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Abstract: Shield tunneling is becoming the preferred construction scheme for metro construction
because of its advantages of fast construction speed and small disturbance. However, limited by
process defects, the stratum movements induced by the construction of shield tunnels still affects
the safety of nearby underground structures and aboveground buildings. Therefore, the reliable
prediction of stratum movements is important. Described in this paper is an analysis method of
the Greenfield stratum movements (Greenfield is an area of land that has not yet had buildings
on it, stratum movements means the movement of various soil layers) caused by shield tunnel
construction combining an elastic half-space model of mirror source–sink method with the use of
modified analytical method. Based on the theoretical formula in this paper, not only can the curve of
surface settlement trough be calculated, but also the three-dimensional displacement field of deep
soil can be obtained. By comparing vertical and horizontal contour maps of Greenfield stratum
movements, good consistency between theoretical formula results and centrifugal test results are
shown. This solves the defects and limitations of existing two-dimensional formulas; furthermore,
based on this, it is convenient to evaluate the effect on the other skewed underground structures
through the elastic foundation beam and other similar methods; therefore, this paper can provide a
wide guidance and service for the design and construction of underground engineering in the future.

Keywords: shield tunnel; stratum movements; analytical; mirror source–sink method; centrifuge
modelling test

1. Introduction

Since the 21st century, tunnel and underground engineering in China have made great
progress [1–7]. With the continuous development of urbanization in China, the urban population is
growing, and urban traffic pressure is also increasing. In order to alleviate the urban traffic pressure, city
managers have taken a lot of measures, such as limited number driving, expansion, and transformation
of existing roads, but the traffic demand is still far greater than the current urban ground carrying
capacity. Metro has the advantages of large passenger capacity, fast speed, and full use of underground
space, which is more and more popular in modern society. However, the urban subway has strict
requirements for its construction methods. Because of the high density of buildings in cities, the
construction of the metro will cause stratum movement and bring adverse effects on ground buildings.
Especially when passing through high-rise buildings, the disturbance caused by construction on
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stratum must be more strictly controlled. The construction period of Metro is long, and the interruption
of traffic should be avoided as far as possible when crossing the road. Usually, subway construction
methods include the open-cut method, shallow-buried excavation method, and shield tunneling
method. Among them, the shield tunneling method has become the preferred construction scheme
for metro construction because of its great advantages of fast construction speed, a high degree of
automation, and small disturbance to stratum [8,9].

Although shield tunneling has many advantages mentioned above, and the construction
technology has made great progress after many years of development, due to the defects of geological
conditions and construction technology, the advance of shield tunneling will inevitably make a
disturbance, change the stress state of soil, and cause stratum displacement, as shown in Figure 1. If the
disturbance of stratum cannot be clearly understood, it will affect the safety of nearby underground
structures and aboveground buildings. For example, the adjacent metro tunnels may cause deformation
restrictions beyond the normal operation of the metro, or even lead to train derailment; it may also
lead to the breakage of underground pipelines, resulting in a series of problems, such as gas leakage,
interruption of urban water use, interruption of communication power system, and so on, affecting the
daily life of the city [10–12]. Therefore, a reliable prediction of stratum movements is important.

Figure 1. Sources of stratum movements of shield tunnel.

Over the years, previous researchers have done numerous studies on the effects of shield tunnel
construction on stratum displacement [13–18]. In the direction of theoretical research, Peck assumed
that the curve of land settlement trough satisfies the conditions of Gauss distribution and invariant
stratum volume, and deduced Peck’s empirical formula based on many field monitoring data [19].
Attewell et al. used Peck’s empirical formula to simulate the free displacement of soil at the location
of existing tunnels [20–24], and then deduced the displacement of existing tunnels with elastic
foundation beams and other models. However, Celestino and Klar [25,26] gradually found that the
Peck curve could not accurately describe soil settlement trough in many cases. Voster, O’Reilly et
al. [27–30] have proposed fitting curves from different research angles to fit the free displacement
field of soils. Litwinszyn [31] put forward the theory of random medium through a sand box test.
Liu, Yang, et al. [32–34] introduced this theory into the prediction of stratum displacement caused
by the excavation of geotechnical tunnels. Although these studies have the advantages of concise
calculation formula and convenient use, they lack a clear theoretical basis of mechanics. They can only
be called a mathematical empirical method, not an analytical solution of soil settlement. Because the
empirical formula is fitted by a large number of field monitoring data, the parameters of the fitting
function are closely related to the actual construction conditions, and lack of a clear theoretical basis,
the accuracy of the results predicted by this method is often difficult to meet the requirements, and its
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defects are evident. Comparatively, the solving process of the analytic method and modified analytic
method is relatively complex, but through more rigorous analysis, as long as the parameters are
selected properly, it has better universality. Sagaseta [35] deduced the expression of three-dimensional
displacement of stratum by using the mirror source–sink method. This formula can not only calculate
the curve of surface settlement trough, but also calculate the displacement and stress of deep soil, so it
is widely used [36–43]. However, the movement pattern of actual volume loss is not consistent with the
assumed equivalent radial movement pattern in this method and has some deviation. Based on field
monitoring data, Loganathan, Jiang, and other researchers [44–51] modified the stratum displacement
pattern by exponential function and deduced the prediction formula of surface subsidence under
non-equivalent radial movement pattern. However, most of these methods are only suitable for
three-dimensional orthogonal plane or two-dimensional cases, which have great defects and need
to be improved urgently. Many other researchers concerned the field description, soil classification
for engineering purposes [52–54], and the analysis methods of data such as neural networks [55–58].
Saplachidi et al. [59] used measured settlements from the tunneling excavation for the extension of
Line 3 of the Athens Metro for the verification and calibration of the empirical formulae. Suwansawat
et al. [60] evaluated the potential and the limitations of artificial neural networks (ANN) for predicting
surface settlements caused by Earth pressure balance (EPB) shield tunneling and to develop optimal
neural network models for this objective. Ahangari et al. [61] created a database from previous
research [62–65] and studied the capability of adaptive neuro-fuzzy inference system (ANFIS) and
gene expression programming (GEP) methods for settlement prediction. However, those methods
belong to the fuzzy solutions without mechanism analysis, training neural networks requires a lot of
data from databases or numerical simulation, and there are problems such as difficult convergence or
slow convergence speed.

This paper studies the Greenfield stratum movements caused by shield tunnel construction
combining an elastic half-space model of mirror source–sink method with the use of modified analytical
method. Through theoretical derivation and empirical function modification, the prediction formula
of three-dimensional Greenfield stratum movements is improved, and it shows good consistency with
the centrifugal test results. The new solution can calculate the three-dimensional stratum displacement
accurately, which is unavailable for the previous methods. It can be used in the process of tunnel
excavation rather than only for the ultimate settlement. Based on this improved solution, it is convenient
to evaluate the effect on the other skewed underground structures through the elastic foundation beam
and other similar methods; therefore, this paper can provide a wide guidance and service for the
design and construction of underground engineering in the future.

2. Basic Theory and Calculation Method

2.1. Disturbance Factors

Usually, there are three factors that cause disturbance of surrounding soil by shield tunneling
technology: First, the gap between segment lining and stratum due to the reasons of assembling
segment lining, shield overcutting, shield snake-shaped, and shield body adjustment; although
synchronous grouting is adopted, the grouting cannot completely eliminate the gap at present [66]; the
second is the elastic-plastic deformation of the soil at the shield heading face, which is closely related
to the soil characteristics and the additional force on the shield working face. Thirdly is the horizontal
friction between the outer surface of the shield and the surrounding soil. Compared with the effect
of the gap, the stratum movements caused by the additional force on the shield working face and
the frictional force between the outer surface of the shield and the surrounding soil during tunnel
construction is very small [67]. Therefore, this paper neglects the effects of the latter two factors when
analyzing, and mainly studies the effects of the gap. Sources of stratum movements of shield tunnel
are shown in Figure 1 and the coordinate system is set as shown in Figure 2 [68].



Appl. Sci. 2019, 9, 4522 4 of 14

Figure 2. Surface displacement caused by shield tunnel.

2.2. Gap Parameter

In order to analyze the effects of the above factors, Rowe et al. [69,70] proposed the concept
of gap parameter to reflect the stratum loss caused by shield tunnel construction, transforming the
three-dimensional problem to a two-dimensional gap in plane. The composition of the gap takes into
account the following factors: Elastic-plastic deformation of the shield at the tunnel excavation face,
the over-excavation of the shield machine, the physical gap between the outer skin of shield shell and
segment lining, and the construction technology. The formula for calculating the gap parameters g
under undrained condition is as in Equation (1).

g = GP + U∗3D +ω (1)

where shows that the gap parameters are composed of three parts [44]:
The first part Gp is the physical gap, which represents the gap between the outer skin of shield

shell and segment lining; its expression is as in Equation (2):

GP = 2∆ + δ (2)

where ∆ is the thickness of shield shell and δ is the space formed by segment lining installation.
The second part U3D is the elastic-plastic deformation of shield at the tunnel excavation face; its

quantitative expressions are as in Equations (3) and (4):

U3D =
k
2
δy =

k
2

ΩRP0

E
(3)

P0 = K′0P′v + Pw − P f (4)

where k is the soil cutting resistance coefficient; Ω is the displacement coefficient; R is the tunnel radius;
E is the elastic modulus; K’0 is the effective static lateral pressure coefficient; P’v is the effective vertical
stress at depth of tunnel center; Pw is the pore water pressure at depth of tunnel center; and Pf is the
supporting force provided by tunnel.
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The third part ω is the shield construction technology coefficient, of which the value is as in
Equation (5): 

Ui
R

= 1− (
1

1 +
2(1 + µu)Cu

Eu

[
exp(

N − 1
2

)
]2 )

1
2

N =
γH − p f

Cu

ω = min
{
0.6Gp,

1
3

Ui

}
(5)

where Ui is the elastoplastic plane strain displacement at the tunnel crown; µu is the soil Poisson’s
ratio under undrained condition; Cu is the soil shear strength under undrained condition; Eu is the soil
elastic modulus under undrained condition; γ is the unit weight of soil; and H is the buried depth of
tunnel center.

2.3. Loganathan’ Solution

Based on the above formulas, Loganathan proposed to use plane loss rate εx,z to quantify stratum
loss with non-equivalent radial movement. The expression is as in Equation (6):

εx,z =
4gR + g2

4R2 exp

−
∣∣∣∣∣∣ 1.38x2

(H + R)2 +
0.69z2

H2

∣∣∣∣∣∣
. (6)

Combined with Verruijit’s [71,72] analytical formula, he put forward a formula for estimating
stratum displacement caused by undrained stratum loss in clays, of which the formulas are as in
Equation (7):

Sz = R2

− z−H

x2 + (z−H)2 + (3− 4µ)
z + H

x2 + (z + H)2 −
2z

[
x2
− (z + H)2

]
[
x2 + (z + H)2

]2

× εx,z

Sx = −R2x

 1

x2 + (z−H)2 +
(3− 4µu)

x2 + (z + H)2 −
4z(z + H)[

x2 + (z + H)2
]2

× εx,z

. (7)

Considering that the displacement solution caused by stratum loss derived by Loganathan is
a two-dimensional solution, which is often a three-dimensional problem in actual engineering, it is
necessary to extend the two-dimensional displacement solution to three-dimensional. In the above
deduction process, we can find that the stratum loss parameter εx,z is the key for extending. If we
extend the plane stratum loss parameter εx,z to three-dimensional parameter εx,z,y, the displacement
solution can be extended to three-dimensional space. Another important method to solve the stratum
displacement caused by stratum loss is used here. The concept of stratum loss proposed by Sagaseta
proposed the mirror source–sink method and derives the problem of free displacement field by elastic
half-space model. Although field monitoring data [40] show that the movement pattern of actual
volume loss is not consistent with the assumed equivalent radial movement pattern in this method, its
process is a strict mathematical derivation process, so the three-dimensional stratum loss parameter
εx,z,y can be extracted from the Sagaseta solution.

2.4. Sagaseta’s Solution

Sagaseta used the mirror source–sink method, assumed that the surface is free, the soil is isotropic,
and incompressible. The analysis steps are as follows and in Figure 3:
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Figure 3. Analysis steps of mirror source–sink method.

First step: The existence of the original surface is ignored, and the half-space problem is transformed
into the internal gap problem of full space. Under the action of a source gap, stress field changing,
there will be the normal stress σ0 and the shear stress τ0 at the original surface position.

Second step: A sink is set at the mirror position of the source gap above the original surface; there
is a volume expansion of the same size at the sink position. The sink expansion will produce a normal
stress −σ0 of the same value and opposite direction and a shear stress τ0 of the same value and same
direction at the original surface position. Therefore, under the action of source and sink, the normal
stress on the original surface can be offset, which does not exist in practice.

Third step: Under the action of source and sink, a shear stress −2τ0 of twice the value and opposite
direction is supposed at the original surface position and the corresponding displacement field of the
surface shear stress below the surface at each point can be obtained.

Final step: The displacements generated by the above three steps at any point below the surface
are S1, S2, and S3, respectively. The displacement solution of the practical problem is S = S1 + S2 + S3.

Based on above steps, Sagaseta deduced the expression of surface displacement caused by tunnel
construction is as in Equation (8):

Sx0 = −
vloss
2π

x
x2 + H2

1 +
y

(x2 + y2 + H2)

1
2


Sy0 =

vloss
2π

1

(x2 + y2 + H2)

1
2

Sz0 =
vloss
2π

H
x2 + H2

1 +
y

(x2 + y2 + H2)

1
2


Sx0(y→∞) = −

vloss
π

x
x2 + H2

Sz0(y→∞) =
vloss
π

H
x2 + H2

(8)
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where Vloss is stratum loss. Contrastive Equation (8) can be found:

Sx0(y) = Sx0(y→∞) ×
1
2
×

1 +
y

(x2 + y2 + H2)

1
2


Sz0(y) = Sz0(y→∞) ×

1
2
×

1 +
y

(x2 + y2 + H2)

1
2


. (9)

2.5. An Improved Method

Equation (9) shows that the distribution of stratum displacement caused by shield construction

(stratum loss) along the y-axis driving satisfies the law of
1
2
×

1 +
y

(x2 + y2 + H2)

1
2

. Therefore, based

on this law, the Loganathan’s solution is extended to the three-dimensional. It is noticed that the
coordinate system adopted in this paper is different from that used in the Sagaseta’s solution, so the
distribution law should be revised, and its expression is as in Equation (10):

εy =
1
2
×

1−
y

(x2 + y2 + H2)

1
2

. (10)

The plane stratum loss parameter εx,z is extended to three-dimensional parameter εx,z,y:

εx,y,x = εy × εx,z =

1−
y

(x2 + y2 + H2)

1
2

×
4gR + g2

8R2 exp

−
∣∣∣∣∣∣ 1.38x2

(H + R)2 +
0.69z2

H2

∣∣∣∣∣∣
 (11)

εx,z is replaced by εx,z,y in Equation (7) and Equation (12) is the three-dimensional analytical
solution of stratum displacement caused by stratum loss. When y = 0, z = 0, the curves of settlement
trough calculated by Equations (7), (8), and (12) are the same, and Equation (8) is the particular solution
about the surface settlement value of Equation (12) at the tunnel face.

Sz = R2

− z−H

x2 + (z−H)2 + (3− 4µ)
z + H

x2 + (z + H)2 −
2z

[
x2
− (z + H)2

]
[
x2 + (z + H)2

]2

× εx,y,z

Sx = −R2x

 1

x2 + (z−H)2 +
(3− 4µ)

x2 + (z + H)2 −
4z(z + H)[

x2 + (z + H)2
]2

× εx,y,z

(12)

For example, let H = 13.65 m, µ = 0.4, R = 2.325 m, g = 0.058 m, then the displacement of soil
layers at z = 0 m and z = 10 m is showed in Figure 4.
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Figure 4. Settlement trough in different depth stratum (example).

3. Compared with Centrifugal Test Results

3.1. Material Properties

British scholar Marshall [73] designed a series of model tests to study the influence of shield
tunneling in sandy ground by using the geocentrifugal testing machine of Cambridge University.
The design conditions and dimensions of centrifuge model test are shown in Figure 5. The bottom
dimension of the test box containing model tunnels and sand is 770 mm × 147.5 mm, and the sand
depth after filling is 311 mm; the axis depth of the shield tunnel model is Zt = 182 mm, the tunnel
diameter is Dt = 62 mm, the section dimension of the model tunnel is shown in Figure 6, and the length
of the shield tunneling section is L0 = 147.5 mm.

Figure 5. Centrifuge package—tunneling in sandy ground.

Figure 6. Centrifuge package schematic where LVDTs (linear variable differential transformers) were
used to measure vertical sub-surface soil displacements at the same locations as the lasers. Cameras
were used to capture images of the soil body during tests for analysis.
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The test soil samples were taken from dry Leighton Buzzard Fraction E silica sand, UK, and its
parameters are shown in Table 1. This sand has a typical D50 of 122 µm [74], a specific gravity of 2.67,
and maximum and minimum void ratios of 0.97 and 0.64 [75], respectively. Uniform sand with relative
density of 90% was prepared by automatic sand leaker. The elastic modulus E of sand soil is 20 MPa
and Poisson’s ratio µ is 0.4. The whole test process was carried out under the centrifugal acceleration
of 75× g (g is the acceleration of gravity); namely, the scale ratio of the test size was 75 times. Therefore,
this test is equivalent to simulating a shield tunnel with a diameter of 4.65 m (model diameter 62
mm) and a tunnel central burial depth of 13.65 m (model tunnel central burial depth 182 mm) passing
through Greenfield in reality. In the process of shield excavation, the simulation of stratum loss is
realized by using a cylinder sealed with liquid connected to the tunnel driven by a motor. The stratum
loss rate rises at a rate of about 0.3% per minute. The above test parameters are brought into Equation
(12) for theoretical calculation of stratum displacement. Considering the clarity and regularity of result
image, the test results of medium volume loss of 2.5% are compared.

Table 1. Physical parameters of soil samples.

Material Unit Weight
(kN/m3)

Typical D50
(µm)

Maximum/Minimum
Void Ratios

Relative
Density

Poisson’s
Ratio

Elastic Modules
(MPa)

Dry Leighton
Buzzard Fraction
E silica sand, UK.

26.7 122 0.97/0.64 90% 0.4 20

3.2. Comparative Analysis of Results

The comparative analysis of the results is shown in Figure 7; the vertical displacement contours
of 37.5 mm and 30 mm in the central part show good consistency and regularity. In general, the
centrifugal test results are nearly straight-line contours, while the theoretical calculation results are arc
contours, which also leads to a large difference between 22.5 mm, 15 mm, and 7.5 mm contours, and
shows a trend of increasing the difference from the center to the edge.

As for vertical displacement, the numerical value is relatively small, and its regularity is not
obvious. This can also be seen from the poor symmetry of the left and right halves of the horizontal
displacement in the centrifugal test nephogram. The shape and distribution position of centrifugal
contours and theoretical contours are similar, especially the upper 4 mm curve and the central 2 mm
curve. However, the difference between theoretical contours and centrifugal contours also shows
an increasing trend from the center to the edge, the whole lines shift to the right a little, and the
theoretical contour has a wider range. This is consistent with the law that the settlement trough of
sand is narrower and deeper than that of clay [76].

Figure 7. Contour comparison of Loganathan’s solution, theorical calculation of this paper, and
centrifugal test results (2.5% volume loss): (a) Horizontal displacement contours for Greenfield;
(b) vertical displacement contours for Greenfield.
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Due to sand soil being chosen as the test soil sample in centrifugal test, Sagaseta’s solution is
applicable to sand soil, but another important part of our theoretical formula, Loganathan’s solution,
is only applicable to clay soil. Be aware of the exponential function of Loganathan’ solution modify
the formation loss coefficient by fitting the clay soil data, although the soil parameters substituted in
Equation (12) are sand soil’s, which cannot eliminate the difference between the Loganathan’s εx,z and
the properties of sand. This leads to the fact that in the vertical displacement contours, the centrifugal
contours are linear and the theoretical contours arc, which is similar to the difference between the
two on the slip fracture surface of soil. Generally, clay soil has a complex composition, elastic-plastic
deformation occurs easily, deformation has a time-delay property, and many other disturbing factors,
all of which are very unfavorable to the test analysis. However, sand soil has a single material, of which
properties are easier to control in the test, and the drainage or non-drainage conditions need not be
considered. Therefore, the current centrifugal tests are mostly based on sand. We regret that we have
not found a suitable clay centrifugal test as a reference. However, considering the inevitable errors in
centrifugal test and theoretical calculations, the comparison results are still acceptable.

4. Conclusions

(1) A new method for predicting the stratum movements caused by EPB shield tunnel construction
is developed that combines an elastic half-space model of mirror source–sink method with the
use of modified analytical method. Compared with the effect of a physical gap, the stratum
movements caused by the additional force on the shield working face and the frictional force
between the outer surface of the shield and the surrounding soil during tunnel construction is
very small. Therefore, this paper neglects the effects of the latter two factors when analyzing, and
mainly studies the effects of the physical gap. The method also takes into account non-equivalent
radial ground loss.

(2) Sagaseta’s method assuming equivalent radial movement pattern can only obtain the surface
movements from the tunnel excavation. Considering non-equivalent radial displacement model,
Loganathan’s solution modifies Verruijit’s analytical formula by exponential function, but it is
only applicable to plane strain cases. The two methods have great limitations. For example, they
cannot show the soil displacement of the x = y plane. If there is a new shield tunnel skewed with
an old tunnel or pipeline and the displacement effect at the old tunnel or pipeline needs to be
calculated, neither of the above two methods will apply. This paper combines the advantages of
the two methods to derive a formula for predicting the three-dimensional stratum displacement
caused by shield tunneling.

(3) Vertical displacement contours in the central part show good consistency and regularity, with a
larger difference at the edge. Centrifugal contours are nearly straight-line contours, while the
improved solution contours are arc. Vertical displacement has a relatively small numerical value
and its regularity is not obvious. The shape and distribution position of centrifugal contours
and improved contours are similar. The difference also shows an increasing trend from the
center to the edge, and the improved solution contours shift to the right a little and has a wider
range. One of the important reasons is that sand soil is chosen in the centrifugal test but part
of Loganathan’s solution is fitted with clay data and is only applicable to clay soil. The current
centrifugal tests are mostly based on sand. However, suitable clay centrifugal tests are hard
to find. Considering the inevitable errors in the centrifugal test and theoretical calculations,
the comparison results are acceptable. The values of Loganathan’s contours are larger than the
other two, because Loganathan’s solution is the plane strain method; namely, it is a final stratum
displacement from the excavation of an infinite tunnel. However, in the test and the improved
method, the tunnel length is finite, the distance between the measuring plane and the tunnel face
is much shorter, so their displacements are smaller than the final displacement.
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