors and dampers which, when
implemented, improves the performance of machining with less vibration in the machine tool [8].
The technique of active damper control by implementing the methodology of direct feedback velocity
is depicted in the works of Ganguli et al. [9]. The innovative mechanism of active damper for the
mitigation of chatter which is justified experimentally has been investigated by Harms et al. [10].
An effective mechanism is proposed in [11] involving an electrostrictive approach in combination with
an active damper. The control law was established by using the technique of linear quadratic Gaussian
(LQG) which proved to be efficient in terms of robustness and productivity. A concept involving a
predictive model for active control of chatter vibration with input constraints is suggested in the work
of Zhang et al. [12]. Chen et al. [13] developed an adaptive algorithm on the basis of Fourier series for
active control of chatter. Weremczuk et al. [14] proposed an algorithm to control milling chatter using
an active approach and harmonic excitation methodology. Alharbi et al. [15] implemented the concept
of PID controller for chatter mitigation in the milling process.

Cutting forces associated with the machining process involve nonlinearities [16]. The presence
of nonlinearities in a cutting force model is an important aspect and should be analyzed
thoroughly [17–19]. Exhaustive research unveils that nonlinear modeling is an area of great interest and
should be given importance. Moradi et al. [20] demonstrated that the cutting forces are a combination
of square as well as cubic polynomial terms which are nonlinear in nature.

In situations where the model of the milling procedure is unknown, fuzzy logic comes in very
handy and effective. Fuzzy logic has earned great research reputation due to its capacity to do
nonlinear mapping thus maintaining robustness and simplicity. Liang et al. [21] proposed an innovative
technique to control chatter in end milling by utilizing the concept of fuzzy logic system. Stability
analysis along with uncertainty compensation of the milling process was carried out efficiently by
Sims et al. [22]. An effective LMI approach was utilized for the development of static output feedback
controller for nonlinear systems described by a continuous-time T-S model [23]. An output PDC
(OPDC) controller is proposed and the quadratic Lyapunov technique is implemented to extract
the asymptotic stability of the OPDC controller. A type-2 fuzzy logic system performs significantly
better than type-1 fuzzy logic system due to its possession of additional DOF which is known as
a footprint of uncertainty [24,25]. The concept and methodical approach associated with type-2
fuzzy was demonstrated in the work of Liang and Mendel [26]. The most effective way to handle
uncertainities is the implementation of type-2 fuzzy logic because it performs better than type-1 fuzzy
logic [27]. Hassani et al. [28] utilized an immeasurable premise variable for detecting the faults in
T-S fuzzy systems. In order to tackle the uncertainties in a suitable manner, interval type-2 fuzzy sets
were introduced. Moreover, a comparison between robust unknown input fault detection observers
(UIFDO) and an existent reference is carried out to validate that the interval type-2 T-S fuzzy model is
superior to type-1. In the work of Paul et al. [29], it is demonstrated that the type-2 fuzzy PD/PID
controller performed better than the classical fuzzy PD/PID controller in the control of vibration of the
structure. An innovative concept involving type-1 and type-2 fuzzy logic systems are proposed for
pitch angle controlled wind energy systems as an application for the performance investigation. The
results show that the type-2 fuzzy logic system offers better performance in comparison to type-1 fuzzy
logic systems [30]. A comparison between type-1 fuzzy and type-2 fuzzy logic controllers implemented
in laser tracking systems was carried out by Bai et al. [31]. The simulation results validated that the
type-2 fuzzy controller outperformed the type-1 fuzzy controller. The exhaustive research reveals that
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type-2 fuzzy is superior to type-1 fuzzy. This fact initiate the research motivation of implementing
type-2 fuzzy controllers for chatter attenuation. The numerical analysis validated that the results were
improved by the incorporation of a type-2 fuzzy logic system.

Sliding mode control (SMC) is a superior control mechanism for vibration attenuation in milling
tools since SMC exhibits the same movement pattern as that of the tool vibration pattern. SMC
is most suited for nonlinear systems due to its specific design criteria [32]. An SMC controller
handles the external noises and fluctuations associated with the parameters with greater effectiveness.
Moradi et al. [33] investigated the chatter phenomenon in the turning process and proposed SMC
for chatter attenuation. A synergistic combination of proportional-integral (PI) control and fuzzy
sliding mode control (FSMC) was proposed by Zhao et al. [34]. In their work, fuzzy logic is
utilized to compensate the nonlinearities whereas the PI control is implemented for chatter control.
Ma et al. [35] developed an active sliding mode control strategy to mitigate the chatter in the turning
process utilizing the concept of dynamic output feedback sliding surface combined with an adaptive
law for noise approximation. A model based on an adaptive neuro-fuzzy inference system (ANFIS)
and a novel fuzzy sliding mode controller (FSMC) was developed to control the vibration on vehicle
the suspension system [36]. An efficient controller based on adaptive hybrid control of interval type-2
fuzzy controller in combination with a new modified sliding mode control is developed to control the
vibration in magnetorheological mount [37]. Discrete time sliding mode control (DSMC) is an efficient
controller for vibration attenuation due to its criteria of sampling period which is an important aspect
in vibration control.

Proportional-integral derivative (PID) control has been widely applied in industrial
processes [38,39]. It is an important control strategy because it demonstrates superior capabilities
without the knowledge of the model and also due to its simplicity, as well as being incorporated with
distinct physical meanings. Alharbi et al. [15] implemented the concept of PID controller for chatter
mitigation in the milling process. So in this paper, the PID controller is considered as a potential
controller for the comparison with the developed controller.

This work is carried out by implementing the third option “active control of chatter”. In the first
instance along x and y components, the mathematical modeling of the milling process is done. Then the
nonlinearities are identified for efficient compensation. The actual outcomes of active vibration samper
(AVD) was simulated using Matlab/Simulink for chatter suppression. The modeling is accomplished
by taking into consideration the dynamics of AVD. Discrete time sliding mode (DSMC) generates
the control signals which are used for the suppression of chatter. DSMC is combined with type-2
fuzzy logic (DSMC-T2 fuzzy) for efficiency. The implementation of the type-2 fuzzy system ensures
that the nonlinearities are compensated in an effective manner. The approach of Lyapunov stability
analysis is implemented to prove that the DSMC-T2 fuzzy controller is a stable one. The chatter
attenuation is achieved by the combined action of DSMC-T2 fuzzy with AVD. The wide significance of
the concept and methodology is validated using numerical analysis. The results of the DSMC-T2 fuzzy
are compared with discrete time sliding mode control with type-1 fuzzy (DSMC-T1 fuzzy) and discrete
time PID (D-PID) to prove the effectiveness of the most suited controller. The numerical analysis
results validate that the methodology of chatter control can be implemented effectively in the real time
milling system. This can be achieved by designing and developing an AVD and placing it on the top of
the milling spindle.

2. Modeling of the Milling Process with Active Control

In case of a milling tool with n evenly spaced teeth which is almost flexible to the rigid workpiece,
a generalized 2-degrees of freedom mathematical model is [40,41]:

Mmẍc(t) + Cmẋc(t) + Kmxc(t) = Fm(t) (1)

the equivalent mass, damping and stiffness matrices are illustrated by the terms Mm, Cm and
Km, respectively.
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Mm =

[
mmx 0

0 mmy

]
∈ <2×2, Cm =

[
cmx 0
0 cmy

]
∈ <2×2, Km =

[
kmx 0

0 kmy

]
∈ <2×2 (2)

Again, xc(t) = [x y]T illustrates the displacement of the tool along x and y components.
Fm(t) = [Ff x Ff y]

T illustrates x and y component cutting forces. Along the x and y axes, the new
form of Equation (1) is:[

mmx 0
0 mmy

] [
ẍ
ÿ

]
+

[
cmx 0
0 cmy

] [
ẋ
ẏ

]
+

[
kmx 0

0 kmy

] [
x
y

]
=

[
Ff x
Ff y

]
(3)

which generates:
mmx ẍ + cmx ẋ + kmxx = Ff x
mmyÿ + cmyẏ + kmyy = Ff y

(4)

It is utter necessary to elaborate the dynamics of the cutting forces along the x and y components.
Figure 1 illustrates the dynamics of the milling process [42,43]. The closed form equations representing
the nonlinear cutting forces along x and y components are illustrated as [20]:

Fx = + N
2π

{
ζ1∆x3 + η1∆y3 + ζ2∆x2 + η2∆y2 + ζ3∆x + η3∆y

+3γ1∆x2∆y + 3γ2∆x∆y2 + 2γ3∆x∆y + γ4

}

Fy = − N
2π

{
ζ∗1 ∆x3 + η∗1 ∆y3 + ζ∗2 ∆x2 + η∗2 ∆y2 + ζ∗3 ∆x + η∗3 ∆y

+3γ∗1 ∆x2∆y + 3γ∗2 ∆x∆y2 + 2γ∗3 ∆x∆y + γ∗4

} (5)

where ∆x + x(t − τ) = x(t) and ∆y + y(t − τ) = y(t). The time delay is illustrated as τ = 2π
nΩ ,

Ω = spindle speed (rad/s). If we consider the present and previous tool period instances, then it is
represented by [x(t) y(t)] and [x(t− τ) y(t− τ)] , respectively. Considering the start immersion angle
as 0 and the exit angle as π

2 , The calculation of the coefficients for half-immersion up-milling is:

ζ1 = 1
4
[
ξ1 +

3
4 πδ1

]
, η1 = 1

4
[
δ1 +

3
4 πξ1

]
, ζ2 = 1

3 [ξ2 + 2δ2] ,

η2 = 1
3 [δ2 + 2ξ2] , ζ3 = 1

2

[
ξ3 +

1
2 πδ3

]
,

η3 = 1
2

[
δ3 +

1
2 πξ3

]
, γ1 = 1

4

[
δ1 +

1
4 πξ1

]
, γ2 = 1

4

[
ξ1 +

1
4 πδ1

]
,

γ3 = 1
3 [δ2 + ξ2] , γ4 = [ξ4 + δ4]

ζ∗1 = 1
4
[
−δ1 +

3
4 πξ1

]
, η∗1 = 1

4
[
ξ1 − 3

4 πδ1
]

, ζ∗2 =, 1
3 [−δ2 + 2ξ2] ,

η∗2 = 1
3 [ξ2 − 2δ2] , ζ∗3 = 1

2

[
−δ3 +

1
2 πξ3

]
,

η∗3 = 1
2

[
ξ3 − 1

2 πδ3

]
, γ∗1 = 1

4

[
ξ1 − 1

4 πδ1

]
, γ∗2 = 1

4

[
−δ1 +

1
4 πξ1

]
,

γ∗3 = 1
3 [ξ2 − δ2] , γ∗4 = [−δ4 + ξ4]

(6)

where 0 is the start immersion angle and π
2 is the exit angle. Moreover, ξ1, ξ2, ξ3, ξ4,δ1, δ2, δ3, δ4 are the

cutting force coefficients.

Figure 1. Illustration of milling process dynamics [42,43].
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Active Vibration Damper (AVD) for Active Control Mechanism

As seen from Figure 2, AVD is placed on the top of the spindle to minimize the tool chattering
generated by the external force. The main mechanism behind AVD is that it works as a linear servo
actuator. A linear actuator converts the rotary motion of the motor to the required linear motion.
The position of the AVD is at the center of mass (CM) and it makes an inclination ϕ with CM.
It is considered to be an effective placement due to the mitigation of spacing problem of the AVD.
The efficient placement of damper is cost effective, thus mitigating the requirement of two dampers.
The combination of the modeling equation and control force uc yields:

Mmẍc(t) + Cmẋc(t) + Kmxc(t) = Fm(t) + uc − dc (7)

the control signals impinged on the damper along both axes and is illustrated by uc =
[
ucx, ucy

]T ∈
<2×1 ; dc =

[
dcx, dcy

]
∈ <2×1 is the combined damping-fricton effect resolved along two axes. Now

with the control signals the closed loop Equation (1) can be illustrated as:

mmx ẍ + cmx ẋ + kmxx = Ff x + ucx − dcx

mmyÿ + cmyẏ + kmyy = Ff y + ucy − dcy
(8)

The damper force fd is:
fd = md(g̈i + γ̈i) (9)

where md = mass of the damper, g̈i = acceleration of the damper, γ̈i = tool acceleration. Moreover,
γ̈2

i = ai,x + ai,y implies the relative accelerations of the tool associated with both the axes. Now, fd can
be resolved along the x and y components as follows:

fd =
md(g̈i cos ϕ+ai,x)

cos ϕ or fd =
md(g̈i sin ϕ+ai,y)

sin ϕ

γ̈i =
ai,x

cos ϕ =
ai,y

sin ϕ

ẍi,x − ai,x = g̈i cos ϕ, ẍi,y − ai,y = g̈i sin ϕ

(10)

where ϕ, ẍi,x and ẍi,y represent the angle of the damper, relative acceleration of the damper along the x
component and the relative acceleration of the damper along y component, respectively. Now, fd is
represented mathematically:

fd =
md

cos ϕ
(cos ϕg̈i + ai,x) =

md
sin ϕ

(
sin ϕg̈i + ai,y

)
(11)

The control action along the x and y directions represented by uc =
[
ucx ucy

]T is given by:

uc =
[
mdi ẍi,x mdi ẍi,y

]T (12)

It is very important to consider the damper friction, which can be resolved as:

dcx = Λẋi,x + Γmdg tanh [Υẋi,x]

dcy = Λẋi,y + Γmdg tanh
[
Υẋi,y

] (13)

where Λ, Υ and Γ are termed as damping coefficients associated with the Coulomb friction [44],
Moreover, dc = [dcx dcy]T . Taking into consideration Equations (8) and (13), the combination of the
control methodology with the closed loop system is given by:

mmx ẍ + cmx ẋ + kmxx = Ff x + ucx −Λẋi,x − Γmdg tanh [Υẋi,x]

mmyÿ + cmyẏ + kmyy = Ff y + ucy −Λẋi,y − Γmdg tanh
[
Υẋi,y

] (14)



Appl. Sci. 2019, 9, 4380 6 of 20

In Equation (14), the nonlinear terms are Λẋi,x + Γmdg tanh [Υẋi,x] , Λẋi,y + Γmdg tanh
[
Υẋi,y

]
, Ff x

and Ff y. The intelligent technique is incorporated to deal with the involved nonlinearities.

Figure 2. AVD on Spindle Top.

3. Discrete Time Sliding Mode Control with Type-2 Fuzzy Compensation

Generally the overall stiffness of machine tools is computed using the static loading test.
The stiffness calculated by the static test, however, in general cases shows hysterics characteristics.
This is due to the fact that the contact area of the bearing changes as the load direction changes [45,46].
The stiffness has been modeled considering it to be a nonlinear in nature and is demonstrated effectively
in [14]. The hysteric behavior can be handled effectively using the Bouc-Wen model. The behavior of
the structure can be modeled using Bouc-Wen method which separates Equation (15) into two parts
(elastic and inelastic) as [47]:

fρ,i = ερikρixρi + (1− ερi)kρiφρi (15)

representing the positive numbers by ρ. The function illustrating nonlinearties (φρi) is:

φρi = −
1

ηρi

[
λρi
∣∣ẋρi
∣∣ ∣∣aρi

∣∣ηli
−1 aρivρi − γρi

∣∣ẋρi
∣∣ ∣∣aρi

∣∣ηli
−1 vρiaρisign(ẋρiaρi)]− κẋρi

]
(16)

In the above equation, the positive numbers are κ, λρi, γρi, αρi, n and η. Moreover, ηρi and vρi
represent the stiffness degradation control factor and strength degradation control factor, respectively.

The term, Eρi = (1− αρi)
∫ t

0
ẋρiaρi

∆ρi∆ρi
dt is defined as dissipated hysteretic energy in normal conditions.

Moreover, ∆ρi = (λρi + γρi)
−

1
ηρi . The stiffness fkn will be considered as nonlinear. The continuous

time model of the milling process, which is a closed loop system from Equation (14), is illustrated as:

Mmẍc(t) + Cmẋc(t) + fkn(x) = Fm(t) + uc(t)− dc (17)

It is very important to discretize the milling process model for digitalization and to make it
appropriate for the design of computer based control. For this, the following steps are implemented:
V1 (t) = xc and V2 (t) = ẋc. The model represented by Equation (17) is illustrated as a state space
model by:

Ż(t) =AZ+Bu+Fkn + fn (18)
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Again, V(t) =

[
V1(t)
V2(t)

]
, AD=

[
0 0
0 −M−1

m Cm

]
, BD=

[
0

M−1
m

]
, Fkn = M−1

m fkn, fn =

M−1
m [Fm+dc]

In the linear system V̇=ADV+ucBD, Fkn and fn are considered to be the uncertainties. When there
is no external excitations, the tool will be at the stable position. So it is justifiable to consider that Fkn
is bounded, ||Fkn||dst. The cutting forces and friction forces are bounded, || fn(t)||dn. The continuous
time model is discretized by assuming that the control force and the external forces are constant during
the sampling period T. Now considering the relation kTt(k + 1)T to be valid:

fn(t) = fn(kT) and uc(t) = uc(kT) (19)

considering V(k) to be a state vector with Adis as a state matrix; moreover, Adis = eADT and Bdis =

input vector, Bdis =

(∫
eADτdτ

)
BD, uc(k) = scalar input, Fkn(Z(k)) = model uncertainty matrix and

fdn(k) = nonlinearity involved in cutting forces and frictional forces; using Equation (18), the discretized
model is [48,49]:

V(k + 1) =AdisZ(k)+Bdisuc(k)+Fkn(Z(k))+ fdn(k) (20)

From Equation (20), the discrete time model is:

V(k + 1) =AdisV(k)+Bdisuc(k)+Fkn(Z(k))+ fdn(k) (21)

From the viewpoint of preciseness and for the introduction fuzzy system to compensate
nonlinearities, the following step is considered:

V(k + 1) =j [z(k)] +h [z(k)] uc(k) (22)

where j [z(k)] = AdisV(k)+Fkn(Z(k))+ fdn(k) and h [z(k)] = Bdis, Adis and Bdis are unknown and
Fkn(Z(k))+ fdn(k) is nonlinear. So the terms j [z(k)] and h [z(k)] will be modeled using the type-2 fuzzy
logic technique.

The type-2 fuzzy sets have a greater capability of modeling big magnitude uncertainties with
minimal fuzzy rules when compared to the type-1 fuzzy sets. The concept of membership functions
in type-2 fuzzy systems is that it is no longer a crisp value and is considered to be in the interval of
[0, 1] [26]. The fuzzy rules are defined as follows:

Ri: IF (xi is A1i) and (yi is A2i) and (ẋi is A3i) and (ẏi is A4i)

THEN ( f [z(k)] is B1i)

Ri: IF (xi is A1i) and (yi is A2i) and (ẋi is A3i) and (ẏi is A4i)

THEN (g [z(k)] is B2i)

(23)

where the type-2 fuzzy sets are represented by the terms A1i · · · , A4i, B1i, B2i. If GA is the membership
function, then the type-2 fuzzy set A is expressed as:

A = {(x, ς), GA(x, ς) | ∀xεR, ∀ςεMx ⊆ [0, 1]} (24)

with ς as an auxiliary variable and Mx as a primary membership function validating the relation
0GA(x, ς)1. The type-2 fuzzy logic system with jth output can be expressed as:

f uzj =
yrj + yl j

2
=

1
2

[
(φT

rj(z)wrj(z(k)) + φT
lj(z)wl j(z(k))

]
(25)
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where yl j =
∑

p
i=1 f i

l jyl j+∑
p
i=1 f i

rjylk

∑
q
i=1 f i

r+∑
q
i=1 f i

l
, yrj =

∑
p
i=1 f i

l jyrj+∑
p
i=1 f i

rjyrk

∑
q
i=1 f i

r+∑
q
i=1 f i

l
, qi

l j =
f i
l

∑
q
i=1 f i

r+∑
q
i=1 f i

l
, and qi

rj =
f i
r

∑
q
i=1 f i

r+∑
q
i=1 f i

l
.

Again, f i
l and f i

r are the firing strengths associated with yi
l j and yi

rj of the i-th rule. So the compensation
technique for j [z(k)] and h [z(k)] are applied as follows:

̂ = 1
2 wr f (k)φT

r f [z(k)] +
1
2 wl f (k)φT

l f [z(k)]
ĥ = 1

2 wrg(k)φT
rg[z(k)] +

1
2 wlg(k)φT

lg[z(k)]
(26)

For Equation (26), the following learning laws are implemented:

wr f (k + 1)− wr f (k) = −Ω1(k)em(k)φT
r f [z(k)]

wl f (k + 1)− wl f (k) = −Ω2(k)em(k)φT
l f [z(k)]

wrg(k + 1)− wrg(k) = −Ω1(k)uc(k)em(k)φT
rg[z(k)]

wlg(k + 1)− wlg(k) = −Ω2(k)uc(k)em(k)φT
lg[z(k)]

(27)

Again, Ω1 (k) and Ω2 (k) satisfy the following:

Ω1 (k) =


Ω1 (k)

1 + Φ1(k)
if ‖ em(k + 1) ‖> 1

β1
‖ em(k) ‖

0 if ‖ em(k + 1) ‖< 1
β1
‖ em(k) ‖

Ω2 (k) =


Ω2 (k)

1 + Φ2(k)
if ‖ em(k + 1) ‖> 1

β2
‖ em(k) ‖

0 if ‖ em(k + 1) ‖< 1
β2
‖ em(k) ‖

(28)

where 0 < Ω1(k) ≤ 1 and 0 < Ω2(k) ≤ 1. Moreover, the dead-zone parameters are illustrated by β1

and β2. Again,
Φ1(k) =‖ φT

r f [z(k)] ‖
2 + ‖ φT

rg[z(k)]uc(k) ‖2

Φ2(k) =‖ φT
l f [z(k)] ‖

2 + ‖ φT
lg[z(k)]uc(k) ‖2 (29)

Now the modeling error em(k) is represented as:

em(k) = v̂(k)− v(k) (30)

where the state of the fuzzy model is represented by v̂(k); therefore:

(β1 + β2)v̂(k + 1) = ̂ [z(k)] + ĥ [z(k)] uc(k) (31)

where β1 and β2 are positive constant and β1, β2 > 1, which is a design parameter. For stability
analysis, Equation (31) is illustrated as:

(β1 + β2)v(k + 1) = 1
2 ω∗r f (k)φ

T
r f [z(k)] +

1
2 ω∗l f (k)φ

T
l f [z(k)]

+ 1
2 ω∗rg(k)φT

rg[z(k)]uc(k) + 1
2 ω∗lg(k)φ

T
lg[z(k)]uc(k) + (εr f + εl f ) + (εrg + εlg)u(k)

(32)

where the unknown optimal weights are ω∗r f (k), ω∗l f (k), ω∗rg(k) and ω∗lg(k). Moreover, εr f , εl f , εrg and

εl f are approximation errors which satisfy the relations f = 1
2 ω∗r f (k)φ

T
r f [z(k)] +

1
2 ω∗l f (k)φ

T
l f [z(k)] +

(εr f + εl f ), g = 1
2 ω∗rg(k)φT

rg[z(k)] +
1
2 ω∗lg(k)φ

T
lg[z(k)] + (εrg + εl f ). Using Equations (31) and (32),

the error dynamics can be stated as:

(β1 + β2)em(k + 1) = 1
2 w̃r f (k)φT

r f [z(k)] +
1
2 w̃l f (k)φT

l f [z(k)]
+ 1

2 w̃rg(k)φT
rg[z(k)]uc(k) + 1

2 w̃lg(k)φT
lg[z(k)]uc(k)+ξ f+ξguc(k)

(33)
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satisfying the relations
ω̃r f (k) = ωr f (k)−ω∗r f (k)
ω̃l f (k) = ωl f (k)−ω∗l f (k)
ω̃rg(k) = ωrg(k)−ω∗rg(k)
ω̃lg(k) = ωlg(k)−ω∗lg(k)

(34)

where ξ f = εr f + εl f + r f and ξg = εrg + εlg + rg. Moreover, the remainders of the Taylor formula for
̂ and ĥ are illustrated by r f and rg, respectively.

In case of active vibration control, it considered that vd(k) = 0. The equation validating the control
error is:

ec (k) = vd(k)− v(k) = −v(k) (35)

The SMC can be illustrated as:

uc(k) =
2[KTec(k)− 1

2 (ωr f (k)φT
r f [z(k)] + ωl f (k)φT

l f [z(k)])− σsign [s(k)]]

[ωrg(k)φT
rg[z(k)] + ωlg(k)φT

lg[z(k)]]
(36)

where ec(k) = [ec(k + 1− n) · · · ec(k)]
T , The vector representing feedback gain is KG = [kn · · · k1]

T ∈
Rn. The sliding mode gain and switching function are represented by σ and s(k), respectively, where
the switching function is:

s(k) = KT
G

[
ec(k− 1) +

1
KT

G
ec(k)

]
(37)

Since ec(k + 1) + KT
Gec(k) = s(k + 1), so:

ec(k + 1) = ADec(k) + BDs(k + 1) (38)

where AD =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 · · · · · · 0 1
−kn · · · · · · · · · −k1

 ∈ Rn×n, BD = [0, · · · 0, 1]T ∈ Rnx1. Now using the

concept from [50] , the relation det (sI − αAD) = αnkn + αn−1kn−1s + · · ·+ αk1sn−1 + sn is validated.
The selection of gains are carried out in the manner of KG = [k1 · · · kn]

T so that the polynomial
λn +

√
2k1λn−1 + · · ·+ 2

n
2 kn is stable. This signifies that AD is stable. If AD is stable then the Lyapunov

equation 2AT
DPAD = Z − U has positive definite solutions for Z; moreover, U = UT > 0. Using

Equations (22), (31) and (32), it can be validated that the modeling error satisfies:

(β1 + β2)em(k + 1) = 1
2

[
ω̃r f (k)φT

r f [z(k)] + ω̃l f (k)φT
l f [z(k)] + 2ξ f

]
+ 1

2

[
ω̃rg(k)φT

rg[z(k)] + ω̃lg(k)φT
lg[z(k)] + 2ξg

]
uc(k)

(39)

Combining SMC Equation (36) and the equation of the plant, Equation (22), the system equation
in closed-loop form is given by:

v(k + 1) = − 1
2

[
ω̃r f (k)φT

r f [z(k)] + ω̃l f (k)φT
l f [z(k)] + 2ξ f

]
+KTec(k)− σsign [s(k)]− 1

2

[
ω̃rg(k)φT

rg[z(k)] + ω̃lg(k)φT
lg[z(k)] + 2ξg

]
uc(k)

(40)
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Using Equation (36) and the relation s(k + 1) = KTec(k)− v(k + 1), the following equation can
be validated:

ec(k + 1) + KTec(k) + σsign [s(k)] = 1
2

[
ω̃r f (k)φT

r f [z(k)] + ω̃l f (k)φT
l f [z(k)] + 2ξ f

]
+ 1

2

[
ω̃rg(k)φT

rg[z(k)] + ω̃lg(k)φT
lg[z(k)] + 2ξg

]
uc(k)

(41)

Now, using Equation (39),

s(k + 1) + σsign [s(k)] = (β1 + β2)em(k + 1) (42)

Since |sign [s(k)]| ≤ 1 and |em(k + 1)| ≤ G

1
G
|s(k + 1)| ≤ σ

G
+ (β1 + β2) (43)

where G is the upper bound of the modeling error. The fuzzy model Equation (31) design parameters
are illustrated using β1 and β2.

Theorem 1. If the fuzzy model Equation (31) is implemented for the compensation of the the nonlinear system
outlined in Equation (22) with the updated laws:

wr f (k + 1)− wr f (k) = −Ω1(k)em(k)φT
r f [z(k)]

wl f (k + 1)− wl f (k) = −Ω2(k)em(k)φT
l f [z(k)]

wrg(k + 1)− wrg(k) = −Ω1(k)uc(k)em(k)φT
rg[z(k)]

wlg(k + 1)− wlg(k) = −Ω2(k)uc(k)em(k)φT
lg[z(k)]

(44)

then the uniform stability of the closed loop system is assured and bounded provided that the identification error
em(k) is within the range:

‖ em(k) ‖2≥ 2ψ(k)ξ̄
Φ1(k) + Φ2(k)

(45)

and the control error satisfies:

‖ec(k)‖2
U ≤ σ2 ‖Z‖

(
1 +

(β1 + β2)G
σ

)
(46)

with the gain σ of the discrete-time sliding mode controller Equation (36) establishing

σ ≥ G
‖KG‖

(β1 + β2) (47)

Proof of Theorem 1. The Lyapunov candidate function L(k) is selected as:

L(k) =
1
2
‖ ω̃r f (k) ‖2 +

1
2
‖ ω̃l f (k) ‖2 +

1
2
‖ ω̃rg(k) ‖2 +

1
2
‖ ω̃lg(k) ‖2 +

1
σ2 eT

c (k)Zec(k) (48)

Now for simplicity, L(k) = L1(k) + L2(k); therefore:

L1(k) = 1
2 ‖ ω̃r f (k) ‖2 + 1

2 ‖ ω̃l f (k) ‖2 + 1
2 ‖ ω̃rg(k) ‖2 + 1

2 ‖ ω̃lg(k) ‖2

L1(k) = 1
2 tr
[
ω̃T

r f (k)ω̃r f (k)
]
+ 1

2 tr
[
ω̃T

l f (k)ω̃l f (k)
]

+ 1
2 tr
[
ω̃T

rg(k)ω̃rg(k)
]
+ 1

2 tr
[
ω̃T

lg(k)ω̃lg(k)
] (49)
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Now ∆L1(k) = L1(k + 1)− L1(k),

∆L1(k) = 1
2 [‖ ω̃r f (k + 1) ‖2 − ‖ ω̃r f (k) ‖2] + 1

2 [‖ ω̃l f (k + 1) ‖2 − ‖ ω̃l f (k) ‖2]

+ 1
2 [‖ ω̃rg(k + 1) ‖2 − ‖ ω̃rg(k) ‖2] + 1

2 [‖ ω̃lg(k + 1) ‖2 − ‖ ω̃lg(k) ‖2]
(50)

From the updated Equation (27),

∆L1(k) = 1
2 [‖ ωr f (k)−Ω1(k)ei(k)φT

r f [z(k)] ‖
2 − ‖ ω̃r f (k) ‖2]

+ 1
2 [‖ ωl f (k)−Ω2(k)ei(k)φT

l f [z(k)] ‖
2 − ‖ ω̃l f (k) ‖2]

+ 1
2 [‖ ωrg(k)−Ω1(k)u(k)ei(k)φT

rg[z(k)] ‖2 − ‖ ω̃rg(k) ‖2]

+ 1
2 [‖ ωlg(k)−Ω2(k)u(k)ei(k)φT

lg[z(k)] ‖
2 − ‖ ω̃lg(k) ‖2]

= 1
2 Ω2

1(k) ‖ em(k) ‖2 [‖ φT
r f [z(k)] ‖

2 −Ω1(k) ‖ em(k) ‖ [‖ ω̃r f (k)φT
r f [z(k)] ‖

+ 1
2 Ω2

2(k) ‖ em(k) ‖2 [‖ φT
l f [z(k)] ‖

2 −Ω2(k) ‖ em(k) ‖ [‖ ω̃l f (k)φT
l f [z(k)] ‖

+ 1
2 Ω2

1(k) ‖ em(k) ‖2 [‖ φT
rg[z(k)]u(k) ‖2 −Ω1(k) ‖ em(k) ‖ [‖ ω̃rg(k)φT

rg[z(k)]uc(k) ‖
+ 1

2 Ω2
2(k) ‖ em(k) ‖2 [‖ φT

lg[z(k)]u(k) ‖
2 −Ω2(k) ‖ em(k) ‖ [‖ ω̃lg(k)φT

lg[z(k)]uc(k) ‖

(51)

Implementing the error dynamics of Equation (33) and using Ω1(k) = Ω2(k) = ψ(k):

∆L1(k) = 1
2 ψ2(k) ‖ em(k) ‖2 [‖ φT

r f [z(k)] ‖
2 + ‖ φT

rg[z(k)]uc(k) ‖2]

+ 1
2 ψ2(k) ‖ em(k) ‖2 [‖ φT

l f [z(k)] ‖
2 + ‖ φT

lg[z(k)]uc(k) ‖2]

−2ψ(k) ‖ eT
m(k) ‖ [(β1 + β2)em(k + 1)− ξ f − ξguc(k)]

∆L1(k) = 1
2 ψ2(k) ‖ em(k) ‖2 [‖ φT

r f [z(k)] ‖
2 + ‖ φT

rg[z(k)]uc(k) ‖2]

+ 1
2 ψ2(k) ‖ em(k) ‖2 [‖ φT

l f [z(k)] ‖
2 + ‖ φT

lg[z(k)]uc(k) ‖2]

−2ψ(k) ‖ em(k) ‖ (β1 + β2) ‖ em(k + 1) ‖ +2ψ(k) ‖ em(k) ‖ [ξ f + ξguc(k)]

(52)

using Equations (28) and (29) and utilizing the relations (β1 + β2) ‖ em(k + 1) ‖>‖ em(k) ‖ and
ξ(k) = ξ f + ξguc(k), it is validated that:

∆L1(k) ≤ −2ψ(k) ‖ em(k) ‖2 + 1
2 ψ2(k) ‖ em(k) ‖2 (Φ1(k) + Φ2(k)) + 2ψ(k) ‖ em(k)ξ(k) ‖

≤ −ψ(k) ‖ em(k) ‖2 + 1
2 ψ2(k) ‖ em(k) ‖2 (Φ1(k) + Φ2(k)) + ψ(k) ‖ ξ(k) ‖2

≤ −ψ(k){1− ψ(k)
2 (Φ1(k) + Φ2(k)} ‖ em(k) ‖2 +ψ(k) ‖ ξ(k) ‖2

(53)

Now the boundary condition of the modeling error ξ(k) can be validated using:

‖ ξ(k) ‖2≤‖ ξ̄ (54)

Now for achieving ∆L1(k) ≤ 0,

ψ(k)
2 (Φ1(k) + Φ2(k)} ‖ em(k) ‖2≥ ψ(k)ξ̄

‖ em(k) ‖2≥ 2ψ(k)ξ̄
Φ1(k)+Φ2(k)

(55)

If the β selected is too big then the dead zone becomes small. Hence it is concluded that L1(k) is
bounded, which implies that the identification error em(k) is bounded. Again:

L2(k) =
1
σ2 eT

c (k)Zec(k) (56)

Now utilizing Equation (38):

∆L2(k) = − 1
σ2 eT

c (k)Zec(k) + 1
σ2 eT

c (k + 1)Zec(k + 1)
= 1

σ2 eT
c (k)

(
AT

DZAD − Z
)

ec(k) + 2
σ2 eT

c (k)AT
DZBDs(k + 1) + 1

σ2 BT
DZBDs2(k + 1)

(57)
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Considering the gain as KG1 = [1, k1 · · · kn]
T and using Equation (37):

s(k + 1) = KT
G1ec(k + 1) (58)

Again, 1
(β1+β2)

s(k + 1) + σsign [s(k)] = em(k + 1). Moreover, ‖AD‖ = ‖BD‖ = 1; then, utilizing
Equation (43):

∆L2(k) ≤ −
1
σ2 ‖ec(k)‖2

U −
2 [σ ‖KG1‖ − (β1 + β2)G]

σ2 ‖Z‖ ‖ec(k)‖+ ‖Z‖
(

1 +
(β1 + β2)G

σ

)2

(59)

From Equation (47):

∆L2(k) ≤ −
1
σ2 ‖ec(k)‖2

U + ‖Z‖
(

1 +
(β1 + β2)G

σ

)2

(60)

Now ∆L2(k) is bounded if 1
σ2 ‖ec(k)‖2

U ≤ ‖Z‖
(

1 + (β1+β2)G
σ

)
. Therefore, from the works of [51],

it can be establish that since L2(k) is bounded, ec(k) is bounded. Since both L1(k) and L2(k) are
bounded, L(k) is bounded. So it implies that the control error ec(k) is bounded.

4. Validation and Results

The total control scheme that is essential for having a brief overview of the control process
is shown in Figure 3. Initially, to simulate the cutting forces, the cutting conditions are essential.
This cutting force has influence on the tool vibration. In the first instance, the cutting conditions
of the milling process illustrated in [52] are extracted for tool vibration simulation so as to validate
the effectiveness of the developed control mechanism. In Table 1, the tool and cutting parameters
are displayed. For the validation of the significant performances of DSMC-T2 fuzzy, the results of
DSMC-T2 fuzzy are compared with DSMC-T1 fuzzy and discrete time PID (D-PID).

Figure 3. Brief overview of control process.

The ideal continuous time PID controller can be expressed as [53]:

u(t) = −Kpe(t)− Ki

∫ t

0
e(t)dτ − Kdė(t) (61)
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where, u(t),Kp, Ki, Kd and e(t) control output, proportional gain, integral gain, derivative gain and
error, respectively. The discrete time PID (D-PID) controller in the z-domain is given by [54]:

u(z) = −Kpe(z)− KiTsz
z− 1

e(z)− Kd
Ts

(
z− 1

z
)e(z) (62)

where Ts is the sampling time. For the purpose of numerical analysis and at par with the best results,
the gains for the x and y components are selected as follows:

Kpx = 200, Kdx = 84, Kix = 1500
Kpy = 190, Kdy = 76, Kiy = 1400

(63)

Table 1. Parameters.

Parameter Value Units Parameter Value Units

mx 20 kg my 20 kg
cx 1200 Ns/m cy 4300 Ns/m
kx 7.2× 106 N/m ky 6.48× 107 N/m
ξ1 6700× 109 N/m3 δ1 13,000 ×109 N/m3

ξ2 −4900× 106 N/m2 δ2 −7200× 106 N/m2

ξ3 3000× 103 N/m δ3 13 N
ξ4 1700× 103 N/m δ4 25 N
n 4 Ω 3000 rev/ min

Matlab/Simulink is utilized as the software environment. Simulation results are presented to
validate that the tool chatter can be mitigated significantly by implementing the combined technique of
AVD and DSMC-T2 fuzzy. The proposed control strategy result is then compared with DSMC, D-PID,
DSMC-T1 fuzzy to prove the capabilities of DSMC-T2 fuzzy in vibration mitigation. For the simulation
process, a total duration of 0.1 s to 0.6 s is considered. The weight of the AVD is considered to be 5% of
the main device and this assumption is implemented in the simulation process. For the comparison
of the results, two subsystem blocks of the milling model are developed using Simulink, where one
block includes control systems and the other block has no control. The inputs to the process model
are cutting forces and damper forces. The value 650 rad/s is set as the frequency of the simulation
procedure. The arrangements of numerical integrators and filters are implemented to convert the
acceleration signals to required velocities and positions. The four sets of tests are conducted with
DSMC, with D-PID, with DSMC -T1 fuzzy and DSMC-T2 fuzzy for the generation and comparison of
results. The toolbox named IT2-FLSs designed by Taksin et al. [55] is utilized for processing type-2
fuzzy operations. The membership functions selected for position error and velocity error are three
and two, respectively. The process of normalization is carried out in the form [−2, 2]. The methodology
implemented for the defuzzification of the type-2 fuzzy logic system is Karnik-Mendel technique [26].
In this paper, for the control of chatter considering the type-2 fuzzy logic concept, six fuzzy rules for ̂

as well as four fuzzy rules for ĥ are sufficient for effective control. Considering the type-1 fuzzy logic
concept, for the control of chatter, nine fuzzy rules for ̂ and six fuzzy rules for ĥ are sufficient. The
membership functions are designed using Gaussian function. IF–THEN rules are applied for both the
types of fuzzy system.The chosen learning rates are Ω1 = Ω2 = 0.9.Theorem 1 is utilized for selecting
σ which is 0.17.

The vibration minimization obtained by implementing the controllers DSMC, D-PID, DSMC-T1
fuzzy and DSMC-T2 fuzzy are compared for validating the effectiveness and the results are shown
in the plots given by Figures 4–11. The equation mean squared error (MSE) = 1

d ∑d
k=1 x (k)2 is

implemented to calculate the average vibration minimization results and is displayed in Table 2 . In the
equation, x (k) stands for chatter and d illustrates the total amount of data. In the Table 2, T1 is type-1
and T2 is type-2.
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Figure 4. Tool vibration along x-direction using DSMC.
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Figure 5. Tool vibration along y-direction using DSMC.
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Figure 6. Tool vibration along x-direction using D-PID.
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Figure 7. Tool vibration along y-direction using D-PID.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

T
o
o
l 
v
ib

ra
ti
o
n
 x

−
d
ir
e
c
ti
o
n
 (

m
m

/s
²)

 

 
Without Control System

With Control System

Figure 8. Tool vibration along x-direction using DSMC-T1 fuzzy.
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Figure 9. Tool vibration along y-direction using DSMC-T1 fuzzy.
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Figure 10. Tool vibration along x-direction using DSMC-T2 fuzzy.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

T
o
o
l 
v
ib

ra
ti
o
n
 y

−
d
ir
e
c
ti
o
n
(m

m
/s

²)

 

 

Without Control System

With Control System

Figure 11. Tool vibration along y-direction using DSMC-T2 fuzzy.

Table 2. Average vibration attenuation, mean squared error (MSE) indicator.

Direction No ctrl. DSMC D-PID DSMC-T1 Fuzzy DSMC-T2 Fuzzy

x-direction 0.3823 0.2260 0.1851 0.1172 0.0802
y-direction 0.3702 0.2352 0.1744 0.1087 0.0807

The results of percentage vibration minimization of all the controllers are calculated utilizing the
MSE indicator. The percentage vibration mitigation using DSMC is 40.88% along the x component and
36.46% along the y component, whereas D-PID reduces the vibration by 51.58% along the x component
and 52.89% along the y component. The percentage vibration mitigation using DSMC-T1 fuzzy is
70.20% along the x component and 70.63% along the y component. Finally, the percentage vibration
mitigation using DSMC-T2 fuzzy is 79.02% along the x component and 78.2% along the y component.
So it validated that the implementation of the type-2 fuzzy system in DSMC made it perform better
than the DSMC-T1 fuzzy controller. The outcome of percentage vibration suppression depicts that the
type-2 fuzzy system performed better than the type-1 fuzzy system. In general, the DSMC-T2 fuzzy
controller performed better than all the controllers used in this research.

A type-2 fuzzy PID controller was used to mitigate the chatter vibration in the milling process [56].
The plots depicting the vibration attenuation using the type-2 fuzzy PID controller are illustrated in
Figures 12 and 13. The MSE results reveal that the average vibration attenuation with the type-2 fuzzy
PID controller along the x-direction is 80% in comparison to 79.02% with DSMC-T2 fuzzy, whereas
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along the y-direction with the type-2 fuzzy PID controller is 76.3% in comparison to 78.2% with the
DSMC-T2 fuzzy. So it is clear that both the controllers performed well and their performances are
almost equal. The advantages of using DSMC-T2 fuzzy over type-2 fuzzy PID controller are: (a) It is
effective in terms of robustness against the changes in the parameters with external disturbances and
can be implemented without the knowledge of system parameters; (b) the computational cost of the
type-2 fuzzy PID controller is bigger than the DSMC-T2 fuzzy.
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Figure 12. Tool vibration along x−direction using type-2 Fuzzy PID control.
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Figure 13. Tool vibration along y−direction using type-2 Fuzzy PID control.

For superior vibration mitigation, it is very important to place the damper in a proper position.
This work demands that the vibration attenuation should be accomplished along the x and y
components and hence suitably two AVDs need to be installed along the x and y axes, separately.
However, in this research, the setup is made cost effective by installing a single AVD in an inclined
position to control the forces along the x and y axes. The cutting forces associated with the x and y axes
are shown in Figures 14 and 15, respectively. Figure 16 illustrates the behavior of the DSMC-type-2
fuzzy control signal.
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Figure 14. Cutting force along x-direction.
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Figure 16. Control signal of DSMC with type-2 fuzzy logic.

5. Conclusions

In this paper, a novel technique for milling chatter mitigation is demonstrated using an active
control strategy. In the first phase, the mathematical modeling of the process is carried out. The DSMC
is combined with type-2 fuzzy logic for an effective control mechanism. Numerical analysis validated
that the innovative controller is able to mitigate vibration significantly. Using the Lyapunov analysis
technique, a theorem is laid down to prove that the system states of the DSMC-T2 fuzzy controller are
bounded. An efficient approach of the type-2 fuzzy system is implemented to handle the nonlinearities
in a suitable manner. The results from numerical analysis establish that the most superior controller
is DSMC-T2 fuzzy. As the literature review suggests, SMC in combination with fuzzy is utilized for
vibration control, but this combination along with stability analysis is not used for the milling process.
In this paper, the stability of the controller is given due importance. The stability of the controller is
validated using Lyapunov analysis. Moreover, the concept of implementing type-2 fuzzy logic for
nonlinearity compensation in the milling process is done for the first time. Moreover, the research is
made cost effective by placing the AVD in an inclined position. The higher computational cost is the
primary concern associated with the toolbox of type-2 fuzzy logic and there is a need to deal with this
situation with a suitable methodology. The techniques of minimizing the computational cost will be
investigated in future work. Moreover, in future, an experimental setup will be developed to validate
the theoretical concept. There is also the requirement of designing a torsional actuator for the control
of chatter in the theta direction (torsional vibration).
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