
applied
sciences

Article

A High-Accuracy Model Average Ensemble of
Convolutional Neural Networks for Classification of
Cloud Image Patches on Small Datasets

Van Hiep Phung and Eun Joo Rhee *

Department of Computer Engineering, Hanbat National University, Daejeon 34158, Korea;
hiepphungvan@gmail.com
* Correspondence: ejrhee@hanbat.ac.kr; Tel.: +82-42-821-1205

Received: 11 September 2019; Accepted: 21 October 2019; Published: 23 October 2019
����������
�������

Abstract: Research on clouds has an enormous influence on sky sciences and related applications,
and cloud classification plays an essential role in it. Much research has been conducted which
includes both traditional machine learning approaches and deep learning approaches. Compared
with traditional machine learning approaches, deep learning approaches achieved better results.
However, most deep learning models need large data to train due to the large number of parameters.
Therefore, they cannot get high accuracy in case of small datasets. In this paper, we propose a
complete solution for high accuracy of classification of cloud image patches on small datasets. Firstly,
we designed a suitable convolutional neural network (CNN) model for small datasets. Secondly,
we applied regularization techniques to increase generalization and avoid overfitting of the model.
Finally, we introduce a model average ensemble to reduce the variance of prediction and increase the
classification accuracy. We experiment the proposed solution on the Singapore whole-sky imaging
categories (SWIMCAT) dataset, which demonstrates perfect classification accuracy for most classes
and confirms the robustness of the proposed model.

Keywords: cloud classification; CNN; ensemble model; SWIMCAT dataset

1. Introduction

Clouds cover more than half of the globe surface. Most cloud-related research, such as
climate modeling, weather forecasting, meteorology study, solar energy research, and satellite
communication [1–5], need to analyze cloud characteristics, in which cloud categorization plays
an essential role. At present, professional observers categorize cloud types; it is a time-consuming task,
and some problems cannot be well handled by human observers [6]; therefore, automatic classification
of clouds is a much-needed task.

Much research has been conducted on this topic. Similar with all other image classification
tasks, there are two main types of feature representation approaches for cloud image classification:
hand-crafted features and deep learning features [7]. In other words, traditional machine learning
approaches and deep learning approaches [8]. Firstly, we review the traditional machine learning
approaches. Singh and Glennen [9] used five feature extraction methods (autocorrection, co-occurrence
matrices, edge frequency, Law’s features, and primitive length) and applied the k-nearest neighbor and
neural network to identify the cloud types. Calbó and Sabburg [10] applied Fourier transform, statistical
measurements, and pixel computation to extract image features. Heinle et al. [11] predefined statistical
features to describe color and texture, and then used a k-nearest neighbor classifier. Liu et al. [12]
proposed an illumination-invariant completed local ternary pattern descriptor to deal with illumination
variations. Liu et al. [13] extracted some cloud structure features from segment images and edge

Appl. Sci. 2019, 9, 4500; doi:10.3390/app9214500 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7424-154X
http://dx.doi.org/10.3390/app9214500
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/21/4500?type=check_update&version=3

Appl. Sci. 2019, 9, 4500 2 of 16

images and used a simple classifier, which is called the rectangle method. Liu et al. [14] developed
a texture classification technique with a salient local binary pattern. Liu et al. [15] used a weighted
local binary descriptor. Dev et al. [16] proposed a modified texton-based approach that integrated
both color and texture information to categorize cloud image patches. Gan et al. [17] used duplex
norm-bounded sparse coding to classify cloud type; they extracted local descriptors from an input
cloud image and then formed a holistic representation leveraging normal-bounded sparse coding and
max-pooling strategy. Luo et al. [18] combined texture feature and manifold features; the manifold
features extracted on symmetric positive define (SPD) matrix space that can describe the non-Euclidean
geometric characteristics of the infrared images; then, used a support vector machine (SVM) classifier.
Luo et al. also [19] proposed manifold kernel sparse coding and dictionary learning with three steps:
feature extraction, dictionary learning, and classification. Wang et al. [20] proposed a feature extraction
method with a local binary pattern. However, most of the traditional machine learning approaches
which are based on hand-crafted features rely on careful choice of features, and it is necessary to
find their empirical parameters; and accurate cloud classification of these methods has not been
achieved satisfactorily.

In recent times, the revolution of computing capacity has supported the development of deep
learning; in particular, deep learning with convolutional neural network (CNN) has shown outstanding
performance in image classification [21]. CNN models are able to extract features from the image data,
so there is no need for any feature extraction method. Ye et al. [22,23] improved feature extraction
using a CNN by resorting to the deep convolutional visual features and the Fisher vector and then
used an SVM classifier. Shi et al. [24] proposed a CNN model to extract features using different pooling
strategies and used a multi-label linear SVM classifier. Zhang et al. [25] used a trained CNN to extract
local features from part summing maps based on feature maps called deep visual information for
multi-view ground-based cloud recognition. Phung and Rhee [26] proposed a CNN model and some
regularization methods to deal with small datasets. Zhang et al. [27] proposed a CNN model that
evolved from AlexNet [21].

Generally, the deep learning approaches that used CNNs achieved better results than traditional
machine learning approaches; however, most of the deep learning models need large data to train
due to the large number of parameters. Therefore, they cannot get high accuracy in the case of small
datasets. Phung and Rhee [26] alleviated this problem with some regularization methods. This paper
proposes a complete solution to achieve high classification accuracy on cloud images in small datasets
using the model average ensemble of convolutional neural networks.

The remainder of this paper is organized as follows. Section 2 presents the methodology of the
proposed approach. Section 3 describes the Singapore whole-sky imaging categories (SWIMCAT)
dataset and presents experiments; to evaluate our proposed model, we applied K-fold cross-validation.
We employ three metrics to measure performance: accuracy, F1 score, and Cohen’s kappa coefficient.
To have a look inside our model, network visualization with learned convolutional filters and feature
map are also illustrated. The discussions of the experiment results are presented in Section 4, and
finally, the conclusion is summarized in Section 5.

2. Methodology

2.1. CNN Model Design

In deep learning, CNNs are the most common networks used with image classification. CNNs
were inspired by the human visual system proposed by Fukushima [28] and LeCun et al. [29]. They are
state-of-the-art approaches for pattern recognition, object detection, and many other image applications.
In particular, in 2012, the champion of the ImageNet Large Scale Visual Recognition Challenge 2012
competition [30,31] was a deep CNN solution by Krizhevsky et al. [21] which demonstrated the great
power of deep CNNs.

Appl. Sci. 2019, 9, 4500 3 of 16

CNNs are very different from other pattern recognition algorithms in that CNNs combine
both feature extraction and classification [32]. Figure 1 shows an example of a simple schematic
representation of a basic CNN. This simple network consists of five different layers: an input layer, a
convolution layer, a pooling layer, a fully-connected layer, and an output layer. These layers are divided
into two parts: feature extraction and classification. Feature extraction consists of an input layer, a
convolution layer, and a pooling layer, while classification consists of a fully-connected layer and an
output layer. The input layer specifies a fixed size for the input images, which is resized if needed.
Then the image is convolved with multiple learned kernels using shared weights by convolution layer.
Next, the pooling layer reduces the image size while trying to maintain the contained information.
The outputs of the feature extraction are known as feature maps. The classification combines the
extracted features in the fully-connected layers. Finally, there exists one output neuron for each object
category in the output layer. The output of the classification part is the classification result.

Appl. Sci. 2019, 9, 4500 3 of 16

convolution layer, a pooling layer, a fully-connected layer, and an output layer. These layers are
divided into two parts: feature extraction and classification. Feature extraction consists of an input
layer, a convolution layer, and a pooling layer, while classification consists of a fully-connected layer
and an output layer. The input layer specifies a fixed size for the input images, which is resized if
needed. Then the image is convolved with multiple learned kernels using shared weights by
convolution layer. Next, the pooling layer reduces the image size while trying to maintain the
contained information. The outputs of the feature extraction are known as feature maps. The
classification combines the extracted features in the fully-connected layers. Finally, there exists one
output neuron for each object category in the output layer. The output of the classification part is the
classification result.

Figure 1. Schematic diagram of a basic convolutional neural network (CNN) architecture [26].

In real applications, the feature extraction part contains many convolution and pooling layers,
and the classification part also contains many fully connected layers. Common CNN architectures
have the following pattern [33]: 𝐼𝑁 => ሾ𝐶𝑂𝑁𝑉 => 𝑃𝑂𝑂𝐿? ሿ ∗ 𝑀 => ሾ𝐹𝐶ሿ ∗ 𝑁 => 𝑂𝑈𝑇, (1)

where IN denotes the input layer, CONV denotes the convolution layer, POOL denotes the pooling
layer, FC denotes the fully connected layer, and OUT denotes the output layer. M and N are integer
numbers, “*” indicates repetition and “?” indicates optional. The activations were not mentioned,
but by default the activation always follows the CONV and FC layers. In this research, we chose four
blocks of CONV layers and POOL layers in the feature extraction part and three FC layers in the
classification part, i.e., M = 4 and N = 3. The architecture of the proposed CNN model is shown in
Figure 2.

Figure 2. The proposed CNN model architecture.

The detailed parameters of the proposed CNN model architecture are shown in Table 1. We
applied 3 × 3 kernel sizes for all CONV layers and 2 × 2 window sizes for the all POOL layers. We use
32 filters for the first CONV layer, 64 filters for the second and third CONV layers and 16 filters for

Figure 1. Schematic diagram of a basic convolutional neural network (CNN) architecture [26].

In real applications, the feature extraction part contains many convolution and pooling layers,
and the classification part also contains many fully connected layers. Common CNN architectures
have the following pattern [33]:

IN => [CONV => POOL?] ∗M => [FC] ∗N => OUT, (1)

where IN denotes the input layer, CONV denotes the convolution layer, POOL denotes the pooling
layer, FC denotes the fully connected layer, and OUT denotes the output layer. M and N are integer
numbers, “*” indicates repetition and “?” indicates optional. The activations were not mentioned, but
by default the activation always follows the CONV and FC layers. In this research, we chose four blocks
of CONV layers and POOL layers in the feature extraction part and three FC layers in the classification
part, i.e., M = 4 and N = 3. The architecture of the proposed CNN model is shown in Figure 2.

Appl. Sci. 2019, 9, 4500 3 of 16

convolution layer, a pooling layer, a fully-connected layer, and an output layer. These layers are
divided into two parts: feature extraction and classification. Feature extraction consists of an input
layer, a convolution layer, and a pooling layer, while classification consists of a fully-connected layer
and an output layer. The input layer specifies a fixed size for the input images, which is resized if
needed. Then the image is convolved with multiple learned kernels using shared weights by
convolution layer. Next, the pooling layer reduces the image size while trying to maintain the
contained information. The outputs of the feature extraction are known as feature maps. The
classification combines the extracted features in the fully-connected layers. Finally, there exists one
output neuron for each object category in the output layer. The output of the classification part is the
classification result.

Figure 1. Schematic diagram of a basic convolutional neural network (CNN) architecture [26].

In real applications, the feature extraction part contains many convolution and pooling layers,
and the classification part also contains many fully connected layers. Common CNN architectures
have the following pattern [33]: 𝐼𝑁 => ሾ𝐶𝑂𝑁𝑉 => 𝑃𝑂𝑂𝐿? ሿ ∗ 𝑀 => ሾ𝐹𝐶ሿ ∗ 𝑁 => 𝑂𝑈𝑇, (1)

where IN denotes the input layer, CONV denotes the convolution layer, POOL denotes the pooling
layer, FC denotes the fully connected layer, and OUT denotes the output layer. M and N are integer
numbers, “*” indicates repetition and “?” indicates optional. The activations were not mentioned,
but by default the activation always follows the CONV and FC layers. In this research, we chose four
blocks of CONV layers and POOL layers in the feature extraction part and three FC layers in the
classification part, i.e., M = 4 and N = 3. The architecture of the proposed CNN model is shown in
Figure 2.

Figure 2. The proposed CNN model architecture.

The detailed parameters of the proposed CNN model architecture are shown in Table 1. We
applied 3 × 3 kernel sizes for all CONV layers and 2 × 2 window sizes for the all POOL layers. We use
32 filters for the first CONV layer, 64 filters for the second and third CONV layers and 16 filters for

Figure 2. The proposed CNN model architecture.

Appl. Sci. 2019, 9, 4500 4 of 16

The detailed parameters of the proposed CNN model architecture are shown in Table 1. We applied
3 × 3 kernel sizes for all CONV layers and 2 × 2 window sizes for the all POOL layers. We use 32
filters for the first CONV layer, 64 filters for the second and third CONV layers and 16 filters for the
fourth CONV layer. We use 784 neurons for the first FC layer and 16 neurons for the second FC layer.
We apply dropout [34] to the classification part. We specify a dropout probability of 0.25 between
the first and the second FC layers, and a dropout probability of 0.5 between the second and the third
FC layers.

Table 1. Detailed parameters of the designed model.

No. Layer Output Size Filter Size Stride Size Dropout

1. Input 125 × 125 × 3 - - -
2. Convolution 1 125 × 125 × 32 3 × 3 - -
3. Relu 125 × 125 × 32 - - -
4. Max pooling 62 × 62 × 32 - 2 × 2 -
5. Convolution 2 62 × 62 × 64 3 × 3 - -
6. Relu 62 × 62 × 64 - - -
7. Max pooling 31 × 31 × 64 - 2 × 2 -
8. Convolution 3 31 × 31 × 64 3 × 3 - -
9. Relu 31 × 31 × 64 - - -

10. Max pooling 15 × 15 × 64 - 2 × 2 -
11. Convolution 4 15 × 15 × 16 3 × 3 - -
12. Relu 15 × 15 × 16 - - -
13. Max pooling 7 × 7 × 16 - 2 × 2 -
14. Flatten 1 × 1 × 784 - - -
15. Fully connected 1 × 1 × 784 - - -
16. Relu 1 × 1 × 784 - - -
17. Dropout 1 × 1 × 784 - - 0.25
18. Fully connected 1 × 1 × 64 - - -
19. Relu 1 × 1 × 64 - - -
20. Dropout 1 × 1 × 64 - - 0.5
21. Fully connected 1 × 1 × 5 - - -
22. Softmax 1 × 1 × 5 - - -

2.2. Model Average Ensemble of CNN

Deep neural networks are nonlinear models that learn via a stochastic training mechanism, so they
are highly flexible and capable of learning complex relationships between variables and approximating
any mapping function for given training data. A drawback of this flexibility is that they are sensitive
to the specifics of the training data and random initialization. They may produce a different set of
weights each time they are trained. This is especially true with small datasets. The models with these
different weights produce different predictions. In other words, neural networks have a high variance.
A successful approach to overcome the high variance problem is ensemble learning [35,36].

In this research, we apply a model average ensemble to the designed CNN model in Section 2.1.
The model average ensemble of neural networks is shown in Figure 3. It consists of multiple neural
network models, and each model is trained with the same image data but different random initialization.
When classifying an input image, the image is passed to each network, and it classifies the image
independently. Final prediction is obtained by the combination of all the predictions from these models
by averaging.

We use model averaging to reduce the variance of the model, reduce the generalization error of
the model, and achieve higher accuracy than any single model. In this study, we propose an ensemble
of CNNs that includes 10 individual CNNs with the same model architecture. In each CNN model,
we used the model design described in the previous section, whose detailed information is shown in
Table 1.

Appl. Sci. 2019, 9, 4500 5 of 16
Appl. Sci. 2019, 9, 4500 5 of 16

Figure 3. An ensemble of neural networks.

2.3. Model Regularization

One of the most challenging problems in designing machine learning models is how to make
sure that the model will perform well not only on the training data, but also on new inputs. Two
common ways to overcome this problem are collecting more data and applying regularization.
During the design stage of our CNN model in Section 2.1, the dropout technique was introduced as a
regularization technique that works by modifying the network architecture. However, in this study,
only a small dataset is available, so more regularization is needed. We used two more regularization
methods, namely, L2 weight regularization and data augmentation.

2.3.1. L2 Weight Regularization

A common way to mitigate overfitting is to put constraints on the complexity of a network by
forcing its weights to take only small values, which makes the distribution of weight values more
regular. It is done by adding to the loss function of the network a cost associated with having large
weights. In this study, we apply L2 regularization with L2 = 0.0002.

2.3.2. Data Augmentation

Data augmentation is a regularization method that generates more training data from the
original data. It is performed by applying random geometric transforms such that the class labels are
not changed. In this study, we applied data augmentation similar to that by Phung and Rhee [26].
The detailed parameters of each augmentation are shown in Table 2. We choose a rotation range of
40 degrees, and a translation range of 20% for both vertical and horizontal. We also choose shear
transformation and zoom transformation with the range of 20%. Finally, a horizontal flip and a
vertical flip are applied as well. We only perform augmentation during the training and do not
perform augmentation during the validation and testing.

Table 2. Augmentation parameters [26].

No. Augmentation Parameter
23. Rotation 40°
24. Width shift 20%
25. Height shift 20%
26. Shear 20%
27. Zoom 20%
28. Horizontal flip Yes
29. Vertical flip Yes

Figure 3. An ensemble of neural networks.

2.3. Model Regularization

One of the most challenging problems in designing machine learning models is how to make sure
that the model will perform well not only on the training data, but also on new inputs. Two common
ways to overcome this problem are collecting more data and applying regularization. During the
design stage of our CNN model in Section 2.1, the dropout technique was introduced as a regularization
technique that works by modifying the network architecture. However, in this study, only a small
dataset is available, so more regularization is needed. We used two more regularization methods,
namely, L2 weight regularization and data augmentation.

2.3.1. L2 Weight Regularization

A common way to mitigate overfitting is to put constraints on the complexity of a network by
forcing its weights to take only small values, which makes the distribution of weight values more
regular. It is done by adding to the loss function of the network a cost associated with having large
weights. In this study, we apply L2 regularization with L2 = 0.0002.

2.3.2. Data Augmentation

Data augmentation is a regularization method that generates more training data from the original
data. It is performed by applying random geometric transforms such that the class labels are not
changed. In this study, we applied data augmentation similar to that by Phung and Rhee [26].
The detailed parameters of each augmentation are shown in Table 2. We choose a rotation range of
40 degrees, and a translation range of 20% for both vertical and horizontal. We also choose shear
transformation and zoom transformation with the range of 20%. Finally, a horizontal flip and a vertical
flip are applied as well. We only perform augmentation during the training and do not perform
augmentation during the validation and testing.

Table 2. Augmentation parameters [26].

No. Augmentation Parameter

23. Rotation 40◦

24. Width shift 20%
25. Height shift 20%
26. Shear 20%
27. Zoom 20%
28. Horizontal flip Yes
29. Vertical flip Yes

Appl. Sci. 2019, 9, 4500 6 of 16

3. Experiments

3.1. SWIMCAT Dataset

Although there is much research in this area, the public database in this area is very rare. Recently,
Dev et al. [16] introduced a database called Singapore Whole-Sky Imaging CATegories (SWIMCAT).
The images were captured in Singapore using the Wide Angle High-Resolution Sky Imaging System
(WAHRSIS) and a calibrated ground-based whole sky imager [37].

As specified in Table 3, the dataset has 784 images, which are categorized into five distinct
categories. They are clear sky, patterned clouds, thick dark clouds, thick white clouds, and veil clouds.
All images have the dimension of 125 × 125 pixels. These categories are defined based on the basics of
visual characteristics of sky and cloud conditions and consultation with experts from the Singapore
Meteorological Services [16,37]. Figure 4 shows some random images of each class from the SWIMCAT
dataset in rows.

Appl. Sci. 2019, 9, 4500 6 of 16

3. Experiments

3.1. SWIMCAT Dataset

Although there is much research in this area, the public database in this area is very rare.
Recently, Dev et al. [16] introduced a database called Singapore Whole-Sky Imaging CATegories
(SWIMCAT). The images were captured in Singapore using the Wide Angle High-Resolution Sky
Imaging System (WAHRSIS) and a calibrated ground-based whole sky imager [37].

As specified in Table 3, the dataset has 784 images, which are categorized into five distinct
categories. They are clear sky, patterned clouds, thick dark clouds, thick white clouds, and veil
clouds. All images have the dimension of 125 × 125 pixels. These categories are defined based on the
basics of visual characteristics of sky and cloud conditions and consultation with experts from the
Singapore Meteorological Services [16,37]. Figure 4 shows some random images of each class from
the SWIMCAT dataset in rows.

Figure 4. Sample images from the Singapore whole-sky imaging categories (SWIMCAT) dataset.

Table 3. SWIMCAT dataset.

No. Class Type Number of Image
1. A Clear Sky 224
2. B Patterned clouds 89
3. C Thick dark clouds 251
4. D Thick white clouds 135

Figure 4. Sample images from the Singapore whole-sky imaging categories (SWIMCAT) dataset.

Appl. Sci. 2019, 9, 4500 7 of 16

Table 3. SWIMCAT dataset.

No. Class Type Number of Image

1. A Clear Sky 224
2. B Patterned clouds 89
3. C Thick dark clouds 251
4. D Thick white clouds 135
5. E Veil clouds 85

3.2. Experimental Configuration

The configuration used for these experiments:
CPU: Intel core i5-7500 (3.40 GHz);
Memory: 16 GB DDR4;
GPU: NVIDA GetFore GTX-1060 6 GB memory;
The software used is the following:
Window 10 professional;
Anaconda IDE with Python 3.6;
All of our experiments are conducted using the Keras deep learning library [38] with a

TensorFlow [39] back-end, a powerful framework for deep learning. We conduct the experiment by
creating an ensemble model from 10 single models. We trained the proposed network using the Adam
optimizer [40] with learning rate of 0.0001, a batch size of eight images, and we trained for 1000 epochs.
The best model configuration as evaluated by the loss of the test set is chosen.

3.3. K-Fold Cross-Validation

To evaluate our proposed model, we applied K-fold cross-validation. We randomly split the data
into five partitions of equal size (k = 5). For each partition n, we trained the proposed model on the
remaining four partitions, and tested it on partition n. The final score was the average of all five scores
obtained. The schematic of K-fold validation is shown in Figure 5.

Appl. Sci. 2019, 9, 4500 7 of 16

5. E Veil clouds 85

3.2. Experimental Configuration

The configuration used for these experiments:
CPU: Intel core i5-7500 (3.40 GHz);
Memory: 16 GB DDR4;
GPU: NVIDA GetFore GTX-1060 6 GB memory;
The software used is the following:
Window 10 professional;
Anaconda IDE with Python 3.6;
All of our experiments are conducted using the Keras deep learning library [38] with a

TensorFlow [39] back-end, a powerful framework for deep learning. We conduct the experiment by
creating an ensemble model from 10 single models. We trained the proposed network using the
Adam optimizer [40] with learning rate of 0.0001, a batch size of eight images, and we trained for
1000 epochs. The best model configuration as evaluated by the loss of the test set is chosen.

3.3. K-Fold Cross-Validation

To evaluate our proposed model, we applied K-fold cross-validation. We randomly split the
data into five partitions of equal size (k = 5). For each partition n, we trained the proposed model on
the remaining four partitions, and tested it on partition n. The final score was the average of all five
scores obtained. The schematic of K-fold validation is shown in Figure 5.

Figure 5. Schematic of K-fold cross-validation.

3.4. Performance Metrics

In this work, we consider the following performance measures: accuracy (A), F1 score (F1), and
Cohen’s kappa coefficient (K) to measure performance. True positives (tp), true negatives (tn), false
positive (fp), and false negative (fn) are used to calculate accuracy and F1 score. The calculations are
as follows.

• Accuracy

The accuracy performs evaluation of the classification algorithm. It is defined as: 𝐴 = ∑ 𝑡𝑝௖஼௖𝑁 , (2)

where 𝑡𝑝௖ is the number of tp for class c, C is the number of classes, and N is total number of
instances.

• F1 score

Figure 5. Schematic of K-fold cross-validation.

3.4. Performance Metrics

In this work, we consider the following performance measures: accuracy (A), F1 score (F1), and
Cohen’s kappa coefficient (K) to measure performance. True positives (tp), true negatives (tn), false
positive (fp), and false negative (fn) are used to calculate accuracy and F1 score. The calculations are
as follows.

Appl. Sci. 2019, 9, 4500 8 of 16

• Accuracy
The accuracy performs evaluation of the classification algorithm. It is defined as:

A =

∑C
c tpc

N
, (2)

where tpc is the number of tp for class c, C is the number of classes, and N is total number of instances.

• F1 score

F1 score is a measure of test’s accuracy that considers both the precision and recall of the test to
compute the score. It is given by the formula [41]:

F1 =
2tp

2tp + f n + f p
. (3)

• Cohen’s kappa

Cohen’s kappa measures the degree of agreement, or disagreement between two people observing
the same phenomenon [42]. In our experiment, we calculated Cohen’s kappa from the confusion
matrix [43]:

K =
N
∑m

i=1 CMii −N
∑m

i=1 CiactuCipred

N2 −N
∑m

i=1 CiactuCipred
, (4)

where CMii represent the diagonal elements of the confusion matrix, where Ciactu represent the total
actual instances of class Ci, and Cipred represent the total predicted instances of class Ci, and N is total
number of instances in the test set.

3.5. Network Visualization

To have a better understanding of how the proposed network performs, we show both the learned
convolutional filters and feature maps of the proposed model. The learned filters display visual
patterns for each layer. To demonstrate these visual patterns, we used image size 125 × 125 for both
input image and output image. They are shown in Figure 6 where CONV1, CONV2, CONV3, and
CONV4 are immediate layers no. 2, 5, 8, and 11 in Table 1, respectively. The filters from the first
layer show simple textures and colors, the deeper layers resemble textures found in the raw images.
The feature map visualization of each layer is seen in Figure 7. The shallow layers tend to capture the
texture information, and the deeper layers reflect the high-level semantic characteristics. The CONV1
layer (the shallow layer) clearly visualizes the original shape of different clouds. The CONV4 layer
(deep layer) loses the detail information but it visualizes the edges of different clouds.

Appl. Sci. 2019, 9, 4500 8 of 16

F1 score is a measure of test’s accuracy that considers both the precision and recall of the test to
compute the score. It is given by the formula [41]: 𝐹1 = 2𝑡𝑝2𝑡𝑝 ൅ 𝑓𝑛 ൅ 𝑓𝑝. (3)

• Cohen’s kappa

Cohen’s kappa measures the degree of agreement, or disagreement between two people
observing the same phenomenon [42]. In our experiment, we calculated Cohen’s kappa from the
confusion matrix [43]: 𝐾 = 𝑁∑ 𝐶𝑀௜௜௠௜ୀଵ െ 𝑁∑ 𝐶𝑖௔௖௧௨𝐶𝑖௣௥௘ௗ௠௜ୀଵ𝑁ଶ െ 𝑁∑ 𝐶𝑖௔௖௧௨𝐶𝑖௣௥௘ௗ௠௜ୀଵ , (4)

where 𝐶𝑀௜௜ represent the diagonal elements of the confusion matrix, where 𝐶𝑖௔௖௧௨ represent the
total actual instances of class Ci, and 𝐶𝑖௣௥௘ௗ represent the total predicted instances of class Ci, and N
is total number of instances in the test set.

3.5. Network Visualization

To have a better understanding of how the proposed network performs, we show both the
learned convolutional filters and feature maps of the proposed model. The learned filters display
visual patterns for each layer. To demonstrate these visual patterns, we used image size 125 × 125 for
both input image and output image. They are shown in Figure 6 where CONV1, CONV2, CONV3,
and CONV4 are immediate layers no. 2, 5, 8, and 11 in Table 1, respectively. The filters from the first
layer show simple textures and colors, the deeper layers resemble textures found in the raw images.
The feature map visualization of each layer is seen in Figure 7. The shallow layers tend to capture the
texture information, and the deeper layers reflect the high-level semantic characteristics. The
CONV1 layer (the shallow layer) clearly visualizes the original shape of different clouds. The
CONV4 layer (deep layer) loses the detail information but it visualizes the edges of different clouds.

(a) (b)

Figure 6. Cont.

Appl. Sci. 2019, 9, 4500 9 of 16

Appl. Sci. 2019, 9, 4500 9 of 16

(c) (d)

Figure 6. Visualizing learned convolutional filters: (a) Convolutional filters of CONV1; (b)
Convolutional filters of CONV2; (c) Convolutional filters of CONV3; (d) Convolutional filters of
CONV4.

Figure 7. Visualization of feature maps from four CONV blocks (denoted CONV1-9: channel number
9 on CONV block 1).

Figure 6. Visualizing learned convolutional filters: (a) Convolutional filters of CONV1;
(b) Convolutional filters of CONV2; (c) Convolutional filters of CONV3; (d) Convolutional filters
of CONV4.

Appl. Sci. 2019, 9, 4500 9 of 16

(c) (d)

Figure 6. Visualizing learned convolutional filters: (a) Convolutional filters of CONV1; (b)
Convolutional filters of CONV2; (c) Convolutional filters of CONV3; (d) Convolutional filters of
CONV4.

Figure 7. Visualization of feature maps from four CONV blocks (denoted CONV1-9: channel number
9 on CONV block 1).

Figure 7. Visualization of feature maps from four CONV blocks (denoted CONV1-9: channel number 9
on CONV block 1).

4. Results and Discussion

We performed our experiments with the configuration described in the previous section.
We describe the performance of our model in confusion matrixes; five confusion matrixes for five folds

Appl. Sci. 2019, 9, 4500 10 of 16

are shown in Figure 8. In each confusion matrix, each column represents the instances in a predicted
class, and each row represents the instances in the actual class. Values on the matrix diagonal indicate
correct prediction, and the values outside the matrix diagonal show incorrect prediction. A summary
of the experimental results is given in Table 4. We obtained an average accuracy of 99.5%. In all five
folds, a classification accuracy of 100% was achieved for the sky, patterned clouds, and thick dark
cloud classes. Fold 5 achieved an accuracy of 100% for all classes.

Appl. Sci. 2019, 9, 4500 10 of 16

4. Results and Discussion

We performed our experiments with the configuration described in the previous section. We
describe the performance of our model in confusion matrixes; five confusion matrixes for five folds
are shown in Figure 8. In each confusion matrix, each column represents the instances in a predicted
class, and each row represents the instances in the actual class. Values on the matrix diagonal
indicate correct prediction, and the values outside the matrix diagonal show incorrect prediction. A
summary of the experimental results is given in Table 4. We obtained an average accuracy of 99.5%.
In all five folds, a classification accuracy of 100% was achieved for the sky, patterned clouds, and
thick dark cloud classes. Fold 5 achieved an accuracy of 100% for all classes.

(a) (b)

(c) (d)

(e)

Figure 8. Fold cross validation results expressed in confusion matrixes: (a) Confusion matrix
showing results of test on fold 1; (b) Confusion matrix showing results of test on fold 2; (c) Confusion
matrix showing results of test of fold 3; (d) Confusion matrix showing results of test on fold 4; (e)
Confusion matrix showing results of test on fold 5.

Figure 8. Fold cross validation results expressed in confusion matrixes: (a) Confusion matrix showing
results of test on fold 1; (b) Confusion matrix showing results of test on fold 2; (c) Confusion matrix
showing results of test of fold 3; (d) Confusion matrix showing results of test on fold 4; (e) Confusion
matrix showing results of test on fold 5.

Appl. Sci. 2019, 9, 4500 11 of 16

Table 4. Experiment results.

No. Fold Accuracy F1 Score Cohen’s Kappa

1. Fold 1 0.994 0.992 0.992
2. Fold 2 0.994 0.990 0.992
3. Fold 3 0.994 0.990 0.992
4. Fold 4 0.994 0.994 0.992
5. Fold 5 1.000 1.000 1.000
6. Average 0.995 0.993 0.993

Here we discuss the effect of some parameters on the proposed model during the training, and we
compare our results to the previous methods. Two hyper-parameters are considered in our experiments:
the learning rate of the optimizer and the batch size. The effect of the number of models in the ensemble
is also discussed. One of the most important hyper-parameters of neural networks is the learning rate,
which controls how quickly a neural network model learns a problem; Figure 9 shows the effect of
learning rate parameters on training and validation history. With a learning rate of 0.001, oscillating
problems still occur in both training and validation curves. The reason is that this learning rate is still
large, it is possible to make large weights, and then cause oscillation. In Figure 9, the oscillation is
seen clearly at the 415th epoch. However, when we reduce the learning rate from 0.001 to a rate of
0.0001, the performance of both the training and the validation improve significantly and are very
stable. Figure 10 demonstrates the effect of batch size on the training and validation history. With a big
batch size, such as the batch size of 64, there are some small oscillating problems in the early epochs,
and after a long time of training, these oscillations are eliminated. With a small batch size, such as the
batch size of eight, the training process is smooth and converges faster. In summary, a smaller batch
size produces a faster training process, but it does not have much effect on the accuracy.

Appl. Sci. 2019, 9, 4500 11 of 16

Table 4. Experiment results.

No. Fold Accuracy F1 Score Cohen’s Kappa
1. Fold 1 0.994 0.992 0.992
2. Fold 2 0.994 0.990 0.992
3. Fold 3 0.994 0.990 0.992
4. Fold 4 0.994 0.994 0.992
5. Fold 5 1.000 1.000 1.000
6. Average 0.995 0.993 0.993

Here we discuss the effect of some parameters on the proposed model during the training, and
we compare our results to the previous methods. Two hyper-parameters are considered in our
experiments: the learning rate of the optimizer and the batch size. The effect of the number of models
in the ensemble is also discussed. One of the most important hyper-parameters of neural networks is
the learning rate, which controls how quickly a neural network model learns a problem; Figure 9
shows the effect of learning rate parameters on training and validation history. With a learning rate
of 0.001, oscillating problems still occur in both training and validation curves. The reason is that this
learning rate is still large, it is possible to make large weights, and then cause oscillation. In Figure 9,
the oscillation is seen clearly at the 415th epoch. However, when we reduce the learning rate from
0.001 to a rate of 0.0001, the performance of both the training and the validation improve
significantly and are very stable. Figure 10 demonstrates the effect of batch size on the training and
validation history. With a big batch size, such as the batch size of 64, there are some small oscillating
problems in the early epochs, and after a long time of training, these oscillations are eliminated. With
a small batch size, such as the batch size of eight, the training process is smooth and converges faster.
In summary, a smaller batch size produces a faster training process, but it does not have much effect
on the accuracy.

(a) (b)

(c) (d)

Figure 9. Effect of learning rate: (a) Training accuracy plot; (b) Validation accuracy plot; (c) Training
loss plot; (d) Validation loss plot.

Figure 9. Effect of learning rate: (a) Training accuracy plot; (b) Validation accuracy plot; (c) Training
loss plot; (d) Validation loss plot.

Appl. Sci. 2019, 9, 4500 12 of 16
Appl. Sci. 2019, 9, 4500 12 of 16

(a) (b)

(c) (d)

Figure 10. Effect of batch size: (a) Training accuracy plot; (b) Validation accuracy plot; (c) Training
loss plot; (d) Validation loss plot.

To evaluate the effect of the number of models in the ensemble, we created different ensembles
with the number of models ranging from one to ten and evaluated the performance of each ensemble
on the test set. We also evaluated the performance of each of the ten standalone models on the test
set. Figure 11 shows the accuracies of the accumulative ensemble models indicated by the blue stars
and curve as well as the accuracies of the unique standalone models indicated by the red circles.
When there is one model, the results of the ensemble model and the single model are always
identical, and as the size of the model increases, the advantages of the ensemble are clearly revealed.
The traditional ensemble method, such as random forests [44,45], typically consists of 30 decision
trees, and in many cases the number of decision trees is over 100. However, the number of models in
a CNN ensemble is normally from 5 to 10 because more models make it more time consuming and
computationally expensive to train. As shown in Figure 11, when there are five or more models, the
blue curves of the ensembles showed accuracies that are better or comparable to those of single
models in almost all cases. Fold 1, fold 2, and fold 5 had the same characteristics. The use of an
ensemble helps to achieve high accuracies and keep accuracies stabilized better than randomly
selected single models whose accuracies are sometimes high and sometimes a little lower. In fold 3,
increasing the model number of the ensemble does not only increase accuracy, but it also maintains a
stable state. In the case of fold 4, when the number of models in the ensemble increased, the accuracy
also is increased; however, many single models with lower accuracies added make the accuracy of
the ensemble models a little lower. Nonetheless, the ensemble accuracy is still higher than almost
any randomly selected single models.

(a) (b)

Figure 10. Effect of batch size: (a) Training accuracy plot; (b) Validation accuracy plot; (c) Training loss
plot; (d) Validation loss plot.

To evaluate the effect of the number of models in the ensemble, we created different ensembles
with the number of models ranging from one to ten and evaluated the performance of each ensemble
on the test set. We also evaluated the performance of each of the ten standalone models on the test set.
Figure 11 shows the accuracies of the accumulative ensemble models indicated by the blue stars and
curve as well as the accuracies of the unique standalone models indicated by the red circles. When there
is one model, the results of the ensemble model and the single model are always identical, and as
the size of the model increases, the advantages of the ensemble are clearly revealed. The traditional
ensemble method, such as random forests [44,45], typically consists of 30 decision trees, and in many
cases the number of decision trees is over 100. However, the number of models in a CNN ensemble
is normally from 5 to 10 because more models make it more time consuming and computationally
expensive to train. As shown in Figure 11, when there are five or more models, the blue curves of
the ensembles showed accuracies that are better or comparable to those of single models in almost all
cases. Fold 1, fold 2, and fold 5 had the same characteristics. The use of an ensemble helps to achieve
high accuracies and keep accuracies stabilized better than randomly selected single models whose
accuracies are sometimes high and sometimes a little lower. In fold 3, increasing the model number of
the ensemble does not only increase accuracy, but it also maintains a stable state. In the case of fold 4,
when the number of models in the ensemble increased, the accuracy also is increased; however, many
single models with lower accuracies added make the accuracy of the ensemble models a little lower.
Nonetheless, the ensemble accuracy is still higher than almost any randomly selected single models.

Appl. Sci. 2019, 9, 4500 12 of 16

(a) (b)

(c) (d)

Figure 10. Effect of batch size: (a) Training accuracy plot; (b) Validation accuracy plot; (c) Training
loss plot; (d) Validation loss plot.

To evaluate the effect of the number of models in the ensemble, we created different ensembles
with the number of models ranging from one to ten and evaluated the performance of each ensemble
on the test set. We also evaluated the performance of each of the ten standalone models on the test
set. Figure 11 shows the accuracies of the accumulative ensemble models indicated by the blue stars
and curve as well as the accuracies of the unique standalone models indicated by the red circles.
When there is one model, the results of the ensemble model and the single model are always
identical, and as the size of the model increases, the advantages of the ensemble are clearly revealed.
The traditional ensemble method, such as random forests [44,45], typically consists of 30 decision
trees, and in many cases the number of decision trees is over 100. However, the number of models in
a CNN ensemble is normally from 5 to 10 because more models make it more time consuming and
computationally expensive to train. As shown in Figure 11, when there are five or more models, the
blue curves of the ensembles showed accuracies that are better or comparable to those of single
models in almost all cases. Fold 1, fold 2, and fold 5 had the same characteristics. The use of an
ensemble helps to achieve high accuracies and keep accuracies stabilized better than randomly
selected single models whose accuracies are sometimes high and sometimes a little lower. In fold 3,
increasing the model number of the ensemble does not only increase accuracy, but it also maintains a
stable state. In the case of fold 4, when the number of models in the ensemble increased, the accuracy
also is increased; however, many single models with lower accuracies added make the accuracy of
the ensemble models a little lower. Nonetheless, the ensemble accuracy is still higher than almost
any randomly selected single models.

(a) (b)

Figure 11. Cont.

Appl. Sci. 2019, 9, 4500 13 of 16
Appl. Sci. 2019, 9, 4500 13 of 16

(c) (d)

(e)

Figure 11. Accuracy of the ensemble model vs. single model. The red circles show accuracy of the
single models and the blue stars and curve show accuracy of the ensemble model: (a) Fold 1; (b) Fold
2; (c) Fold 3; (d) Fold 4; (e) Fold 5.

Table 5 reports the comparison of the accuracy, F1 score, and Cohen’s kappa of our approach
and other methods. In this study, we compare our experimental result with all other previous
studies that experimented with the same dataset (SWIMCAT). The performance metrics are
calculated using confusion matrix data that were published in previous research (in the case of Shi et
al. [24], the detail confusion matrix data was not provided; only accuracy is compared). The first
three papers [20], [16], and [19] applied traditional machine learning approaches and they obtained
accuracies of 91.1%, 95.1%, and 98.3%, respectively. The other papers [26], [27], and [24] applied
deep learning with CNN approaches. These deep learning approaches got better results than the
traditional machine learning ones, achieving accuracies of 98.6%~98.7%. Along with accuracy, the F1
score and the Cohen’s kappa of the deep learning approaches are also better than the traditional
machine learning approaches. Our proposed method is an optimized CNN model with
regularization techniques and involves the ensemble method. The accuracy of our model is greater
than that of all other methods and it reaches an almost perfect accuracy of 99.5%, both F1 score and
Cohen’s kappa got 0.993.

Table 5. Comparison with previous publications.

No. Method Accuracy F1 Score Cohen’s Kappa
1. Wang et al. [20] 0.911 0.897 0.888
2. Dev et al. [16] 0.951 0.953 0.939
3. Luo et al. [19] 0.983 0.984 0.979
4. Phung and Rhee [26] 0.986 0.982 0.982
5. Zhang et al. [27] 0.986 0.987 0.983
6. Shi et al. [24] 0.987 - -
7. Proposed method 0.995 0.993 0.993

5. Conclusions

This paper presents an ensemble of convolutional neural networks for classification of cloud
image patches on small datasets. We designed a CNN model with a suitable number of
convolutional layers and fully connected layers for small datasets. The central problem of small
datasets is overfitting, for which we applied two regularization techniques—L2 weight
regularization and data augmentation—to avoid overfitting and to increase generalization of the
model. To further improve the classification performance, we applied a model average ensemble,
which separately trained several different models with the same architecture and then combined

Figure 11. Accuracy of the ensemble model vs. single model. The red circles show accuracy of the
single models and the blue stars and curve show accuracy of the ensemble model: (a) Fold 1; (b) Fold 2;
(c) Fold 3; (d) Fold 4; (e) Fold 5.

Table 5 reports the comparison of the accuracy, F1 score, and Cohen’s kappa of our approach
and other methods. In this study, we compare our experimental result with all other previous studies
that experimented with the same dataset (SWIMCAT). The performance metrics are calculated using
confusion matrix data that were published in previous research (in the case of Shi et al. [24], the detail
confusion matrix data was not provided; only accuracy is compared). The first three papers [20], [16],
and [19] applied traditional machine learning approaches and they obtained accuracies of 91.1%,
95.1%, and 98.3%, respectively. The other papers [26], [27], and [24] applied deep learning with CNN
approaches. These deep learning approaches got better results than the traditional machine learning
ones, achieving accuracies of 98.6%~98.7%. Along with accuracy, the F1 score and the Cohen’s kappa
of the deep learning approaches are also better than the traditional machine learning approaches.
Our proposed method is an optimized CNN model with regularization techniques and involves the
ensemble method. The accuracy of our model is greater than that of all other methods and it reaches
an almost perfect accuracy of 99.5%, both F1 score and Cohen’s kappa got 0.993.

Table 5. Comparison with previous publications.

No. Method Accuracy F1 Score Cohen’s Kappa

1. Wang et al. [20] 0.911 0.897 0.888
2. Dev et al. [16] 0.951 0.953 0.939
3. Luo et al. [19] 0.983 0.984 0.979
4. Phung and Rhee [26] 0.986 0.982 0.982
5. Zhang et al. [27] 0.986 0.987 0.983
6. Shi et al. [24] 0.987 - -
7. Proposed method 0.995 0.993 0.993

5. Conclusions

This paper presents an ensemble of convolutional neural networks for classification of cloud image
patches on small datasets. We designed a CNN model with a suitable number of convolutional layers
and fully connected layers for small datasets. The central problem of small datasets is overfitting, for
which we applied two regularization techniques—L2 weight regularization and data augmentation—to
avoid overfitting and to increase generalization of the model. To further improve the classification
performance, we applied a model average ensemble, which separately trained several different models
with the same architecture and then combined their predictions for testing. The reason why the model
average ensemble works so well is that different CNN models will usually not make all the same

Appl. Sci. 2019, 9, 4500 14 of 16

errors on the test set. The difference in errors will be more in the case of small datasets, so different
models compensate for errors of the other ones. Therefore, a model average ensemble of CNN models
performs better than any random selected model of its members. We experimented with SWIMCAT,
which is a small dataset with only 784 images. The small dataset is also sensitive to the specifics of
the training data and random initialization. To ensure that the proposed model is robust, we applied
k-fold cross-validation in the experiments, and employed F1 score and Cohen’s kappa coefficient for
performance evaluation. The results of all the experiments showed very high classification accuracy.
With a minimum accuracy of 99.4% and maximum accuracy of 100%, the overall average accuracy of
our model was 99.5%. Both F1 score and Cohen’s kappa coefficient are 0.993. The results prove that
the proposed model not only achieves a high accuracy but is also robust. Compared with all other
previous methods, the proposed method achieved the best results.

Author Contributions: Conceptualization, V.H.P.; Methodology, V.H.P.; Project administration, E.J.R.; Resources,
E.J.R.; Writing-original draft, V.H.P.; Writing-review & editing, V.H.P. and E.J.R.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this paper:
Abbreviations Meaning
Adam Adaptive moment estimation
CNN Convolutional neural networks
SVM Support Vector Machine
SWIMCAT Singapore Whole-sky Imaging CATegories
SPD Symmetric Positive Define
WAHRSIS Wide Angle High-Resolution Sky Imaging System

References

1. Naud, C.M.; Booth, J.F.; Del Genio, A. The relationship between boundary layer stability and cloud cover in
the post-cold frontal region. J. Clim. 2016, 29, 8129–8149. [CrossRef] [PubMed]

2. Cui, F.; Ju, R.R.; Ding, Y.Y.; Ding, H.; Cheng, X. Prediction of regional global horizontal irradiance combining
ground-based cloud observation and numerical weather prediction. Adv. Mater. Res. 2015, 1073, 388–394.
[CrossRef]

3. Liu, Y.; Key, J.R.; Wang, X. The influence of changes in cloud cover on recent surface temperature trends in
the arctic. J. Clim. 2008, 21, 705–715. [CrossRef]

4. Hartmann, D.L.; Ockert-Bell, M.E.; Michelsen, M.L. The effect of cloud type on earth’s energy balance: Global
analysis. J. Clim. 1992, 5, 1281–1304. [CrossRef]

5. Yuan, F.; Lee, Y.H.; Meng, Y.S. Comparison of radio-sounding profiles for cloud attenuation analysis in the
tropical region. In Proceedings of the IEEE Antennas and Propagation Society International Symposium
(APSURSI), Memphis, TN, USA, 6–11 July 2014. [CrossRef]

6. Pagès, D.; Calbò, J.; Long, C.; González, J.; Badosa, J. Comparison of several ground-based cloud detection
techniques. In Proceedings of the European Geophysical Society XXVII General Assembly, Nice, France,
21–26 April 2002.

7. Hu, J.; Chen, Z.; Yang, M.; Zhang, R.; Cui, Y. A multiscale fusion convolutional neural network for Plant Leaf
Recognition. IEEE Signal Process. Lett. 2018, 25, 853–857. [CrossRef]

8. Wu, X.; Zhan, C.; Lai, Y.K.; Cheng, M.M.; Yang, J. IP102: A large-scale benchmark dataset for insect pest
recognition. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 16–20 June 2019.

9. Singh, M.; Glennen, M. Automated ground-based cloud recognition. Pattern Anal. Appl. 2005, 8, 258–271.
[CrossRef]

10. Calbó, J.; Sabburg, J. Feature extraction from whole-sky ground-based images for cloud-type recognition.
J. Atmos. Ocean. Technol. 2008, 25, 3–14. [CrossRef]

http://dx.doi.org/10.1175/JCLI-D-15-0700.1
http://www.ncbi.nlm.nih.gov/pubmed/29983481
http://dx.doi.org/10.4028/www.scientific.net/AMR.1073-1076.388
http://dx.doi.org/10.1175/2007JCLI1681.1
http://dx.doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2
http://dx.doi.org/10.1109/APS.2014.6904461
http://dx.doi.org/10.1109/LSP.2018.2809688
http://dx.doi.org/10.1007/s10044-005-0007-5
http://dx.doi.org/10.1175/2007JTECHA959.1

Appl. Sci. 2019, 9, 4500 15 of 16

11. Heinle, A.; Macke, A.; Srivastav, A. Automatic cloud classification of whole sky images. Atmos. Meas. Tech.
2010, 3, 557–567. [CrossRef]

12. Liu, S.; Wang, C.; Xiao, B.; Zhang, Z.; Shao, Y. Illumination-invariant completed LTP descriptor for cloud
classification. In Proceedings of the 5th International Congress on Image and Signal Processing, Chongqing,
China, 16–18 October 2012. [CrossRef]

13. Liu, L.; Sun, X.J.; Chen, F.; Zhao, S.J.; Gao, T.C. Cloud classification based on structure features on infrared
images. J. Atmos. Ocean. Technol. 2011, 28, 410–497. [CrossRef]

14. Liu, S.; Wang, C.; Xiao, B.; Zhang, Z.; Shao, Y. Salient local binary pattern for ground-based cloud classification.
Acta Meteorol. Sin. 2013, 27, 211–220. [CrossRef]

15. Liu, S.; Zhang, Z.; Mei, X. Ground-based cloud classification using weighted local binary patterns. J. Appl.
Remote Sens. 2015, 9, 905062. [CrossRef]

16. Dev, S.; Lee, Y.H.; Winkler, S. Categorization of cloud image patches using an improved texton-based
approach. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Quebec City, QC,
Canada, 27–30 September 2015.

17. Gan, J.R.; Lu, W.T.; Li, Q.Y.; Zhang, Z.; Yang, J.; Ma, Y.; Yao, W. Cloud type classification of total-sky
images using duplex norm-bounded sparse coding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017,
10, 3360–3372. [CrossRef]

18. Luo, Q.X.; Meng, Y.; Liu, L.; Zhao, X.F.; Zhou, Z.M. Cloud classification of ground-based infrared images
combining manifold and texture features. Atmos. Meas. Technol. 2018, 11, 5351–5361. [CrossRef]

19. Luo, Q.X.; Zhou, Z.M.; Meng, Y.; Li, Q.; Li, M.Y. Ground-based cloud-type recognition using manifold kernel
sparse coding and dictionary learning. Adv. Meteorol. 2018, 2018, 9684206. [CrossRef]

20. Wang, Y.; Shi, C.Z.; Wang, C.H.; Xiao, B.H. Ground-based cloud classification by learning stable local binary
patterns. Atmos. Res. 2018, 207, 74–89. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the Neural Information Processing Systems Conference, Lake Tahoe, NV, USA, 3–6 December
2012; pp. 1097–1105.

22. Ye, L.; Cao, Z.; Xiao, Y. Ground-based cloud image categorization using deep convolutional features.
In Proceedings of the IEEE International Conference on Image Processing, Quèbec City, QC, Canada, 27–30
September 2015; pp. 4808–4812.

23. Ye, L.; Cao, Z.; Xiao, Y.; Li, W. DeepCloud: Ground-Based Cloud Image Categorization Using Deep
Convolutional Features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5729–5740. [CrossRef]

24. Shi, C.; Wang, C.; Wang, Y.; Xiao, B. Deep convolutional activations-based features for ground-based
classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 816–820. [CrossRef]

25. Zhang, Z.; Li, D.H.; Liu, S.; Xiao, B.H.; Cao, X.Z. Multi-view ground-based cloud recognition by transferring
deep visual information. Appl. Sci. 2018, 8, 748. [CrossRef]

26. Phung, V.H.; Rhee, E.J. A Deep Learning Approach for Classification of Cloud Image Patches on Small
Datasets. J. Inf. Commun. Converg. Eng. 2018, 16, 173–178. [CrossRef]

27. Zhang, J.; Liu, P.; Zhang, F.; Song, Q. CloudNet: Ground-based cloud classification with deep convolutional
neural network. Geophys. Res. Lett. 2018, 45, 8665–8672. [CrossRef]

28. Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition
unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [CrossRef] [PubMed]

29. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

30. ImageNet Large Scale Visual Recognition Competition (ILSVRC). Available online: http://www.image-net.
org/challenges/LSVRC/ (accessed on 10 October 2019).

31. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F.F. ImageNet: A Large-Scale Hierarchical Image Database.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09), Miami
Beach, FL, USA, 20–25 June 2009.

32. Hertel, L.; Barth, E.; Käster, T.; Martinetz, T. Deep convolutional neural networks as generic feature
extractors, In Proceeding of the 2015 International Joint Conference on Neural Networks, Killarney, Ireland,
12–16 July 2015.

33. CS231n Convolutional Neural Networks for Visual Recognition. Available online: http://cs231n.github.io/

convolutional-networks/ (accessed on 10 October 2019).

http://dx.doi.org/10.5194/amt-3-557-2010
http://dx.doi.org/10.1109/CISP.2012.6469765
http://dx.doi.org/10.1175/2010JTECHA1385.1
http://dx.doi.org/10.1007/s13351-013-0206-8
http://dx.doi.org/10.1117/1.JRS.9.095062
http://dx.doi.org/10.1109/JSTARS.2017.2669206
http://dx.doi.org/10.5194/amt-11-5351-2018
http://dx.doi.org/10.1155/2018/9684206
http://dx.doi.org/10.1016/j.atmosres.2018.02.023
http://dx.doi.org/10.1109/TGRS.2017.2712809
http://dx.doi.org/10.1109/LGRS.2017.2681658
http://dx.doi.org/10.3390/app8050748
http://dx.doi.org/10.6109/jicce.2018.16.3.173
http://dx.doi.org/10.1029/2018GL077787
http://dx.doi.org/10.1007/BF00344251
http://www.ncbi.nlm.nih.gov/pubmed/7370364
http://dx.doi.org/10.1109/5.726791
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

Appl. Sci. 2019, 9, 4500 16 of 16

34. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

35. Hansen, L.K.; Salamon, P. Neural Network Ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990,
12, 993–1001. [CrossRef]

36. Krogh, A.; Vedelsby, J. Neural network ensembles, cross validation, and active learning. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1995; pp. 231–238.

37. Dev, S.; Savoy, F.M.; Lee, Y.H.; Winkler, S. WAHRSIS: A low-cost, high-resolution whole sky imager with
ner-infrared capabilities. In Proceedings of the SPIE—The International Society for Optical Engineering,
Baltimore, MD, USA, 5–9 May 2014; Volume 9071. [CrossRef]

38. Keras. Available online: https://keras.io/ (accessed on 10 October 2019).
39. Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 10 October 2019).
40. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the ICLR, Vancouver

Convention Center, Vancouver, BC, Canada, 7–9 May 2015; pp. 1–15.
41. F1 Score. Available online: https://en.wikipedia.org/wiki/F1_score (accessed on 10 October 2019).
42. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
43. Tallón-Ballesteros, A.J.; Riquelme, J.C. Data mining methods applied to a digital forensics task for supervised

machine learning. In Computational Intelligence in Digital Forensics: Forensic Investigation and Applications,
1st ed.; Muda, A.K., Choo, Y.H., Abraham, A., Srihari, S.N., Eds.; Springer: Cham, Switzerland, 2014;
Volume 555, pp. 413–428.

44. Hastie, T.; Friedman, J.; Tibshirani, R. Ensemble Learning. In The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 605–624.

45. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/34.58871
http://dx.doi.org/10.1117/12.2052982
https://keras.io/
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/F1_score
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1023/A:1010933404324
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	CNN Model Design
	Model Average Ensemble of CNN
	Model Regularization
	L2 Weight Regularization
	Data Augmentation

	Experiments
	SWIMCAT Dataset
	Experimental Configuration
	K-Fold Cross-Validation
	Performance Metrics
	Network Visualization

	Results and Discussion
	Conclusions
	References

