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Abstract: Gradient descent method is an essential algorithm for learning of neural networks.
Among diverse variations of gradient descent method that have been developed for accelerating
learning speed, the natural gradient learning is based on the theory of information geometry on
stochastic neuromanifold, and is known to have ideal convergence properties. Despite its theoretical
advantages, the pure natural gradient has some limitations that prevent its practical usage. In order
to get the explicit value of the natural gradient, it is required to know true probability distribution of
input variables, and to calculate inverse of a matrix with the square size of the number of parameters.
Though an adaptive estimation of the natural gradient has been proposed as a solution, it was
originally developed for online learning mode, which is computationally inefficient for the learning of
large data set. In this paper, we propose a novel adaptive natural gradient estimation for mini-batch
learning mode, which is commonly adopted for big data analysis. For two representative stochastic
neural network models, we present explicit rules of parameter updates and learning algorithm.
Through experiments on three benchmark problems, we confirm that the proposed method has
superior convergence properties to the conventional methods.

Keywords: gradient descent learning algorithm; natural gradient; stochastic neural networks; online
learning mode; mini-batch learning mode

1. Introduction

In the age of the fifth generation (5G), artificial intelligence (AI) technologies are widening
their application fields [1–3]. Particularly, neural networks and deep learning methods are playing
essential roles of analyzing huge amounts of data from diverse sensors attached in 5G networks.
Gradient descent learning method is the key algorithm that has realized the current remarkable
success of deep learning technologies [4]. The well-known error-backpropagation is the most
representative algorithm based on the gradient descent approach. Though learning behavior of the
classic error-backpropagation algorithm has several undesirable properties, such as learning plateau
and local minima, they have been partially overcome by well-designed network architecture, such as
convolutional neural networks as well as some technical ideas including new types of activation
functions and batch normalization [5,6]. Various stochastic optimization methods [7–9] have also been
developed for improving learning efficiency, and some preconditioning techniques [10–12] have been
studied as well. However, there are still many open issues that should be addressed through theoretical
analysis and empirical experiments [13].

Natural gradient, which is one of the stochastic gradient descent learning algorithms derived from
information geometry [14], is known to have ideal convergence properties and shows good learning
dynamics such as eliminating plateau phenomena [15–19]. Although a theoretically derived version of
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natural gradient cannot be directly applied for training neural networks in real-world applications,
its approximation has also been proposed, which estimates the natural gradients adaptively along with
parameter updates during online learning process [20,21]. Even though numerous studies conducting
theoretical analysis and empirical experiments have shown its efficiency, the underlying assumption
that unseen samples are successively given in training stage is not plausible in usual developing
environments, and this discrepancy causes instability of learning and sensitivity to the choice of
user-defined parameters.

In order to deal with this problem and to provide a stable and practically plausible algorithm in
the application of the 5G network environment, this paper proposes a modified version of adaptive
natural gradient in order to exploit it for mini-batch learning mode. We also give explicit algorithms
for two representative stochastic models of feed forward neural networks. Unlike online learning
mode, mini-batch learning mode assumes a large fixed training dataset, and divides it into a number
of small subsets. Since a single update of parameters is done for a single subset of data, the mini-batch
learning mode can still retain stochastic uncertainty of online learning while gaining computational
efficiency through matrix calculation for a set of data as in batch mode. For this practical learning
strategy, we propose a method for iterative estimation of natural gradient, which is more stable and
efficient than the conventional online adaptive natural gradient estimation. This paper is an extended
version of our previous work [22], which presents a basic idea and preliminary algorithm for a simple
model used in [20]. In this paper, we extend it to various stochastic models used in [21], and give
elaborated algorithms and experimental results.

In the next section, we start from the brief description on the concept of stochastic neural networks
including two representative models and gradient descent learning method. The original natural
gradient and online adaptive natural gradient are reviewed in Section 3, and our proposed method for
adaptive estimation of natural gradient using mini-batch subsets is presented in Section 4. In particular,
we give an explicit learning algorithm for two representative stochastic models mentioned in Section 2.
Some experimental results are shown in Section 5, and conclusions are made in Section 6.

2. Gradient Descent Learning of Stochastic Neural Networks

2.1. Stochastic Neural Networks

Since the natural gradient is derived from stochastic neural network models, let us start from the
brief description of the two popular stochastic models. Although typical neural networks, including
deep networks, are defined as deterministic input-output mapping functions y = f (x,θ) of input
x, output y, and parameter θ, the observed data for training the networks always have inevitable
noises and thus the input-output relation can be described in the stochastic manner. In other words,
the observed output y can be regarded as a random vector that is dependent on the deterministic
function f (x,θ) and some additional stochastic process that is described by the conditional probability
p(y|x,θ ) = p

(
y
∣∣∣f(x,θ)

)
.

Then the goal of learning is to find an optimal value of parameter θ∗ that minimizes the loss
function defined as negative log likelihood of given input-output sample (x, y). The loss function can
then be written as

l(x, y;θ) = − log p(x, y;θ) = − log p(y|x,θ )q(x) = − log p(y|x,θ ) − log q(x), (1)

and the optimal parameter is described as

θ∗ = argminθ
{
l(x, y;θ)

}
= argminθ

{
log p(y|x,θ )

}
. (2)

Note that the last term log q(x) in equation (1) is independent of parameter θ and can be ignored
in the objective function for optimization.
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Based on the general definition, the conventional neural networks can be regarded as a special
case with a specific conditional probability distribution, p(y|x,θ ). For example, consider that the
output y is observed with additive noise to the deterministic neural networks function such as

y = f(x,θ) + ξ, (3)

where ξ is a random noise vector. When we assume that the random vector ξ is subject to the standard
Gaussian distribution, its probability density p(ξ) = p(y− f(x,θ)) is defined as the normal distribution
function, and its loss function becomes the well-known squared error function, which can be written as

l(x, y;θ) = ‖y− f(x,θ)‖2. (4)

Therefore, the stochastic neural network model with additive Gaussian noise is equivalent to
the typical neural network model trained with squared error function, which is widely used for
regression task.

On the other hand, in case that the output y is a binary vector, the corresponding probability
distribution can be defined by using a logistic model, such as

p(y|x,θ ) =
∏L

i=1
fi(x,θ)yi (5)

where fi(x,θ) and yi are the i-th component of L-dimensional vector f(x,θ) and y, respectively.
Since the typical problems with binary target output vector is pattern classification, the logistic model
is appropriate for L-class classification tasks. The corresponding loss function of the logistic model is
obtained by taking negative log likelihood of Equation (5), which can be written as,

l(x, y;θ) = − log p(y|x,θ ) = −
L∑

i=1

yi log fi(x,θ). (6)

Noting that this is the well-known cross-entropy error, we can say that the logistic regression
model is equivalent to the typical neural networks with cross-entropy error, which is widely used for
classification task.

Likewise, by defining a proper stochastic model, we can derive various types of neural network
models, which can explain the given task more adequately and get a new insight to solve many
unresolved problems in the field of neural network learning. Natural gradient is also derived from a
new metric for the space of probability density function of stochastic neural networks. In this paper,
we present explicit algorithms of adaptive natural gradient learning method for two representative
stochastic neural network models: The additive Gaussian noise model and the logistic regression model.

2.2. Gradient Descent Learning

Once a specific model of stochastic neural networks and its corresponding loss function are
determined, the weight parameters are optimized by gradient descent method. The well-known
error-backpropagation algorithm is the standard type of gradient descent learning method. There have
been numerous variations of the standard gradient descent method, including second-order methods,
momentum method, and adaptive learning rate methods [23,24]. Since the natural gradient learning
method is also based on the gradient descent method, we describe the basic formula of gradient descent
learning and its online version that is called stochastic gradient descent method.

When a set of training data D =
{(

xi, yi

)}
i=1...N

is given, a neural network is trained in order to
find an input-output mapping f(x,θ) that is specified with weight parameter vector θ. The error of
neural network for the whole data set D can then be defined by using a loss function such as

E(D,θ) =
∑N

i=1
l
(
xi, yi,θ

)
, (7)
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and the goal of learning is to get the optimal θminimizing E(D,θ) . To achieve the goal, the weight
parameter is updated starting from the current position θt, according to the opposite direction of the
gradient of E(D, θ), which can be written as

θt+1 = θt − η
∂E(D,θt)

∂θ
. (8)

This update rule is called batch learning mode, meaning that an update is done for the whole
batch set D. Theoretically, the batch mode learning gives the steepest descent direction of E(D,θt) at
the current position of θt, but it has two practical drawbacks. First, it is too stable to be easily trapped
in undesirable local minima. In addition, when the number of data N is large, it needs large amounts
of computation for just a single update, making the learning process slow.

To overcome this practical inefficiency, online stochastic gradient decent learning is proposed [23],
in which parameters are updated for each data sample by using gradient of loss function l(x, y,θ)
defined with a single data pair (x, y), such as

θt+1 = θt − η
∂l(x, y,θt)

∂θ
. (9)

Compared to the batch mode learning, the update direction of online learning mode is theoretically
incorrect because it does not calculate the gradient of total error E(D,θ) and has some stochastic
randomness due to the online sample (x, y) at each update. Nevertheless, it can be a good practical
alternative, because its convergence properties have been well-studied and the stochastic uncertainty
can make the possibility of jumping over shallow undesirable local minima [23].

2.3. Mini-Batch Learning Mode

The online learning mode, which is also known as stochastic gradient descent learning, has been
widely used in practical applications. However, it is not proper for the tasks with a huge data set,
because the number of updates in online learning is equal to the number of data samples. It can cause
unnecessary fluctuation and redundant movements. As a practical compromise, mini-batch learning
mode is widely adopted for big data applications. When a large data set D is given, the mini-batch
learning mode is started from defining a partition of D, which is composed of K mutually disjointed
subsets Dk(k = 1 . . .K), and parameters are updated like batch mode with each subset, using the
update rule,

θt+1 = θt − η
∂E(Dk,θ)

∂θ
. (10)

In the mini-batch mode, the number of updates is equal to the number of subsets (K) that can be
controlled by users, and thus we can adjust the balance of stochastic uncertainty and computational
efficiency by choosing an appropriate value of K. However, this kind of learning technique cannot be
a fundamental solution to slow convergence of gradient-based learning rule. Since the magnitude
of update term is proportional to the magnitude of gradient vector, vanishing gradient necessarily
causes slowing down of learning [24,25]. This phenomenon occurs very often in the learning of neural
networks, which is called ”plateau problem”. Though diverse methods have been suggested to solve
plateau problem, most of them give just partial and practical solutions that can just prevent diminishing
of gradient and cannot give the correct direction of updates [24].

3. Natural Gradient Learning

3.1. Natural Gradient for Online Learning Mode

The natural gradient, which was originally proposed by Amari [14], is based on the information
geometry considering theoretical properties of the space of stochastic neural networks. Based on
the investigation that the space of an arbitrary stochastic model is not Euclidean but Riemannian,
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Amari [14] called the space as neuromanifold, and proposed an appropriate Riemannian metric using
Fisher information matrix G(θ) of probability density p(x, y, θ), which can be written as

G(θ) = Ex

Ey|x

 ∂p(y
∣∣∣x,θ)

∂θ

 ∂p(y
∣∣∣x,θ)

∂θ

T
. (11)

The steepest descent direction on the neuromanifold can then be derived from the new metric,
and the new type of gradient descent learning method is obtained in the form,

θt+1 = θt − ηG−1(θt)
∂l(x, y,θt)

∂θ
. (12)

This is called natural gradient descent learning method. Amari [14] introduced the basic form
of online natural gradient learning, and proved its efficiency in asymptotic convergence properties.
There have also been several works showing that the natural gradient can solve plateau problem
revealing ideal learning dynamics [16–19,25,26].

However, the pure natural gradient cannot be applied to the learning of neural networks for
real-world problems. As shown in the Equation (11), the explicit form of G(θ) is obtained through
two expectations over the conditional probability density p(y

∣∣∣x,θ ) and the true input distribution
q(x). Since the expectation over p(y

∣∣∣x,θ ) depends on the specific model of stochastic neural networks,
it can be written explicitly with some assumptions on the model. Typically, under the assumption
that p(y

∣∣∣x,θ ) is subject to the standard Gaussian distribution with zero mean and identity covariance
matrix, the Fisher information matrix can be written as

G(θ) = Ex

 L∑
i=1

∂ fi(x,θ)
∂θ

(
∂ fi(x,θ))

∂θ

)T
. (13)

Under the assumption that p(y
∣∣∣x,θ ) is subject to the logistic regression model with softmax

activation function, the Fisher information matrix can then be written as

G(θ) = Ex

 L∑
i=1

1
fi(x,θ)

∂ fi(x,θ)
∂θ

(
∂ fi(x,θ))

∂θ

)T
. (14)

One can refer to [20,21] for detail derivations.
Likewise, the expectation over p(y

∣∣∣x,θ ) can be obtained under the specific selection of the
stochastic model. However, we still have another expectation over true input distribution q(x), which
is not practically given. In addition, there is another practical issue: The necessity of inverse operation
of G(θ) to obtain the natural gradient as shown in (12). To deal with the two practical issues, Amari et
al. [20] proposed an adaptive method for obtaining an approximation of the natural gradient in online
learning mode, and Park et al. [21] extended it to various stochastic models. In this paper, we revisit
the previous works and its limitations, and propose a modified version of adaptive natural gradient
learning in mini-batch learning mode. In the next section, we briefly describe the previous online
adaptive natural gradient method. The proposed method and explicit algorithm are given in Section 4.

3.2. Adaptive Online Natural Gradient Learning

The Fisher information matrix cannot be explicitly calculated unless true input distribution q(x) is
given, which is not plausible in real applications. To solve the problem, Amari et al. [11] proposed an



Appl. Sci. 2019, 9, 4568 6 of 16

adaptive method of obtaining an approximation of the natural gradient during training, and give an
update rule for a simple model with single output, which is written as

Ĝ−1
t+1 = (1 + εt)Ĝ−1

t − εt

(
Ĝ−1

t
∂ f
∂θ

)(
Ĝ−1

t
∂ f
∂θ

)T

, (15)

where t denotes the number of updates and εt is a user-defined parameter with small value. In the
computational experiments done in Amari et al. [20] and Park et al. [21], the formula, εt = 1/t,
is recommended. Using the adaptive estimation for inverse of Fisher information matrix, the parameter
update rule of online adaptive natural gradient method can be given as

θt+1 = θt − ηĜ−1
t+1

∂l(x, y, θt)

∂θ
. (16)

Park et al. [21] extended it to various stochastic models, and showed its practical efficiency through
a number of experiments using benchmark data. In addition, there have been several theoretical works,
which analyze average dynamics of adaptive natural gradient learning and show its efficiency [19,23].

However, the online adaptive natural gradient method has still several disadvantages when it is
applied to big data analysis. First of all, it is not proper to the problems with a large data set because
the adaptive calculation of natural gradient should be done in online learning mode. In addition,
the user-defined parameter εt in Equation (15) can make learning instable especially when the method
is applied to batch mode learning in which a fixed data set is repeatedly used. To overcome the
limitations, Guo et al. [27] proposed to use an adaptive step size and showed that the stability and
convergence speed are improved, but it still uses online learning mode, which is not desirable in
the case of a large data set. On the other hand, in our preliminary work [22], we proposed a new
adaptive natural gradient for mini-batch mode and give an explicit algorithm for a simple stochastic
neural network model used in [20]. In this paper, we extended our preliminary work to the various
stochastic models used in [21], and give explicit algorithms for the two representative stochastic models:
The additive Gaussian noise model and the logistic regression model.

4. Adaptive Natural Gradient Learning in Mini-Batch Mode

4.1. Adaptive Estimation of Fisher Information Matrix in Mini-Batch Mode

In order to estimate the natural gradient in mini-batch learning mode, we first consider
approximation of Fisher information matrix G(θ). The true Fisher information matrix G(θ) can
be calculated when we know the explicit form of true input pdf q(x), but it is rarely given in practical
situations. As a resolution of this problem, its empirical expectation using given observations is
commonly used and then the empirical approximation of the Fisher information matrix can be
defined by

G(D,θ) =
1
|D|

N∑
x∈D

 L∑
i=1

∂fi(x,θ)
∂θ

(
∂fi(x,θ))

∂θ

)T

. (17)

Note that, for simplicity, we assume the additive Gaussian noise model in (17).
Since the Fisher information matrix is dependent on parameter vector θ, the matrix G(D,θ)

needs to be calculated at each update of parameters. Also, from the Equation (17), one can easily see
that its computational complexity increases as the size of D increases. If we take mini-batch mode,
the approximation is done by using a smaller subset Dk, which can be written as

G(Dk,θ) =
1
|Dk|

∑
x∈Dk

 L∑
i=1

∂fi(x,θ)
∂θ

(
∂fi(x,θ))

∂θ

)T

. (18)
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Note that the Equations (17) and (18) are derived from the additive Gaussian noise model by
adopting the Equation (13). For the logistic model defined in (14), the approximation is given as

G(Dk,θ) =
1
|Dk|

∑
x∈Dk

 L∑
i=1

 1
fi(x,θ)

∂fi(x,θ)
∂θ

(
∂fi(x,θ))

∂θ

)T

. (19)

Although we can reduce computational cost by using a smaller subset Dk instead of the whole
set D, use of a small sample set leads to some loss in the estimation accuracy. Moreover, it should be
also noted that the rank of G(Dk,θ) is at most |Dk| and G(Dk,θ) becomes singular, of which inversion
does not exist. Therefore, the empirical expectation (18) and (19) are not applicable to calculate natural
gradient when the size of subset |Dk| is smaller than the number of network parameters.

In order to overcome this problem, we propose an iterative process for approximating G(D,θ) for
the whole dataset D by repeatedly adding up the current G(Dk,θ) to the previously obtained G

(
Dj,θ

)
(j = 1 . . .K− 1). Staring from an initial matrix G0 = λI, the approximated Fisher information matrix
Gk(θ) at k-th iteration is given by iterative updates from,

Gk(θ) =
(
1−

1
k + 1

)
Gk−1(θ) +

1
k + 1

G(Dk,θ), (20)

where k = 1 . . .K. Note that G0 = λI is a kind of regularization term with user-defined parameter λ
and the identity matrix I. In the implementation for the experiment in Section 5, we set λ using the
condition, trace(λI) = 1.

4.2. Adaptive Natural Gradient Leargning Algorithm in Mini-Batch Mode

If we get an approximated Fisher information matrix Gk(θ) by using the proposed iterative
update rule (20), then we have the update rule of parameter θk,t with k-th subset at t-th learning epoch,
from the definition of natural gradient learning, which can be written as

θk,t = θk−1,t − η
(
Gk

(
θk−1,t

))−1 ∂E
(
Dk,θk−1,t

)
∂θ

. (21)

Even though the update rule can be used for mini-batch mode, it is still impractical because
there is matrix inversion operation. In order to make the method practically tractable, we apply the
approximation formula of matrix inversion [28],(

Q + σ2M
)−1
≈ Q−1

− σ2Q−1MQ−1, (22)

to where σ2 is small value compared to Q and M. By substituting

Q =
(
1−

1
k + 1

)
Gk−1(θ),

M = G(Dk,θ),

and σ2 = 1
k+1 in (20), we can obtain the formula for iterative estimation of

(
Gk

(
θk−1,t

))−1
, such as

(
Gk(θ)

)−1
≈

(
1 +

1
k

)(
Gk−1(θ)

)−1
−

(
1
k
+

1

k2

)(
Gk−1(θ)

)−1
G(Dk,θ)

(
Gk−1(θ)

)−1
(23)

When k-th mini-batch subset Dk and current parameter vector θk−1,t are given in t-th learning
epoch, the empirical estimation G

(
Dk,θk−1,t

)
can be calculated by using Equations (18) or (19). Then,

the inverse of Fisher information matrix can be updated by using Equation (23), and new parameter
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θk,t is obtained by the update rule (21). The overall learning process of the proposed adaptive natural
gradient in mini-batch mode can be summarized in Algorithm 1. Since the proposed algorithm takes
mini-batch mode, it is obvious that the number of updates is much smaller than the conventional

adaptive natural gradient in online mode. The estimation of
(
Gk(θ)

)−1
is also more stable by using a

set of samples instead of a single sample in the iterative updates. Also, the proposed algorithm does
not have user-defined parameter εt, which is known to cause learning instability [27].

Algorithm 1. Adaptive natural gradient (ANG) for mini-batch learning mode

Input: A partition of training set D with K disjoint subsets Dk(k = 1 . . .K)

Learning parameter: θ
User-defined parameter: λ← 1/(number of learning parameters)
1: θK,0 ← random vector with small values
2: for t = 1 to max_iteration do
3: G

−1
0,t ← λI

4: θ0,t ← θK,t−1
5: for k = 1 to K do
6: calculate G

(
Dk,θk−1,t

)
using (18) * or (19) **

7: update
(
Gk

(
θk−1,t

))−1
using (23)

8: update θk−1,t using the Equation (21):

θk,t ← θk−1,t − η
(
Gk

(
θk−1,t

))−1 ∂E
(
Dk,θk−1,t

)
∂θ

9: end for k
10: end for t

* Equation for additive Gaussian model
** Equation for logistic regression model

As shown in Algorithm 1, the proposed method needs to keep an additional matrix with N×N
size where N is the number of learning parameters. Therefore, it uses O

(
N2

)
additional memory

compared to the standard gradient method. Also, to obtain the update term in the Equation (21),
we need O

(
MN2

)
computations where M is the number of training samples in a mini-batch subset.

This complexity is generally the same as the conventional quasi-Newton methods, and thus the
proposed method is practically applicable to the problems that can be dealt with the conventional
second-order methods. One main difference from the conventional second-order method is that the
natural gradient uses Fisher information matrix instead of Hessian that is defined by the whole data
set for exact computation. In addition, the natural gradient method is originally designed for online
learning with stochastic gradient, whereas the quasi-Newton method requires a complicated process
to obtain a stable approximation of Hessian using a small mini-batch subset. From this point, we can
expect that the proposed method is more efficient than the second-order methods, especially for the
problems with a large data set. This is confirmed by the comparative experiments in the next section.

5. Computational Experiments on Benchmark Data

5.1. Experimental Settings

The efficiency of the proposed method was compared to conventional methods through
computational experiments for three benchmark problems: Mackey-Glass time series prediction,
spiral data classification, and 3D road elevation prediction [29]. The conventional methods used for
comparison are the standard gradient (SG) descent method in mini-batch learning mode and the online
adaptive natural gradient (ANG) method, Adam optimizer [7], and the sum of functions optimizer
(SFO) [9]. The user-defined hyper parameters for each learning method were chosen empirically by
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referring to the values used in previous studies. The explicit values of the user-defined parameters are
shown in Tables 1–3, respectively. All algorithms were implemented in Matlab code and run by using
a single CPU (Intel i7-2600 @ 3.40GHz, Intel, Santa Clara, CA, USA). For implementing SFO methods,
we adopted the open source code provided by the authors of [9].

5.2. Experiment for Additive Gaussian Model

The Mackey-Glass time series prediction is a highly nonlinear regression task, which is widely
used as a benchmark problem. The chaotic time series data is generated from the difference equation
of the form,

x(τ+ 1) = (1− b)x(τ) + a
x(τ− ∆τ)

1 + x(τ− ∆τ)10
, (24)

where we set a = 0.2, b = 0.1, and ∆τ = 30 in our experiment. Figure 1 shows some part of a
generated time series. The input of the neural networks are set as four previous examples in the series,
x(τ), x(τ+ 1), x(τ+ 2), x(τ+ 3), and the target output is given as the next future value, x(τ+ 4).
From the generated time series, we chose 10,000 training samples (x(1001), . . . , x (11,000)) and 1000
test samples (x(11, 101), . . . , x (12,100)).Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 16 
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Figure 1. Mackey-Glass time series data (test samples).

The network structure for training is the multilayer Perceptrons with 4 inputs, 10 hidden,
and 1 output, which is the same as the model used in [21]. Since the output has continuous real values,
we adopted the additive Gaussian noise model. Other user-defined parameters for five learning
methods are shown in Table 1. Note that we used a larger mini-batch size for SFO in order to ensure its
comparable execution time.

Table 1. Hyper parameters and training performances on Mackey-Glass time series data.

Learning Methods

SG
(Mini-Batch)

ANG
(On-Line)

Proposed ANG
(Mini-Batch) ADAM SFO

|Dk|, K 10, 1000 1, 10,000 10, 1000 10, 1000 100, 100

hyper-parameters η = 0.01
η = 0.1

λ = 0.0164
εt = 1/t

η = 0.01
λ = 0.0164

α = 0.0001
β1 = 0.9
β2 = 0.999
ε = 10−8

−

execution time per epoch (s) 0.0191 0.4336 0.0716 0.0340 0.2590

squared error (training data) 9.77× 10−6 2.13× 10−6 9.27× 10−7 2.76× 10−6 1.03× 10−5

squared error (test data) 1.01× 10−5 2.13× 10−6 9.08× 10−7 2.76× 10−6 1.03× 10−5

total number of epochs 104 104 104 104 104
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In Figure 2, the changes of training errors of three learning methods according to learning epochs
are shown. From the figure, we can see that two adaptive natural gradient methods show better
convergence properties than the other three methods. In addition, the proposed mini-batch method gets
smaller training error than the conventional online adaptive natural gradient method. Adam optimizer
achieved slightly higher training error than the online ANG, but required about 10 times more iterative
updates. SFO showed very fast convergence in the early learning stage, but seemed to be trapped at a
local minima, giving undesirable solution.

In Table 1, the computational efficiency of three methods are also compared by using the average
execution time per single epoch, which shows large differences among the methods. In order to
compare computational efficiency and convergence performance at the same time, we plotted the
change of errors depending on the execution time (see Figure 3). Note that the horizontal axis of
Figure 3 is the execution time in log scale. Form the figure, the superiority of the proposed mini-batch
ANG method is confirmed more clearly.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 16 
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5.3. Experiment for Logistic Regression Model

In order to verify performance of the proposed method for the logistic model, we conducted
experiments on the well-known spiral classification data. The task is to classify two dimensional input
data scattered in spiral shapes into two classes. Though the network structure was small, it had a
highly nonlinear decision boundary as shown in Figure 4, and thus is often used as benchmark data
for classifiers. For training, we generated 100,000 samples for each class, (i.e., totally 200,000 samples)
as plotted in Figure 4a, and an additional 1000 samples per class for testing (Figure 4b). Whereas the
training data can be clearly discriminated by a spiral-shaped decision boundary, there was some
overlap in test data, which may cause misclassification.
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Figure 4. Spiral data sets: (a) Training data samples and (b) test data samples.

The network structure is set to 2 inputs, 20 hidden, 2 binary outputs. Other user-defined
parameters are given in Table 2. The shape of five learning curves for cross-entropy error depending
on the number of epochs is shown in Figure 5. As shown in the figure, the proposed method shows
fast convergence compared to the other methods. It should be also remarked that there are large
differences in the average execution times for single epoch. Since the online natural gradient need
to calculate the natural gradient for each data sample, it takes about 30 times longer execution time
than the proposed mini-batch adaptive natural gradient methods. Considering this difference, we also
compared the learning curves depending on the execution time, as shown in Figure 6. From the figure,
we can confirm the efficiency of the proposed method again. We can also see that Adam optimizer
had similar convergence speed to the proposed one in this specific computational environment with a
single CPU. Figure 7 shows the decision boundaries that were obtained by three learning methods.

Table 2. Hyper parameters and training performances on spiral data classification.

Learning Methods

SG
(Mini-Batch)

ANG
(On-Line)

Proposed ANG
(Mini-Batch) ADAM SFO

|Dk|, K 50, 4000 1, 200,000 50, 4000 50, 4000 500, 400

Hyper-parameters η = 0.0001
η = 0.001
λ = 0.0066
εt = 1/t

η = 0.0001
λ = 0.0066

α = 0.005
β1 = 0.9
β2 = 0.999
ε = 10−8

−

execution time per epoch (s) 0.1625 17.1659 0.6504 0.1867 0.9021

cross entropy loss (training) 0.0060 0.0048 0.0018 0.00016 0.05776

cross entropy loss (test) 0.2743 0.558 0.3562 0.6369 0.2391

classification rates (%, test) 91.60 90.20 91.80 91.40 90.20

total number of epochs 103 3× 102 3× 102 103 103
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5.4. Experiment for Real Benchmark Data

Finally, we applied the proposed method to a real-world data set, 3D road network data [29],
which was obtained from the University of California Irvine (UCI) machine learning repository.
The task was to predict highly accurate elevation values for 2D positions given as longitude and
latitude. From the whole data set, composed of 434,874 samples, we chose first 300,000 samples for
training, and the test was done for the rest (134,874 samples). The network structure is set to 2 inputs,
100 hidden, one output. Since the output has real values, we assumed the additive Gaussian noise
model. The values of user-defined parameters are shown in Table 3.
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Figure 7. Obtained decision boundary by (a) standard gradient (SG), (b) online adaptive natural gradient
(ANG), (c) proposed mini-batch ANG, (d) Adam optimizer, and (e) sum of functions optimizer (SFO).

In this real-world data, the number of sample and the number of learning parameters are larger
than the previous two simple data sets, and thus the differences in execution time was much bigger,
as shown in Table 3. In Figure 8, we showed the change of errors depending on the number of
epochs. Note that the horizontal axis is shown in log scale. From the figure, the conventional online
natural gradient learning seems to converge fast, though it became unstable after 10 epochs. However,
concerning the computational efficiency, the situation was different. In Figure 9, we compared the
learning curves depending on the execution time. From the figure, we can say that the proposed
method can find a good solution efficiently. Compared to Adam optimizer, the proposed AGN showed
about 10 times faster convergence in the sense of learning epochs, but almost the same performance
in the sense of execution time. The slow computation may be overcome by using faster matrix
multiplication operator.

Table 3. Hyper parameters and training performances on 3D elevation data.

Learning Methods

SG
(Mini-Batch)

ANG
(On-Line)

Proposed ANG
(Mini-Batch) ADAM SFO

|Dk|, K 100, 3000 1, 300,000 100, 3000 100, 3000 1000, 300

Hyper-parameters η = 0.0001
η = 0.00001
λ = 0.0025
εt = 0.00001

η = 0.001
λ = 0.0025

α = 0.001
β1 = 0.9
β2 = 0.999
ε = 10−8

−

execution time per epoch (s) 0.94 313.96 9.7958 1.4690 12.2409

squared error (training data) 0.3497 0.3277 0.3047 0.2991 0.4933

squared error (test data) 0.3515 0.3301 0.3063 0.3014 0.4929

total number of epochs 5000 10 500 5000 500
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6. Conclusions

In spite of remarkable developments of deep learning technologies, there is no alternative to
gradient-based learning method. The strange learning behaviors of gradient descent learning, such as
plateau, local minima, and low generalization error of over-complete models, have not been thoroughly
investigated, and the resolution of local minima and plateau problems are still not being fully addressed.
Though the original natural gradient has ideal convergence properties eliminating plateau phenomena,
heavy computational cost for obtaining the inverse of Fisher information matrix makes the natural
gradient unfeasible in real application. As a novel attempt to solve this practical constraint, this paper
proposed an explicit and practically implementable algorithm of natural gradient method in mini-batch
learning mode. By utilizing mini-batch subsets, we can get computational efficiency as well as
estimation stability. In particular, we presented the explicit learning algorithm for two representative
stochastic neural network models.

Theoretically, the proposed algorithm does not assume the specific shape of network, and thus
is applicable to any types of neural network models trained by gradient descent methods, such as
convolutional neural networks and recurrent neural networks. Nevertheless, concerning computational
efficiency, we should remark that the popular layer-wise updates through backpropagation process
cannot be directly applied to the proposed method because it needs a multiplication of the full
rank matrix and the gradient vector for the whole parameters. To overcome this difficulty, it would
be possible to combine the proposed method with an additional simplification method for Fisher
information matrix such as unit-wise block diagonalization described in [18,30].

Consequently, the proposed algorithm may not be appropriate for deep networks with a huge
number of parameters. However, there are diverse applications in which the dimension of input and
output is small but its mapping function is highly nonlinear. The proposed method can find a good
solution to the problem more efficiently. In particular, in the Internet of Things (IoT) environment
streaming huge number of data continuously, the proposed method can be successfully applied to
analyze the bunch of data.
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