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Abstract: Traditional network attack and hacking models are constantly evolving to keep pace
with the rapid development of network technology. Advanced persistent threat (APT), usually
organized by a hacker group, is a complex and targeted attack method. A long period of strategic
planning and information search usually precedes an attack on a specific goal. Focus is on a targeted
object and customized specific methods are used to launch the attack and obtain confidential
information. This study offers an attack detection system that enables early discovery of the APT
attack. The system uses the NSL-KDD database for attack detection and verification. The main method
uses principal component analysis (PCA) for feature sampling and the enhancement of detection
efficiency. The advantages and disadvantages of using the classifiers are then compared to detect the
dataset, the classifier supports the vector machine, naive Bayes classification, the decision tree and
neural networks. Results of the experiments show the support vector machine (SVM) to have the
highest recognition rate, reaching 97.22% (for the trained subdata A). The purpose of this study was
to establish an APT early warning model mechanism, that could be used to reduce the impact and
influence of APT attacks.

Keywords: advanced persistent threat; principal component analysis; support vector machine; naive
Bayes classification; decision tree; multilayer perceptron

1. Introduction

The recent boom in the development of Internet technology has caused a similar boom in hacker
attack methods which is being constantly updated. Industry, as well as government, now face more
serious threats to information security. The threat to information from advanced persistent threat
(APT) is much greater than that from independent hackers and poses an enormous challenge to
network information security systems [1,2]. Among the important characteristics of APT is that it
is advanced and intrusion is at a very high level. It also has strong shielding ability and the attack
path is often indiscernible and this makes it more difficult for traditional methods to detect and put
up a defense. It is also persistent, the attack is continuous and of long duration, this also makes it
difficult for single, point based, detection techniques to handle. Although APT’s carrier exists in big
data, it brings a series of difficulties to APT detection and protection, but it can also use big data to
test and respond to APT. If there is comprehensive information data at all levels and stages, and any
interactive behavior is detected, different data can be used to find different stages for APT analysis.
APT is a major attack model that goes on for a long time, involves a large amount of data traffic, and is
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multi-faceted. This mode of attack presents major hurdles to which traditional single-point feature
matching detection can hardly put up serious and effective resistance.

In 2013, Mandiant, now part of the FireEye US Information Network Security group, classified an
APT attack as being cyclic and having five stages. The first is an initial invasion, mainly using email as
the medium. The second stage is the establishment of a foothold, and malicious programs are used to
take hold of the target system. The third stage involves gaining administrator privileges and cracking
the password to obtain control and user authority. An internal investigation and parallel diffusion
comprise the fourth stage where the main task is a search for other nearby servers and the acquisition
of internal related information. The final stage is continuous monitoring and control of the server,
and the theft and export of data [3]. The APT attack threat is getting more serious, its evolution speed
is beyond imagination, while its form has become more diversified. The techniques APT has adopted
for different targets and objects have also changed. The common methods now used for APT attacks
are watering hole, spear phishing, and SQL injection attacks, and some others [4,5].

The detection schemes for APT attacks include sandbox detection, network anomaly detection,
and full traffic detection. However, the existing APT attack detection methods have lower accuracy
and require a large number of labeled samples. Heba et al. evaluated the NSL-KDD dataset and
proposed an anomaly intrusion detection system based on SVM, where PCA is applied for feature
selection. They examined the effectiveness of the intrusion detection system by conducting several
experiments on the NSL-KDD dataset [6]. Liu et al. proposed a deep intrusion-based network intrusion
detection model (DBN-SVDD) [7]. This method uses DBN (deep belief net) for structural dimensionality
reduction to improve detection efficiency and it uses SVDD (support vector data description) to identify
and detect data sets. The experimental results of the NSL-KDD dataset using various algorithms show
that the detection rate of the method can reach 93.71%. There is no need to mark a large number of
samples, it can process high-dimensional data, detection of an APT attack is effective and there is no
need for supervision.

The frequency of automatic attacks on networks has increased enormously as has the speed and
variety of malware employed. The provision of effective analysis processing on big data networks
is very important. Incidentally, the processing capacity of the attack data almost always exceeds the
capabilities of personal computers. Providers use many different network intrusion detection system
(NIDS) devices [8] that are available on the market. Most use the sniffer method to give real-time
packet monitoring on the network and compare suspicious packets with others used in previous
attacks. When a suspected intrusion is found, these defense systems can launch an immediate warning.
There is so far no indication of which algorithm, of the many, used by any hardware device gives the
best rate of APT data detection. Currently, there are three common types of APT attack detection:
sandbox, abnormal network, and full-flow detection. All have shortcomings and low accuracy and
require a large number of labeled samples. Most focus on one stage of the APT attack, and such single
detection methods cannot monitor the life cycle of an APT attack at every stage. It is necessary to
study the attack data and establish an integrated security detection architecture for the APT that can
deal with the complexities of the attack. APT security detection architecture uses stratified thinking to
cover all the stages of an APT attack, including preparation, intrusion, infiltration, and harvest stages.
It is an in-depth detection system that covers multiple information sources and network protocols.
The attackers may be lucky enough to bypass one of the detection stages, but it is very difficult to avoid
detection completely.

In the new era of big data, the huge volume of data now spread around the entire globe has brought
with it new security challenges far greater than encountered ever before. There is a corresponding
and parallel relationship between the space of reality, or real space and data space. Any activity,
interaction, and behavior, especially as news, in real space has a corresponding relationship in data space.
Information about the vast numbers of worldwide enterprises and their data, about billions of individuals
and even objects, cloud computing and the Internet of Things are all carriers that generate big data.
There is no doubt about the existence of big data, but it has also become the main carrier of cyber-attacks.
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Many experiments have been carried out using the KDD 99 database [9], which has been the
most commonly used in past studies. This data is based on a database established by DARPA in 1999.
DARPA collected the data of three weeks of normal data flow and two weeks of an anomaly attack.
This work was done at the Lincoln Labs of the Massachusetts Institute of Technology (MIT) and there
are 494,021 records in the database data training set, and 311,029 records in the test set. There are a
total of 41 features and 5 types of large tags (normal, dos, r2l, u2l, probe) [10,11]. The inherent flaws in
the KDD 99 data set have been revealed by various statistical analyses, where many studies found
flaws that affect the precision of the intrusion detection system (IDS) modeling. Tavallaee et al. [11]
questioned the KDD 99 data, and further modified the data sample. He introduced the NSL-KDD
database, which is more discriminative and allows better intrusion detection.

The NSL-KDD data set was used in this study. It is suitable for the study and evaluation
of network intrusion detection systems [11]. Its predecessor was an improved version of KDD
99 [9], which had redundant data removed, and overcame the classifier recurring records problem
that tended to affect learning performance. In addition, the ratio of normal to anomalous data is
properly selected, the test and training data volumes are more reasonable, and it is generally more
suitable for the accurate evaluation of different machine learning techniques. Big data has become
the foundation of science and clarification, structuration, standardization, dimensionality reduction,
and visualization. Dimensionality reduction algorithms map the original multidimensional data to
low- dimensional data and describe the main features of the original with less data. Common methods
currently used can be linear or non-linear. The most frequently used non-linear dimensionality
reduction methods are locally linear embedding (LLE) and local tangent space alignment (LTSA) [12].
However, the computational complexity of non-linearity is high, and in this study, it was necessary
to process rapidly, even immediately, and so linear dimensionality reduction was used. The focus
of this study was on the exploration of linear principal component analysis (PCA) [13] as the main
axis. The three important characteristics of PCA are: (1) it is the best linear scheme, in terms of
mean square error, for the compression and reconstruction of a set of high-dimensional vectors into
lower-dimensional vectors; (2) it can directly calculate model parameters from data, such as sample
covariance; (3) compression and decompression are simple processes for the execution of model
parameters. In line with a method proposed by Revathi et al. [14], the NSL-KDD data set was used
for network intrusion detection. The data set has 41 attributes, some of which may not be necessary
and others unrelated. When the data set is very large dimensional problems may arise. To reduce the
dimensions, we used PCA, a dimensional and multivariate analysis technique primarily used for data
compression, image processing, pattern recognition, and time series prediction [15,16].

APT attack detection technology has also been combined with data mining techniques [17,18].
The aim being to carry out data integration and classification using frequently encountered pattern
sets and association rules to detect and gain early warning of an APT attack. Classification is divided
into categories that have been established using the test data. During the data mining process,
attack detection technology becomes a classification issue that determines the category and feature
sets. Each audit record is classified as one of two types: normal behavior or attack behavior. In APT
attack detection, correlation analysis can be used to find the relationship between the various kinds
of attack behavior. This correlation is used to classify the data and for the detection of attacks.
The most influential classification algorithms used in data mining are the Iterative Dichotomizer 3 (ID3),
C4.5 [19,20], the native Bayes classifier, based on the posterior attitude that uses the Bayes theorem and
the backpropagation of the Bayesian and neural networks. If prediction accuracy, calculation speed,
robustness, and interpretability are used to evaluate the classification algorithms, it is found that each
different method has advantages and disadvantages. No method has so far been found that is superior
to the others for all data. They are selected according to the type of data and the application field.

In this study the (NSL-KDD) data set provided by knowledge discovery and data mining (KDD)
CUP [11] was used. Although the NSL-KDD dataset data is old, its network communication protocol
and attack behavior patterns remain unchanged. The dimension was reduced using PCA to enhance the
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efficiency of detection. The relevant classification method was then used for the data set experiments
and to establish models for the training data (using the training algorithm) to analyze and classify the
APT attack packets. The test data were loaded using the training model to obtain the performance
indicator. The model was then used to establish the APT attack detection system. Detection and
defense covered all stages of the APT attack to achieve the best result.

2. Methods

2.1. Materials and Experimental Setup

The analysis of APT network attack packets is not new technology, but it has become an essential
part of network administrators and information security and is used to analyze regular activities.
In the past, it usually applied to the analysis of network behavior or debugging of the network
environment. In the current network milieu, where information security incidents are frequent,
this investigation has become regular and essential. Side recording of network packets from a target
host can provide information about events that enables even more information to be obtained through
analysis. Therefore, while facing current popular APT attacks hidden behind communication behavior,
and even in the communication content, it is possible to obtain key information by using network
packet analysis technology. In this study, a comparison has been made between the correct rate
of APT network attack detection using the NSL-KDD data sets and PCA dimensionality reduction
technology and four machine learning classification algorithms: SVM, naive Bayes, decision tree,
and the multi-layer perceptron neural network (MLP). Most relevant work has been done using the
“WEKA Spreadsheet to ARFF” service to convert the NSL-KDD data set format from files with the
csv extension to ARFF extension format (including “training data set (KDDTrain+)” and “test data
set (KDDTest+)” (https://github.com/jmnwong/NSL-KDD-Dataset) is the reference URL. Because the
data has different ranges, preprocessing needed to be done to round up all the features. Two type
classifiers were used, normal, and anomaly. The PCA algorithm was then used to reduce the size of
the classified data set. Finally, the pre-processed training and test data sets were grouped and tested,
and experiments with the four classification algorithms were carried out. These were SVM [21–23],
naive Bayes [24], decision tree [25], and MLP and they were used to train and test the data and compare
and analyze the results. Each record had data with 41 different feature attributes presenting the content
of the network packets. There were four categories of anomalous attack DoS, Probe, R2L, and U2R and
the definitions are shown in Table 1.

Table 1. Four classified categories of anomalous attack

Type of Anomaly Definition Related Features

DoS
Distributed denial-of-service (DoS) exhausts the
target resources, making it impossible to process
legitimate requests.

• Original bit
• Percentage of error packets

Probe The goal of surveillance and other probe attacks is
to gather related information about remote victims.

• Continuous connection time
• Original bit

R2L
Unauthorized remote machine connection, the
attacker invades the remote machine and gains
local access to the target system.

• Internet rights
• Continuous connection time
• Services requested
• Level features of the host
• Number of failed login attempts

U2R

Unauthorized access as a local user (admin/root)
administrative privileges. The attacker logs into the
target system using a regular account and attempts
to obtain administrator and root privileges by
exploiting certain system vulnerabilities.

• Number of file creations
• Usage times of shell

https://github.com/jmnwong/NSL-KDD-Dataset
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2.2. Method of Signal Dimension Reduction

PCA is a statistical technique that transforms a set of possible correlation variables to a set of
linearly uncorrelated variables by orthogonal transformation. The transformed set of variables is the
principal component. A set of related features in high-dimensional data is converted to a smaller subset
and named as principal component. High-dimensional n data can be transformed to low-order k
dimension data (n > k). PCA does this transformation by finding a k feature vector, and projecting the
n dimension data onto that feature vector to minimize the overall projection error. PCA can preserve
around 0.9 variance of the original data set and significantly reduce the number of features as well as
the dimensions. The original high-dimensional data set is projected onto a smaller subspace while
preserving most of the information contained in the original data set. Assuming {xt}, and t = 1, 2, . . . , N,
the random dimension n with the mean (µ) inputs the data recording its definition as (1)

µ =
1
N

N∑
t=1

xt (1)

The definition f the covariance matrix of xt is (2):

C =
1
N

N∑
t=1

(xt − µ)(xt − µ)
T (2)

PCA solves the eigenvalues problem of Covariance matrix C

CCvi = λivi (3)

In Equation (3), λi is the eigenvalue and vi is the corresponding eigenvector.
To represent the data record with a low-dimensional vector, only m pieces of eigenvector (named as

the principal direction) are needed, corresponding to m pieces of the largest eigenvalue (m < n), and the
variance of the projection of the input data in the principal direction is greater than the variance in
any other direction. Hence parameter v is the approximate precision of the m pieces of the largest
eigenvector, so the following relationship (4) is obtained

m∑
i=1

λi

n∑
i=1

λi

≥ v (4)

The purpose of PCA is to maximize internal information and increase calculation speed after
dimension reduction, and to evaluate the importance of the direction by the size of the data variance in
the projection direction.

3. Classifier

3.1. Support Vector Machine

SVM technology was devised for handling data in space. A hyperplane in the space is found which
separates the data into two different groups. Suppose we have a bunch of points and the rendezvous
point is expressed as (5) {

xi, yi
}
, i = 1, . . . , n and xi ∈ Rd, yi ∈ {+1,−1} (5)

An attempt is made to find a straight line f (x) = wTx− b that allows all the yi = −1 points to fall on
the f (x) < 0 side, and all the yi = +1 to fall on the f (x) > 0 side. Therefore, it is possible to distinguish
to which side a point belongs by the sign (+ or −) of f (x). This spatial plane is called the separating
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hyperplane, and the greatest distance from the margin is called the optimal separating hyperplane
(OSH). Solving OSH is equivalent to finding the support hyperplane with the farthest distance.

The support hyperplane is defined as in (6)

wTx = b + ξ
wTx = b− ξ

(6)

The margin between the two separating hyperplanes is naturally double d. Where the margin
= 2d = 2/‖w‖, the smaller the ‖w‖, the larger the margin. Knowing that the distance between the
support hyperplane and the optimal separating hyperplane is within ±1, so the constraint conditions
are written as in Equations (7) and (8)

yi
(
wTxi − b

)
− 1 ≥ 0 (7)

The Lagrange multiplier is then used for transformation to a quadratic Equation (8) and to find w,
b, and α that allows L to be a minimum, as in Equation (8)

L(w, b,α) =
1
2
‖w‖2 −

N∑
i=1

αi
[
yi
(
wTxi − b

)
− 1

]
(8)

To solve the minimum value L, find the partial differential of w and b respectively to get (9)

LD =
N∑

i=1

αi −
1
2

∑
i, j

αiα jyiy jxT
i x j (9)

However, the solution for nonlinear data is to project the data to a space of higher dimension or a
feature space. The mapping of x to the feature space through ϕ, is shown in (10)

xT
i x j → ϕ(xi)

Tϕ(x j) (10)

However, the mapping function ϕ is very complicated and it is not easy to obtain the value, but its
inner product type may become very simple. Take the radial based function (RBF) as an example.
Although RBF is a complex function, it can be changed to an inner product and simplified as shown
in (11)

k
(
xi, x j

)
= ϕ(xi)

Tϕ(x j) = exp

−‖xi − x j‖
2

2σ

 (11)

The function obtained by the mapping function from the inner product is the SVM kernel.

3.2. Naive Bayes

Naive Bayes predicts the results of classification according to the Bayesian theorem. It is mainly
used to calculate the data of unknown categories and the probability of its belonging to a category.
Bayesian classification attains minimum error by the analysis of probability statistics, using known
category attribute probability values and their pre-probability values, to calculate the probability of a
new case in each category. The probability of each category is compared and the case will be classified
as the category with the greatest probability. Assume that event c1, c2, . . . , cn is in n category data
collection sample space, an observe quantity X = [x1, x2, . . . , xr]

T is then given which has an r features
parameter. According to the Bayesian theorem, the classification ci belongs to the observe quantity X,
and the error probability of classification can be expected to be minimized. The following Equation (12)
can be obtained from the Bayesian theorem.
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P(Ci|X ) =
P(Ci)P(X|Ci )

P(X)
(12)

In Equation (12), P(Ci) is the pre-probability, and represents the probability of the Ci category.
P(X) is a constant, P(X|Ci ) is the probability of observe quantity X and appears in the Ci category.
P(Ci|X ) is the post-probability and reference used to judge the Ci category, to which the observe
quantity X belongs, the judgment Equation is (13)

X ∈ Ci if P(Ci|X ) > P
(
C j|X

)
for i ≤ j ≤ n i , j (13)

To judge to which category a certain feature X belongs, it is only necessary to estimate the similarity
rate between category Ci and category C j, where the similarity rate R is given by Equation (14)

R =
P(Ci|X )

P
(
C j|X

) =
P(Ci)P(X|Ci )

P
(
C j

)
P
(
X
∣∣∣C j

) (14)

If R > 1, then X is biased towards category Ci; on the other hand, if R < 1, X is more biased
towards category C j.

3.3. Decision Tree

The decision tree algorithm classifies data to achieve the purpose of detection. The decision tree
is formed from the training set data. If the tree cannot offer a correct classification of all the objects,
then some exceptions are selected and added to the training set. This is repeated until a correct decision
set has been formed. J48 is a decision tree C4.5 algorithm developed for the generation of decision
trees as an extension of the ID3 algorithm previously developed by Quinlan [17,18]. The decision
tree generated by the C4.5 algorithm can be used for classification purposes. Information gain is an
attribute selection method of information theory, the formal definition is, I(X) and is the information
before testing and after the training set has been classified. E(A k , X) is the information after testing,
which represents the information in each subset after the training set has been tested by the attribute
Ak. Its Equation (15) is shown below

Gain(Ak,X) = I(X) − E(Ak, X)

E(Ak, X) =
n∑

i=1

|Xi |
|X| I(Xi)

(15)

In the equation, X is the finite set of examples, Ak =
{
A1,...,Ap

}
: a set of attributes. The decision

tree generated by Equation (15) is gradually trimmed to form a complete decision tree, and further
trimmed to give easy-to-understand rules. The advantage of using the C4.5 algorithm is that it can be
pruned during the tree construction process. Discretization processing of the continuous attributes
allows the processing of incomplete data. The generated classification rules are easy to understand,
and have high accuracy. The disadvantage is that the data set needs to be scanned and sorted many
times during the process of building the tree. This inefficiency increases computer calculation time.
The J48 algorithm has two important parameters, C and M. C is the confidence level used to define the
confidence intervals. The value of the confidence factor is based on the trimmed parameter after the
decision tree has been established. The smaller the value, the more the tree has been trimmed. The M
parameter is the smallest sample number in two of the most popular branches.

3.4. Multilayer Perceptron

Multilayer perceptron (MLP) is a back-propagation neural network with high learning accuracy
and fast recall. It can handle complex sample discrimination and highly nonlinear function synthesis
problems where the output values can be suspended values. It is a popular neural network that has a
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wide range of applications that include: sample identification, bifurcation problems, function simulation,
prediction, system control, noise filtering, data compression, etc.

MLP is a back-propagating supervised learning algorithm, through f (·) : Rm
→ Ro , m is the

dimension at input and o is the dimension at output. By inputting the feature X = x1, x2, . . . xm and
the target value Y, this algorithm can classify the data using nonlinear approximation or perform
regression. MLP can have many nonlinear layers inserted between the input and output layers.

The stochastic gradient descent (SGD) method is used in MLP training. SGD uses the gradient of
the loss function, relative to the parameter that needs to be adaptive for updating, see Equation (16),
where η is the learning rate in the control parameter space search step, and Loss is the loss function
used by the network.

w← w− η
(
α
∂R(w)

∂w
+
∂Loss
∂w

)
(16)

If a training sample set (x1, y1), (x2, y2), . . . . . . , (xn, yn) is given, where xi ∈ Rn with yi ∈ {0, 1},
then the MLP learning function of one hidden layer and one hidden neuron is shown as in Equation (17)

f (x) = W2g(WT
1 x + b1) + b2 (17)

In Equation (17), W1 ∈ Rm and W2,b1, b2 ∈ R, is the model parameter. W1 and W2 the weights of
the input and hidden layers respectively, and b1 and b2 are the deviations added to the hidden and
the output layers. g is the activate function, set here as the hyperbolic tangent (tanh), the equation is
shown as (18)

g(z) =
ez
− e−z

ez + e−z (18)

For binary classification, f (x) can have an output value between 0 and 1 through the logic function
g(z) = 1/(1 + e−z). With the threshold set to 0.5, the output sample will be greater than or equal to
0.5 in the positive category, and the rest will be negative. If there are more than two categories, f (x)
will be a vector of size n and will be a softmax function rather than a logical one. zi represents the ith
element input to softmax, which corresponds to the ith category, and K is the number of categories.
The result is a probability vector that contains sample x for each category. The output category is the
one with the highest probability, the mathematical Equation (19) is

softmax(z)i =
exp(zi)∑k

l=1 exp(zl)
(19)

As for the regression method, the output remains f (x), so the output start function is an identical
function. MLP uses a different loss function, depending on the type of problem. The loss function of
the classification has cross entropy, and in the binary case, its loss function is shown in Equation (20)

Loss(
_
y , y, W) = −y ln

_
y − (1− y) ln(1−

_
y ) + α‖w‖22 (20)

Starting with the initial random weight, the multilayer perceptron (MLP) reduces the loss function
to the greatest extent by repeatedly updating these weights. After the loss has been calculated, it is
passed back to propagate from the output layer to the previous layer, and each weight parameter is
provided with an updated value to reduce error in the loss function.

In the gradient descent, the update of the weight can be expressed as Equation (21)

Wi+1 = Wi
− ε∇Losst

w (21)

In Equation (21), i is the iteration step and the learning rate ε is a value greater than zero.
The algorithm stops when the preset maximum number of iterations has been reached, or when the
improvement of loss is below a certain small number.
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4. Results and Discussion

The NSL-KDD data set was used in this study and had the basic host feature content which
included time and traffic. The training data set contained 22 different attacks. To simulate an actual
situation, new attacks would appear. The test data set contained 17 attack types that had not appeared in
the training dataset. The KDDTest+ and KDDTrain+ datasets, which have 22,544 and 125,973 network
data records respectively, were used. The WEKA-ReSample tool was used for the sampling of four
sub-datasets A, B, C, and D from the original (KDDTest+ and KDDTrain+) respectively, for use as
experimental data set samples, as shown in Figure 1.
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Each NSL-KDD network data record has 38 digital type attribute features, as well as three
character type attribute features including protocol type, service, and flag. Furthermore, the protocol
type has 3 features, service has 70 features, and flag has 11 features. It was therefore necessary to
map and transform the character type features in the original record to digital feature attributes.
The WEKA-Nominal to binary encoding method was used to encode the character features, turning
each original data record into a 122-dimensional eigenvector. Since the data had significantly different
resolutions and ranges, the range of value captured was not uniform. Therefore, standardization
or mean removal and variance scaling was needed for each eigenvector. After the transformation,
each dimension had a mean of 0, also called the Z-score normalization. Calculation involved subtraction
of the mean (M) from feature (X) and division by the standard deviation (S) (calculation equation:
Z = (X −M)/S), so the attribute data was scaled within a range of [0, 1]. After standardization of the
training data set, the same procedure was used to standardize the test data set.

The Weka tool was used to load the sampled experimental data set (sub-data sets A, B, C, and D,
each having 5000 records, and the random sampling reflected, as far as possible, the various information
expected during the analysis) for data preprocessing, and PCA was used to reduce the number of
features to 94. Four kinds of classification algorithms: SVM, naive Bayes, decision tree (J48), and MLP
were used in the experimental tests. Data that had not been dimensionally reduced, and data which
had been reduced, were both used. In the accuracy experiment for each group, data was compared in
three different combinations. Data set A was used to train each group, data set B was used to test the
first group, data set C was used for the second group, and data set D was used for the third group.

4.1. SVM Classifier Results

The SVM model has two very important parameters, C and gamma. Where C is the penalty factor,
which is the tolerance for error. The higher the value of c, the less the tolerance and over-fitting is easy.
The smaller the value of C, the easier it is to fit. If C is too big or too small, the generalization ability
will suffer and become worse. Gamma is a parameter that comes with the function after selection
of the RBF function as the kernel. It implicitly determines the distribution of data after mapping to
a new feature space. The larger the gamma value, the smaller the support vector, the smaller the
gamma, the larger the support vector. The number of support vectors affects the speed of training
and prediction. In the process, we experimented with the parameters c and g settings, and used the
parameter check program grid.py to find the best parameters c and g. After the program is executed,
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the last set of parameters is 0.03125, 0.0078125, and 91.9657 (Figure 2), where c = 0.03125, g = 0.0078125,
the parameters c and g are brought into the SVM classifier respectively, the correct rate of training and
test results are 92.2396% and 67.7032% respectively. After several parameter adjustment experiments,
it was decided to use c = 1.0 and g = 0.0 as the best parameter values to verify with the other three
classifiers in the paper.
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Weka was used for pre-processing. Feature selection, dimension reduction to 94 features,
and training and testing of the data set was done as before and according to the status of each
data set. The kernel function (parameter setting: parameter gamma = 0.0, parameter C = 1.0) was
applied including linear SVM, polynomial, RBF, and sigmoid for training and prediction, and the
results are shown in Table 2. It can be seen that the test of the first group had the best original data
recognition. When used for recognition, the kernel of the RBF can reach 97.22%. The linear kernel
recognition rate for the first group, after dimensionality reduction, can reach 96.68%. Although the
SVM classifier showed no enhancement of recognition rate after dimension reduction, the calculation
speed was substantially improved.

Table 2. Training and detection results for each SVM kernel function

Type of Classifier Data First Group
(Correct Rate/Time)

Second Group
(Correct Rate/Time)

Third Group
(Correct Rate/Time)

SVM (Linear)
Original data 97.38% 81.74% 78.78%

0.83 (s) 0.56 (s) 0.81 (s)

Data after Dimension
Reduction

96.68% 83.22% 80.72%
0.81 (s) 0.78 (s) 0.78 (s)

SVM (Polynomial)
Original data 96.36% 77.12% 73.00%

2.23 (s) 2.2 (s) 2.64 (s)

Data after Dimension
Reduction

93.58% 73.48% 69.82%
6.07 (s) 5.13 (s) 5.16 (s)

SVM (RBF)
Original data 97.22% 82.34% 79.64%

2.12 (s) 2.18 (s) 2.06 (s)

Data after Dimension
Reduction

96.40% 82.52% 79.72%
1.72 (s) 1.76 (s) 1.65 (s)

SVM (Sigmoid)
Original data 94.46% 82.78% 78.32%

1.04 (s) 0.97 (s) 1.47 (s)

Data after Dimension
Reduction

95.20% 82.88% 78.82%
1.22 (s) 1.64 (s) 1.25 (s)
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4.2. Naive Bayes Classifier Results

The results obtained with the Weka-naive Bayes classifier, using the default parameters are shown
in Table 3. The results indicate that, recognition of the data after dimension reduction was enhanced
and the calculation speed also improved, achieving a 91.54% recognition rate and a calculation speed
of 0.44 s.

Table 3. Training and detection results for naive Bayes

Types of Classifier Data First Group
(Correct Rate/Time)

Second Group
(Correct Rate/Time)

Third Group
(Correct Rate/Time)

Naive Bayes
Original data 90.00% 81.28% 80.90%

0.67 (s) 0.61 (s) 0.61 (s)

Data after dimension
reduction

91.54% 79.94% 79.46%
0.44 (s) 0.64 (s) 0.47 (s)

4.3. J48 Classifier Results

The J48 algorithm has two important parameters: The first is C (the confidence factor) which is
the level used to define the confidence interval. A lower C value will give a wider interval, meaning
a more negative estimate, which will result in heavier pruning. The confidence factor value is the
parameter basis for pruning after the decision tree has been established. The smaller the value, the more
extensive the pruning. The second is the M parameter which is the minimum number of instances in
the two most popular branches. The classifier displays the results in the text box next to the selection
button, and shows (J48-C 0.05-M 2), (J48-C 0.25-M 2), (J48-C 0.4-M 2), (J48-C 0.05-M 50), (J 48-C 0.25-M
50), (J 48-C 0.4-M 50), (J 48-C 0.55-M 500), (J 48-C 0.25-M 500), (J 48-C 0.4-M 500) as the parameter
settings. The results in Table 4 show that the calculation speed tends to be fast, but the recognition
rate is generally poor, and the data after dimension reduction (J48-C 0.05 to 0.4-M 500) had the best
recognition rate, reaching 86.02%.

Table 4. J48 training and detection results

Type of Classifier Data First Group
(Correct Rate/Time)

Second Group
(Correct Rate/Time)

Third Group
(Correct Rate/Time)

J48(C = 0.05, M = 2)
Original data 59.30% 51.08% 44.20%

0.19 (s) 0.2 (s) 0.14 (s)

Data after Dimension
Reduction

48.32% 50.94% 51.08%
0.13 (s) 0.14 (s) 0.11 (s)

J48(C = 0.25, M = 2)
Original data 59.30% 51.08% 44.20%

0.16 (s) 0.2 (s) 0.17 (s)

Data after Dimension
Reduction

48.32% 53.02% 50.22%
0.13 (s) 0.14 (s) 0.11 (s)

J48(C = 0.4, M = 2)
Original data 59.30% 51.08% 44.20%

0.16 (s) 0.14 (s) 0.16 (s)

Data after Dimension
Reduction

48.32% 53.02% 50.22%
0.11 (s) 0.14 (s) 0.11 (s)

J48(C = 0.05, M = 50)
Original data 52.30% 51.62% 44.70%

0.16 (s) 0.16 (s) 0.17 (s)

Data after Dimension
Reduction

49.22% 52.64% 53.24%
0.13 (s) 0.14(s) 0.11(s)
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Table 4. Cont.

Type of Classifier Data First Group
(Correct Rate/Time)

Second Group
(Correct Rate/Time)

Third Group
(Correct Rate/Time)

J48(C = 0.25, M = 50)
Original data 52.30% 51.62% 44.70%

0.14 (s) 0.17 (s) 0.17 (s)

Data after Dimension
Reduction

49.22% 52.64% 53.24%
0.11 (s) 0.16 0.14(s)

J48(C = 0.4, M = 50)
Original data 52.30% 51.62% 44.70%

0.23 (s) 0.16 (s) 0.17 (s)

Data after Dimension
Reduction

49.22% 52.64% 53.24%
0.11 (s) 0.16 0.11(s)

J48(C = 0.05, M = 500)
Original data 52.88% 67.12% 77.32%

0.16 (s) 0.17 (s) 0.17 (s)

Data after Dimension
Reduction

86.02% 76.50% 76.06%
0.13 (s) 0.16 (s) 0.11 (s)

J48(C = 0.25, M = 500)
Original data 52.88% 67.12% 77.32%

0.14 (s) 0.17 (s) 0.17 (s)

Data after Dimension
Reduction

86.02% 76.50% 76.06%
0.11 (s) 0.13 (s) 0.14 (s)

J48(C = 0.4, M = 500)
Original data 52.88% 67.12% 77.32%

0.23 (s) 0.14 (s) 0.16 (s)

Data after Dimension
Reduction

86.02% 76.50% 76.06%
0.14 (s) 0.16 (s) 0.11 (s)

4.4. MLP Classification Test Results

The Weka-MLP tool was used to do the MLP classification test. The parameters were the number
of hidden units (2 or 4), the ridge factor for quadratic penalty on weights (default 0.01), the tolerance
parameter for delta values (default 1.0 × 10−6), conjugate gradient descent was used (recommended
for many attributes), the size of the thread pool (default 1), the number of threads to use (default 1),
and random number seed (default 1). Tests were done for four combinations according to the
parameters, the combinations were AA (approximate sigmoid and approximate absolute error),
AS (approximate sigmoid and squared error), SA (soft plus and approximate absolute error), and SS
(soft plus and squared error). The results in Table 5 show that the highest recognition rate was 97.82%,
and when number of hidden units was 4, and approximate sigmoid and squared error had also been
selected, the calculation speed was 0.17 s.

Table 5. MLP training and detection results

Type of Classifier Data First Group
(Correct Rate/Time)

Second Group
(Correct Rate/Time)

Third Group
(Correct Rate/Time)

MLP (N = 2)
Original data 97.74% 78.84% 75.84%

0.19 (s) 0.16 (s) 0.17 (s)

Data after dimension
reduction

97.18% 83.12% 79.10%
0.31 (s) 0.36 (s) 0.17 (s)

MLP (N = 4)
Original data 97.76% 81.54% 78.98%

0.23 (s) 0.17 (s) 0.16 (s)

Data after dimension
reduction

97.24% 81.44% 78.40%
0.27 (s) 0.22 (s) 0.38 (s)
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Table 5. Cont.

Type of Classifier Data First Group
(Correct Rate/Time)

Second Group
(Correct Rate/Time)

Third Group
(Correct Rate/Time)

AS Training (Activation Functions: Approximate Sigmoid Loss Functions: Squared Error)

Type of Classifier Data First group (Correct
Rate/Time)

Second Group
(Correct Rate/Time)

Third Group
(Correct Rate/Time)

MLP (N = 2)
Original data 97.76% 78.86% 76.06%

0.16 (s) 0.16 (s) 0.17 (s)

Data after dimension
reduction

97.24% 80.78% 77.56%
0.12 (s) 0.19 (s) 0.17 (s)

MLP (N = 4)
Original data 97.62% 85% 81.76%

0.17 (s) 0.17 (s) 0.17 (s)

Data after dimension
reduction

97.82% 84.56% 79.32%
0.17 (s) 0.17 (s) 0.19 (s)

SA Training (Activation Functions: Soft Plus Loss Functions: Approximate Absolute Error—E 0.01)

Type of Classifier Data First Set of Tests
(Correct Rate/Time)

Second Set of Tests
(Correct Rate/Time)

Third Set of Tests
(Correct Rate/Time)

MLP (N = 2)
Original data 97.64% 79.92% 75.74%

0.17 (s) 0.16 (s) 0.17 (s)

Data after dimension
reduction

94.38% 81.40% 77.26%
0.27 (s) 0.19 (s) 0.16 (s)

MLP (N = 4)
Original data 95% 77.96% 72.18%

0.19 (s) 0.16 (s) 0.27 (s)

Data after dimension
reduction

94.56% 81.12% 75.98%
0.14 (s) 0.17 (s) 0.14 (s)

SS training (Activation Functions: Soft Plus Loss Functions: Squared Error)

MLP (N = 2)
Original data 97.52% 78.88% 76.68%

0.14 (s) 0.17 (s) 0.17 (s)

Data after dimension
reduction

97.76% 79.90% 79.28%
0.13 (s) 0.23 (s) 0.14 (s)

MLP (N = 4)
Original data 97.92% 78.92% 75.80%

0.16 (s) 0.17 (s) 0.16 (s)

Data after dimension
reduction

97.52% 80.84% 77.34%
0.14 (s) 0.19 (s) 0.17 (s)

4.5. Correlation of Recognition Rate between the Classification Methods and Reduction of Dimension

PCA was used for feature selection and to reduce the dimension of available attributes in the
data set from 122 to 94. Classification was done by SKA, naive Bayes, J48, and the MLP algorithms
through WEKA. Correlation of each kind of classification algorithm and dimension reduction was
carried out, and Table 6 shows the correct rate of classification detection for each data set and the
parameter settings.

Table 6. Detection accuracy of the classifiers of the different algorithms

Algorithm
Test Classification

First Set of Tests
(Correct Rate/Time)

Second Set of Tests
(Correct Rate/Time)

Third Set of Tests
(Correct Rate/Time)

SVM-RBF

Original data
(122 Features)

97.22% 82.34% 79.64%
2.12 (s) 2.18 (s)

Data after dimension
reduction (94 Features)

96.4% 82.52% 79.72%
1.72 (s) 1.76 (s) 1.65 (s)
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Table 6. Cont.

Algorithm
Test Classification

First Set of Tests
(Correct Rate/Time)

Second Set of Tests
(Correct Rate/Time)

Third Set of Tests
(Correct Rate/Time)

Naive Bayes

Original data
(122 Features)

90% 81.28% 80.9%
0.67 (s) 0.67 (s) 0.61 (s)

Data after dimension
reduction (94 Features)

91.54 79.94 79.46
0.44 (s) 0.64 (s) 0.47 (s)

J48 (C = 0.25, M = 2)

Original data
(122 Features)

59.3% 51.08% 44.2%
0.16 (s) 0.2 (s) 0.17 (s)

Data after dimension
reduction (94 Features)

48.32% 53.02% 50.22%
0.13 (s) 0.14 (s) 0.11 (s)

MLP-AS (N = 4)

Original data
(122 Features)

97.62% 85% 81.76%
0.17 (s) 0.17 (s) 0.17 (s)

Data after dimension
reduction (94 Features)

97.82% 84.56% 79.32%
0.17 (s) 0.17 (s) 0.19 (s)

From the results, it can be clearly seen that the greater the amount of PCA dimension reduction,
the faster the calculation speed. The reduction had no absolute correlation with the correct rate.
When the classifier and parameter MLP-AS was N = 4, the same dimensionality reduction did not
significantly improve the recognition rate. The MLP calculation speed was not improved either.
However, its recognition rate was the highest among the classifiers, reaching 97.82%. The results of
SVM-RBF are similar to those of MLP.

5. Conclusions

The increase in the number and severity of network attacks in recent years has made APT detection
a vital matter and it has become the key to network security protection. A large amount of security
audit data and the complex and dynamic features of intrusion behavior, as well as optimization of the
performance of APT detection has become an important open issue. This has attracted much attention
from the information security and academic research communities. According to the experiments in
this study, the classifiers SVM-RBF and MLP-AS (N = 4) have the best recognition rate for NSL-KDD.
Using PCA to reduce the dimension did not help with the recognition rate, but it could improve the
calculation speed. It is recommended that SVM-RBF or MLP-AS (N = 4) classifiers be used for the
detection of an APT attack. There is an advantage to using SVM and PCA together to accelerate the
calculation process. The experimental results of this study provide reference models for follow-up
research in the selection of classifiers and parameters, information about the effects of the reduction of
dimensionality and calculation speed, as well as a better understanding of the contents of the data set.

Many of the network intrusion detection system modules used today are modeled using the
support vector machine algorithms. However, they are very demanding in terms of system computing
hardware performance. To alleviate this problem, dimension reduction is applied to a given data set
that uses important feature extraction to improve processing speed. Data from the experimental results
show that data dimensionality reduction had no significant impact on the results but detection speed
was enhanced. Improvements in the characteristic information of the data set content used to analyze
the APT attack, as well as in the dimensionality reduction method, will further improve the accuracy
of effective analysis.
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