
applied
sciences

Article

A Feature Analysis Based Identifying Scheme Using
GBDT for DDoS with Multiple Attack Vectors

Jian Zhang, Qidi Liang , Rui Jiang and Xi Li *

School of Computer Science and Engineering, Central South University, Changsha 410083, China;
csu_jianzhang@263.net (J.Z.); liangqidi@csu.edu.cn (Q.L.); ruijiang@csu.edu.cn (R.J.)
* Correspondence: lixi@csu.edu.cn

Received: 10 September 2019; Accepted: 25 October 2019; Published: 31 October 2019
����������
�������

Abstract: In recent years, distributed denial of service (DDoS) attacks have increasingly shown the
trend of multiattack vector composites, which has significantly improved the concealment and success
rate of DDoS attacks. Therefore, improving the ubiquitous detection capability of DDoS attacks
and accurately and quickly identifying DDoS attack traffic play an important role in later attack
mitigation. This paper proposes a method to efficiently detect and identify multivector DDoS attacks.
The detection algorithm is applicable to known and unknown DDoS attacks.

Keywords: traffic characteristics; DDoS detection; feature selection; GBDT algorithm; attack feature tree

1. Introduction

Today, an ever-increasing number of businesses are using data centers or large server clusters to
run a variety of applications. Most of these applications use TCP(Transmission Control Protocol) or
UDP(User Datagram Protocol) protocols, such as web services that make up most of the network’s
traffic. However, applications based on TCP or UDP have suffered a variety of malicious attacks,
especially distributed denial of service (DDoS) attacks. Denial of service (DoS) or DDoS attacks pose
a devastating threat to network services [1]. In the field of network security, detecting, identifying,
and mitigating denial of service and distributed denial of service attacks is a challenging task [2].
For the current, widespread Mixed DDoS attacks, detection is mainly used to determine whether the
current traffic has DDoS attack behavior, and identification is used to provide decision information
regarding various specific attack types. At present, researchers have proposed many abnormal traffic
detection models, including feature matching, statistical rules, and machine learning. These models [3]
are widely used for abnormal flow monitoring. In recent years, using machine learning to detect
abnormal traffic has become a hot spot for DDoS traffic detection. Marwane Zekri et al. [4] proposed
a DDoS detection system based on the C4.5 algorithm to mitigate the DDoS attack threat. Wathiq
Laftah AY et al. [5] proposed a multilevel hybrid intrusion detection model that uses support vector
machines and extreme learning machines to improve the efficiency of detecting known and unknown
attacks. Kuang et al. [6] proposed an intrusion detection system based on an SVM(Support Vector
Machines) model combined with kernel principal component analysis (KPCA) and a genetic algorithm
(GA). However, the current research on DDoS attack detection has the following problems: (1) more
consideration is given to the detection of DDoS attack behavior, but less recognition exists for composite
type attacks; (2) the type of attack identified by the classifier using limited statistical features is a
limitation; (3) the connection between the attack feature and the attack type cannot be given; and
(4) the DDoS attack detection accuracy is not high, and the detection response time is still slow.

In recent years, many machine learning methods have been developed to detect abnormal traffic,
but most researchers use the KDD-Cup 99 [7] dataset and the traffic characteristics provided by
KDD-Cup 99 to experiment, but KDD-Cup 99 provides a limited number of DDoS attack types.

Appl. Sci. 2019, 9, 4633; doi:10.3390/app9214633 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9585-4794
http://www.mdpi.com/2076-3417/9/21/4633?type=check_update&version=1
http://dx.doi.org/10.3390/app9214633
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4633 2 of 26

Alternatively, these researchers only apply a small amount of traffic characteristics. Practical experience
has shown that the data used and their characteristics determine the effectiveness of machine learning,
the algorithm and algorithm optimization simply approximate the obtained result of machine learning.
Based on TCP traffic characteristics in 102 and 49 UDP traffic characteristics, this paper constructs a
feature subset that accurately represents different types of attacks through a feature selection algorithm
and then optimizes the parameters of the GBDT algorithm to achieve an accurate and fast identification
of the purpose of malicious attack traffic in TCP and UDP flows. To effectively shorten the training
and detection time of the algorithm and improve the ubiquitous ability of the algorithm, we use the
combination of random forest and Pearson correlation coefficient as the search strategy, and use the
GBDT algorithm as the evaluation standard to implement the feature selection algorithm. Based on this
approach, the GBDT algorithm is tuned to identify DDoS composite attack types. The experimental
results show that the GBDT algorithm can quickly and accurately identify DDoS attack traffic after
feature selection and tuning.

This article contributes the following:

(1) From the thousands of features used in the DDoS traffic detection literature in recent years,
102 features are extracted and implemented as the original feature set of DDoS attack recognition.
These features can effectively represent known and unknown DDoS attacks. The experimental
results show that using these features on the 2017 WIDE dataset can accurately detect DDoS
attack traffic;

(2) A feature selection method based on the random forest feature score and Pearson correlation
coefficient is proposed. The method is compared with the traditional dimensionality reduction
algorithm and feature selection method. The experimental results show that the method utilizes
a smaller feature subset to maintain or improve the original attack detection accuracy;

(3) To identify the various DDoS attacks in the composite DDoS attack traffic completely, accurately
and quickly, an attack identification algorithm based on GBDT is proposed, and the GBDT
parameter optimization method is given. In addition, the nearest neighbor, Bayesian, and support
vector machine are compared with machine learning algorithms such as a deep network, and the
experimental results show that the GBDT algorithm is superior to other algorithms in attack type
recognition accuracy and running time.

(4) The method of constructing and optimizing the attack feature tree is proposed and continuously
optimizes the attack feature to characterize the specific type of attack by analyzing the relationship
between the attack type and the attack feature.

The organizational structure of this paper is as follows. The second part discusses the related
work and summarizes researchers’ results in existing work. The third part introduces the DDoS
attack feature selection framework and mode. The fourth part introduces the DDOS attack detection
algorithm based on GBDT and its classification and the performance comparison experiment between
other machines and other machine learning algorithms. The fifth part introduces a feature selection
algorithm based on random forest and Pearson correlation coefficient analysis and its optimization for
the DDoS classifier. The sixth part introduces the parameter tuning of the GBDT algorithm, the feature
selection algorithm and its application in the performance improvement of DDoS attack identification.
The seventh part summarizes the entire paper.

2. Background and Related Work

Feature extraction is a very important step in the machine learning process. The quality of the
features determines the pros and cons of machine learning. The third International Knowledge
Discovery and Data Mining Competition (KDDCUP’99) provides 41 traffic characteristics for
abnormality detection, such as duration, protocol_type, and service in the intrusion detection datasets [7].
Traffic statistics are very important for DDoS detection. Jiahui Jiao [8] et al. defined two attack modes,
fixed source IP attack and random source IP attack, and proposed a DDoS real-time detection method

Appl. Sci. 2019, 9, 4633 3 of 26

based on TCP protocol. This method extracts 15 basic statistical features and 16 ratio characteristics
of TCP traffic. Malicious traffic is distinguished from normal traffic by two decision tree classifiers.
Qin.X [9] proposed an entropy-based DDoS attack detection method. By constructing the entropy vector
of different traffic characteristics, the clustering analysis algorithm is used to model the normal mode.
By defining different packet size levels, different levels of packets are set to different characteristics.
It chooses the network connection quintuple (source IP, destination IP, source port, destination port,
protocol number), and the packet size (divided into five levels, such as 0–128, 128–256, 256–512,
512–1024, 1024–1500) and SYN

SYN+ACK for a total of 11 features that are used for attack detection. Andrew
W. Moore et al. [10] proposed 249 features in traffic classification, including link layer features, IP layer
features, and TCP layer features. This method defines the maximum, minimum, 1/4, 1/2, and average
values of the packet size (or arrival time) from the client to the server and from the server to the client.
The features are closely related to traffic classification, and thus indicate that these features can be
applied to TCP, UDP, and ICMP flow anomaly detection. Yaokai Feng et al. [11] detected DDoS attacks
using 55 features, such as minimum packet size, average size, and size variance of packets in the
session, and selected 10 features out of 55 features to characterize ChallengeCoHapsar (CC) attacks.
The CC attack is a type of DDoS attack that uses a proxy server to send a large number of seemingly
legitimate requests to the victim server. CC is named according to its tools, and the attacker uses
a proxy mechanism to launch DDoS attacks using a number of widely available free proxy servers.
Many free proxy servers support anonymous mode, which makes tracking very difficult.

Feature selection is an important means to improve the accuracy of machine learning detection
and shorten the detection time. Excessive features will result in redundancy, and feature redundancy
will increase the time required for machine learning training models; consequently, the detection
accuracy will decrease, and the detection time will increase. Therefore, many researchers are committed
to the study of feature selection. Yaokai Feng et al. [11] considered that important features are
essential for early detection of DDoS attacks, and use support vector machines (SVM) and principal
component analysis (PCA) as feature selection algorithms. Their experimental results show that there
are 10 features that can characterize CC attacks. Liu et al. [12] proposed the use of mutual information
methods to eliminate redundant features. Table 1 summarizes the feature selection methods that are
currently used by researchers in DDoS testing.

Machine learning algorithms are the core of machine learning. Different algorithms can produce
different detection accuracies and detection times when they act on the same datasets. Detection
accuracy and detection time are two major indicators that directly affect the DDoS detection effect.
In recent years, many researchers have often used machine learning algorithms to detect abnormal
traffic, and the detection results they obtained are also inconsistent. Common machine learning
algorithms include principal component analysis, K-nearest neighbor (KNN), naive Bayes classifier
(NB), decision tree, support vector machine, K-means (K-means), and back propagation neural network
(back propagation, BP).

The PCA-based DDoS attack detection was first proposed by A. Lakhina et al. [13]. The method
separates the high dimensional space occupied by a set of network traffic measurements into disjoint
subspaces corresponding to normal and abnormal network conditions. Experiments have shown that
this separation can be effectively achieved by principal component analysis. There are many differences
between this approach and the PCA-based multivariate statistical process control (MSPC) method in
the industrial processing and chemometric literature. José Camacho et al. [14] recommended the use of
multivariate statistical network monitoring (MSNM) to effectively avoid the shortcomings mentioned
in the literature, and the limitations of using PCA in the network are reported.

Appl. Sci. 2019, 9, 4633 4 of 26

Table 1. Feature selection method.

Author Feature Selection Method Authentication Method Datasets

Wei W. et al. [15] Information gain and chi-square method Bayesian network KDD-Cup 99

Fatemeh A. et al. [16]
Linear correlation coefficient and forward feature selection
algorithm (FFSA) and proposed modified mutual
information feature selection (MMIFS)

SVM, Bayes KDD-Cup 99

Yinhui Li et al. [17] Stepwise feature removal method GFR method SVM KDD-Cup 99

Jarrah [18] Random forest-forward selection sort (RF-FSR) and
Random forest-backward sorting (RF-BER) Decision tree, forest KDD-Cup 99

O.Y. AlJarrah [19] Consistency subset evaluation Extreme learning
machine NSL-KDD

Ay [20] CFS Subset Evaluator is used as an attribute evaluator and
best first is used as a search method

Random Forest, J48, and
Naive Bayes NSL-KDD

R. Vijayanand [21] Genetic algorithm multisupport vector machine SVM classifier CICIDS 2017

Tarfa Hamed [22] Recursive feature addition (RFA) and bigram techniques SVM classifier ISCX

Chaouki K. [23] Genetic algorithm as feature search and logistic regression
as a packaging method for learning algorithms Decision tree KDD-Cup 99,

UNSW-NB15

Yang Li [24] Improved linear SVM SVM KDD-Cup 99

Based on KNN-based DDoS attack detection, Ming-YangSu [25] proposed a method for detecting
large-scale DDoS attacks in real time by a weighted KNN classifier. In addition, a combination of
a KNN and a genetic algorithm for feature selection and weighting is proposed. The experiment
shows that the overall accuracy is as high as 97.42% for known attacks. For unknown attacks, a 78%
accuracy rate was obtained. Known attacks and unknown attacks are relative to the training set
of machine learning. If the training set contains a certain DDoS attack type, the DDoS attack type
belongs to a known attack. If the DDoS attack type is not included in the training set, the DDoS attack
type belongs to an unknown attack. If a model can detect not only known attacks but also unknown
attacks, the model performs very well. When multiple DDoS attacks occur simultaneously, the ability
of the model to detect unknown attacks is very important. The authors in [26] proposed a hybrid
approach to intrusion detection systems that uses a boundary-cutting algorithm of the Manhattan and
Jaccard coefficients with similar distances that was combined with the KNN algorithm to implement
intrusion detection.

Based on NB-based DDoS attack detection, Yunpeng Wang et al. [27] applied the NB and ReliefF
algorithms to propose a naive Bayesian classification method. It uses the ReliefF algorithm to assign
a weight to each attribute in the KDD-Cup 99 datasets, which reflects the relationship between the
attribute and the final class for better classification results. Thaseen, S, I et al. [28] proposed an intrusion
detection model using linear discriminant analysis (LDA), chi-square feature selection, and improved
naive Bayesian classification. They use Bayesian classifiers to identify normal and abnormal traffic
in the NSL-KDD datasets. The experimental results show that the Bayesian classifier combined with
other feature selection methods yields higher accuracy and a lower false positive rate.

Regarding decision tree-based DDoS attack detection, Lakshmi et al. [29] use decision trees to
protect wireless nodes and target nodes within the network from DDoS attacks. Malik, A, J et al. [30]
used standard particle swarm optimization algorithms to prune the decision tree with single and
multiple target perspectives. The pruned decision tree classifier is then used to detect anomalous
network connections. Experiments on the KDD-Cup 99 datasets showed an average detection accuracy
of 93.26%.

SVM-based DDoS attack detection has been implemented. Adel. A. et al. [31] proposed an SVM-based
framework for detecting denial of service attacks in virtualized clouds in a changing infrastructure
that collects some systems. The metrics are used to train SVM classifiers to distinguish between
normal and malicious activities of virtual machines (VMs), associating VM application metrics with
actual resource loads that enables hypervisors to distinguish between a benign high load and DDoS
attacks. Wang et al. [32] proposed an effective intrusion detection framework based on enhanced

Appl. Sci. 2019, 9, 4633 5 of 26

feature support vector machine (SVM). The logarithmic edge density ratio is transformed to form the
original features, such that new and better quality transform features are obtained and the SVM-based
detection model can achieve greatly improved detection ability. Feng, W, Y et al. [33] combined the
SVM method with the self-organizing ant colony network cluster (CSOACN) to take full advantage of
both approaches, and achieved an accuracy of 95.3% on the KDD-Cup 99 datasets.

Approaches based on K-means DDoS detection have been employed. Gina C [34] fully integrated
a SOM neural network and the K-means algorithm, and developed a two-stage classification system to
correlate related alarms and further classify alarms. This method effectively reduces all redundant and
noisy alarms. The author used the DARPA dataset to conduct experiments. The results show that
the method can detect 96% of the false positives, and the false positive rate is much lower. Ujwala
Ravale et al. [35] proposed a hybrid technique that combines the K-Means clustering algorithm and the
RBF kernel function of the support vector machine as a classification module. The main goal of the
proposed technique is to reduce the number of attributes associated with each data point. The accuracy
of the proposed technique in the KDDCUP’99 datasets reached 96.3%.

BP-based DDoS attack detection was reported in the following work. Zouhair Chiba et al. [36]
proposed an optimal method for constructing anomalous NIDS(Network Intrusion Detection
System) based on back propagation neural network using a back propagation learning algorithm.
Yunhe Cui et al. [37] used BP to detect traffic in real time on a software defined network (SDN).
They first obtained all the flow entries for each switch. After receiving the flow statistics of the flow
entry sent by the switch, the controller parses the flow statistics and processes the flow entry in the
message one by one. The eigen values of the flow entry include the number of packets matched by
each flow entry, the number of bytes matched by each flow entry, the lifetime of each flow entry, the
packet rate of each flow entry, and the byte rate of each flow table item. The extracted feature values
are then passed to the BP to determine if the TCP or UDP flow is benign or malicious. This method of
detection takes a long time.

At present, composite type attacks in DDoS detection are little recognized, and the limited
statistical features implemented in classifiers result in limited types of attacks. Moreover, the detection
accuracy of DDoS attacks is not high, and the detection response time is still slow. Therefore, this paper
also provides the connection between attack characteristics and attack types, helping decision makers
quickly lock the scope of attack types.

3. System Model and Problem Statement

The overall framework of this paper is shown in Figure 1. The first step is to extract the data from
the pcap file, that is, parse the data packets of each pcap file. Then, the data packet is synthesized
into a TCP flow or a UDP flow from which features are extracted. Finally, each datum is tagged, and
one datum is formed by a TCP flow or a UDP flow. The specific generation steps are discussed in
detail at the end of this section. In the second step, before the feature selection, we first determine the
GBDT algorithm as the classifier for DDoS detection and recognition, which is discussed in detail in
the fourth part. In the third step, the feature selection method of the random forest feature score and
Pearson correlation coefficient is used to select each attack type. In the fourth step, each of the attack
vectors are characterized by a feature subset, and an attack vector feature tree is constructed.

DDoS attacks are constantly changing, and each time a DDoS attack occurs, it is often accompanied
by multiple attack methods. At present, there are 45 kinds of DDoS attacks based on TCP and UDP
protocols [38–40]. Many researchers have proposed DDoS attack classification methods [41–44]. In view
of the current types of DDoS attacks, this paper extracts 102 features by summarizing the research
results of these researchers [8–11]. As shown in Appendix A Table A1, the features corresponding to
sequence numbers 1–102 are based on 102 features of the TCP flow, and the features corresponding to
sequence numbers 54–102 are based on 49 features of the UDP flow. These features serve as a collection
of original features for detecting DDoS attacks.

Appl. Sci. 2019, 9, 4633 6 of 26

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 26

Figure 1. Attack vector feature tree generation.

The goal of constructing a feature tree is to quickly locate which types of attacks appear when a
hybrid attack occurs. To clearly describe the construction process of the feature tree, the details are
shown in Figure 1 (1) First, the feature of the mixed attack is extracted, and the obtained feature subset
is used as the root of the feature tree. (2) Then, the mixed traffic corresponding to the root node is
separated into various attack types, and the traffic of each attack type is mixed with the normal traffic.
Then, feature extraction is performed, and the obtained feature subset is used as a leaf node (3).
Subsequently, iterating through all the leaf nodes is performed and steps (1) and (2) are repeated.
Finally, steps (1), (2), and (3) are performed to obtain a feature tree.

According to the attack vector feature tree, as shown in Figure 1, when the feature subset 1
changes, the attack type’s range can be quickly locked, that is, the node where the feature subset 1 is
located and the DDoS attack type that corresponds to the child node is determined. The attack vector
feature tree has the characteristics of a fast perceptual attack and is beneficial to DDoS mitigation.
Additionally, it saves time regarding feature selection because machine learning directly uses the
changed feature set’s learning and prediction.

Definition 1. Feature Set: A collection of features consisting of several features in Appendix A Table A1. A
feature set A is represented by [a1, a2, a3, ..., an], n ∈ (1, 2, 3, ..., 102), where n represents the sequence number
in Appendix A Table A1, and an represents the feature corresponding to the sequence number n in Appendix A
Table A1. For example, a feature set is [1, 6, 7, 9], indicating that the feature set has four features, which are the
corresponding features of the sequence numbers in Appendix A Table A1, namely, [syn_in_pps, Push_out_pps,
Fin_in_pps, and Rst_in_pps].

Definition 2. One-way flow: refers to a list of data packets in a TCP or UDP flow that are flowed by the client
to the server and arranged in chronological order, or a list of data packets that are sent by the server to the client
and arranged in chronological order.

To quickly extract DDoS features, this paper builds a big data processing framework. The
processing flow is shown in Figure 2. Kafka [45] is a message queuing system that can be published
and subscribed. Mainly considering the achievability of engineering practice, we, therefore, joined
kafka in the experiment. Kafka has a buffering effect, and with kafka the big traffic DDoS attack will
not rush our services. Kafka often used to collect real-time data from applications, the data format that
Kafka sends to consumers is <key, value, timestamp>. Spark Streaming is a consumer of data. It is an
extension of the core Spark API that enables scalable, high-throughput, and fault-tolerant stream
processing of real-time data streams. Hbase is a distributed storage database that can store data with
different key values at different times. First, the framework parses the fields of each packet of the pcap
file into a text file, that is, a packet is parsed into a row of data. Kafka sends the parsed data to
SparkStreaming. The data format = <K, V>, where K = sip#dip#sport#dport#protocol is a typical

Figure 1. Attack vector feature tree generation.

Extracting the important features of the DDoS attack type is very important for early detection
of DDoS attacks [11]. A type of DDoS attack tends to highlight several important features. In other
words, several features can characterize a DDoS attack. If we can acquire some features, we can lock
the DDoS attack type range, which will greatly help the later DDoS mitigation. According to the
method proposed by researchers in [41–44], each attack vector can be characterized by feature subsets
to construct the attack vector feature tree. When a DDoS attack occurs, the attack feature tree can be
used to quickly locate the DDoS attack type.

The goal of constructing a feature tree is to quickly locate which types of attacks appear when
a hybrid attack occurs. To clearly describe the construction process of the feature tree, the details
are shown in Figure 1 (1) First, the feature of the mixed attack is extracted, and the obtained feature
subset is used as the root of the feature tree. (2) Then, the mixed traffic corresponding to the root node
is separated into various attack types, and the traffic of each attack type is mixed with the normal
traffic. Then, feature extraction is performed, and the obtained feature subset is used as a leaf node
(3). Subsequently, iterating through all the leaf nodes is performed and steps (1) and (2) are repeated.
Finally, steps (1), (2), and (3) are performed to obtain a feature tree.

According to the attack vector feature tree, as shown in Figure 1, when the feature subset 1 changes,
the attack type’s range can be quickly locked, that is, the node where the feature subset 1 is located and
the DDoS attack type that corresponds to the child node is determined. The attack vector feature tree
has the characteristics of a fast perceptual attack and is beneficial to DDoS mitigation. Additionally, it
saves time regarding feature selection because machine learning directly uses the changed feature set’s
learning and prediction.

Definition 1. Feature Set: A collection of features consisting of several features in Appendix A Table A1.
A feature set A is represented by [a1, a2, a3, ..., an], n ∈ (1, 2, 3, ..., 102), where n represents the sequence number
in Appendix A Table A1, and an represents the feature corresponding to the sequence number n in Appendix A
Table A1. For example, a feature set is [1, 6, 7, 9], indicating that the feature set has four features, which are the
corresponding features of the sequence numbers in Appendix A Table A1, namely, [syn_in_pps, Push_out_pps,
Fin_in_pps, and Rst_in_pps].

Definition 2. One-way flow: refers to a list of data packets in a TCP or UDP flow that are flowed by the client
to the server and arranged in chronological order, or a list of data packets that are sent by the server to the client
and arranged in chronological order.

Appl. Sci. 2019, 9, 4633 7 of 26

To quickly extract DDoS features, this paper builds a big data processing framework. The processing
flow is shown in Figure 2. Kafka [45] is a message queuing system that can be published and
subscribed. Mainly considering the achievability of engineering practice, we, therefore, joined kafka
in the experiment. Kafka has a buffering effect, and with kafka the big traffic DDoS attack will not
rush our services. Kafka often used to collect real-time data from applications, the data format that
Kafka sends to consumers is <key, value, timestamp>. Spark Streaming is a consumer of data. It is
an extension of the core Spark API that enables scalable, high-throughput, and fault-tolerant stream
processing of real-time data streams. Hbase is a distributed storage database that can store data with
different key values at different times. First, the framework parses the fields of each packet of the
pcap file into a text file, that is, a packet is parsed into a row of data. Kafka sends the parsed data to
SparkStreaming. The data format = <K, V>, where K = sip#dip#sport#dport#protocol is a typical
quintuple for reconstructing TCP/UDP flows, V = data packet arrival time, packet size, IPgram, the text
version number, the IP header length and other IP packet fields, the TCP packet fields, and the UDP
packet fields. SparkStreaming then compares K with K_i in the list to determine whether the stream is
normal traffic or attack traffic. List is the label we manually identify (normal, SYN flood, or other), and
a quintuple is used to represent a TCP flow or a UDP flow, such as List = [<K1, type1>, <K2, type2> ...
<Ki, typei>], where Ki represents the quintuple of a TCP flow or UDP flow i, and i indicates the attack
type of a TCP flow or UDP flow i. After comparison, we obtain <K, V, type>, which determines the
label of each packet. Finally, it is stored in Hbase in the form of < type, E >, where type refers to the
attack type and E refers to the statistical feature set. To calculate <K, V, type> and convert to <type, E>,
the specific algorithm is as follows:

(1) Enter <K, V>.
(2) Use the map operator in Spark to determine the flow direction of the packet corresponding to <K,

V>. It returns <K_in, V> if the packet is flowing from the client to the server; otherwise, it returns
<K_out, V>.

(3) Then, call the reduce operator, and the result returns a one-way flow. For example, return <K_in,
(V1, V2, V3, . . . , Vn)>.

(4) The reduce function in (3) calculates the characteristics of Appendix A Table A1. For example,
calculate syn_in_pps = countSYN (V1, V2, V3, . . . , Vn)/Vn.time-V1.time. countSYN (V1, V2, V3,
. . . , Vn) is the number of SYN flags in the calculation packet V1, V2, V3, and Vn, which can
be calculated according to the flags field of the TCP packet. Vn.time-V1.time indicates that the
timestamp of V1 is subtracted from the timestamp of the packet Vn. After all the features are
calculated, <K, E> is returned, and E = “e1, e2, e3, . . . , en” en represents a certain feature in
Appendix A Table A1.

(5) Then, continue to call the reduce function, merge the features of the two unidirectional flows of
the same flow in (4), and return <K, E>.

(6) Call the JOIN function, List.join(E). E is the result of (5) return. The purpose of calling the JOIN
function is to label each E. Call the JOIN function to obtain <K, (type, E)>, return <type, E>.

(7) Store the results returned by (6) in the Hbase database.

In this paper, the machine learning algorithm can be used to retrieve the normal tag data and some
attack type data from the HBase database. This makes it easy to extract the feature set corresponding
to a certain attack type.

Appl. Sci. 2019, 9, 4633 8 of 26

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 26

quintuple for reconstructing TCP/UDP flows, V = data packet arrival time, packet size, IPgram, the text
version number, the IP header length and other IP packet fields, the TCP packet fields, and the UDP
packet fields. SparkStreaming then compares K with K_i in the list to determine whether the stream is
normal traffic or attack traffic. List is the label we manually identify (normal, SYN flood, or other), and
a quintuple is used to represent a TCP flow or a UDP flow, such as List = [<K1, type1>, <K2, type2> ...
<Ki, typei>], where Ki represents the quintuple of a TCP flow or UDP flow i, and i indicates the attack
type of a TCP flow or UDP flow i. After comparison, we obtain <K, V, type>, which determines the label
of each packet. Finally, it is stored in Hbase in the form of < type, E >, where type refers to the attack
type and E refers to the statistical feature set. To calculate <K, V, type> and convert to <type, E>, the
specific algorithm is as follows:

(1) Enter <K, V>.
(2) Use the map operator in Spark to determine the flow direction of the packet corresponding to

<K, V>. It returns <K_in, V> if the packet is flowing from the client to the server; otherwise, it
returns <K_out, V>.

(3) Then, call the reduce operator, and the result returns a one-way flow. For example, return <K_in,
(V1, V2, V3, …, Vn)>.

(4) The reduce function in (3) calculates the characteristics of Appendix A Table A1. For example,
calculate syn_in_pps = countSYN (V1, V2, V3, …, Vn)/Vn.time-V1.time. countSYN (V1, V2, V3,
…, Vn) is the number of SYN flags in the calculation packet V1, V2, V3, and Vn, which can be
calculated according to the flags field of the TCP packet. Vn.time-V1.time indicates that the
timestamp of V1 is subtracted from the timestamp of the packet Vn. After all the features are
calculated, <K, E> is returned, and E = “e1, e2, e3, …, en” en represents a certain feature in
Appendix A Table A1.

(5) Then, continue to call the reduce function, merge the features of the two unidirectional flows of
the same flow in (4), and return <K, E>.

(6) Call the JOIN function, List.join(E). E is the result of (5) return. The purpose of calling the JOIN
function is to label each E. Call the JOIN function to obtain <K, (type, E)>, return <type, E>.

(7) Store the results returned by (6) in the Hbase database.

Figure 2. Feature processing flow.

In this paper, the machine learning algorithm can be used to retrieve the normal tag data and
some attack type data from the HBase database. This makes it easy to extract the feature set
corresponding to a certain attack type.

4. DDoS Classifier

Decision trees are a basic classification and regression method. The decision tree model has a
fast classification, but it is also prone to overfitting. When boosting is performed in the classification
problem, it learns multiple classifiers by changing the weight of training samples, and linearly
combines these classifiers to improve classifier performance. The boosting math is expressed as:

Figure 2. Feature processing flow.

4. DDoS Classifier

Decision trees are a basic classification and regression method. The decision tree model has a
fast classification, but it is also prone to overfitting. When boosting is performed in the classification
problem, it learns multiple classifiers by changing the weight of training samples, and linearly combines
these classifiers to improve classifier performance. The boosting math is expressed as:

f(x) = w0 +
M∑

m=1

wmϕm(x), (1)

where w is the weight, ϕ is the set of weak classifiers, M represents the classifiers, and wm represents
the weight of the mth classifier. It can be seen that the final classifier is a linear combination of
basis functions.

The GBDT algorithm is a boosting algorithm proposed by Friedman [46] in 2001. It is an iterative
decision tree algorithm consisting of multiple decision trees, and the conclusions of all trees are added
as the final answer. The specific idea is that each time the model is built, the gradient of the model
loss function is established in the previous direction, while the traditional boosting idea is to weight
the correct and wrong samples. The GBDT algorithm plays two roles in this paper. On the one hand,
it implements DDoS classification based on the GBDT algorithm; on the other hand, it uses the GBDT
algorithm to evaluate and verify the effect of feature selection.

KNN, SVM, NB, and MLP(Multi-Layer Perceptron) algorithms are algorithms that are often
used in intrusion detection algorithms. Here, the paper compares the GBDT algorithm with KNN,
SVM, NB, and MLP in the three aspects of accuracy, running time, and the ROC(Receiver Operating
Characteristic) curve. The GridSearchCV adjustment parameters are optimized for KNN, SVM, and
NB algorithms, but it is difficult for MLP to determine the optimal parameters. It can only adjust a
good effect according to personal experience. The results are shown in Figures 3–5, respectively. In the
TCP flow, the attack traffic types are salphfl, malphfl, alphfl, mptmp, mptp, ptmp, ntscSYN, sntscSYN,
ptmpHTTP, and mptpHTTP. In UDP flows, the attack traffic type refers to ptpposcaUDP. These types of
attacks come from the division of the WIDE dataset [47], such as the attack type ntscSYN, which refers
to network_scan_SYN. Random extraction of 1 k, 10 k, and 100 k TCP or UDP datasets from the Hbase
database is performed. This paper uses GBDT, KNN, SVM, NB, and MLP as the five machine learning
algorithms to classify 1 k TCP and 1 k UDP datasets. The results show that when classifying TCP traffic,
the training accuracy of the GBDT algorithm reaches 0.99, and the test accuracy rate reaches 0.98. The
training accuracy of the KNN algorithm reaches 0.89, and the test accuracy rate is 0.9, while the training
accuracy and test accuracy of SVM algorithm are 0.89 and 0.95, respectively. The training accuracy and
test accuracy of the MLP algorithm are 0.96 and 0.93, respectively. The lowest is the NB algorithm, and
the training scores and test accuracy rates are 0.56 and 0.6, respectively. It can be seen that the accuracy
of the GBDT algorithm is significantly better than that of the other algorithms when the dataset’s size

Appl. Sci. 2019, 9, 4633 9 of 26

is 1 k. As the amount of data increases, the accuracy of the GBDT, KNN, SVM, and MLP algorithms
decreases, but the accuracy of the NB algorithm barely fluctuates, and the accuracy is poor. The NB
algorithm is suitable for datasets with few features, and eigenvalues that are discrete values and few in
number. The features extracted in this paper are continuous values and have 102 features, which is
obviously not suitable for NB algorithm. When the dataset’s size is 10 k, the training accuracy and test
accuracy of the GBDT algorithm are reduced, which are 0.959 and 0.962, respectively. The accuracy of
the test is higher than that of the KNN, SVM, and MLP algorithms. Similarly, when the amount of data
is increased to 100 k, the test accuracy of the GBDT algorithm is higher than that of the KNN, SVM, and
MLP algorithms. For UDP flows, when the dataset’s size is 1 k, the training accuracy and test accuracy
of the GBDT algorithm are 0.994 and 0.95, respectively. Regardless of the training accuracy or the test
accuracy, the GBDT algorithm achieves better results than other algorithms. As the size of the datasets
increases, the accuracy of all algorithms decreases. However, the performance of the GBDT algorithm
is superior to other algorithms. The reason for the decrease in accuracy may be due to the inaccurate
direction of the flow during the feature extraction phase. In general, the training accuracy and test
accuracy of TCP are higher than the training accuracy and test accuracy of UDP in the corresponding
algorithm because TCP traffic has a richer DDoS attack signature.

In terms of training time, as the amount of data increases, the training time of the GBDT algorithm
also increases, and the training time of the GDBT is not optimal in the five algorithms. However,
when the data volume is 100 k, the GBDT test time on the TCP datasets is only 0.031 s, and the test time
on the UDP datasets is only 0.023 s, which is smaller than that of the KNN, SVM, and MLP algorithms.

As shown in Figure 4, the training time and test time of the SVM algorithm are very long. When the
dataset’s size is 100 k TCP datasets, the time used is 451 and 25.22 s, respectively. When the dataset’s
size is 100 k UDP datasets, the time used is 202 and 9.973 s, respectively. The MLP algorithm also takes
a long time. The training time and test time are 28.456 and 1.02 s, respectively, compared to the 100 k
TCP datasets. Although the training time of the KNN algorithm is relatively short, the test time is
relatively long. The test times for the 100 k TCP datasets and the 100 k UDP datasets are 47.77 and
6.925 s, respectively. The test time is very important for DDoS detection. The shorter the test time,
the earlier it is possible to detect whether a DDoS attack has occurred, thus preventing the DDoS attack
from posing a greater threat to the server. Obviously, the GBDT algorithm is superior to the other
algorithms in terms of accuracy and test time performance. The comparison of the ROC curves of the
GBDT algorithm with other algorithms is shown in Figure 5. The ROC curve of the GBDT algorithm
encloses the ROC curve of the other algorithms. In summary, the time to detect DDoS attacks with
the GBDT algorithm is shorter than that of the other algorithms, and the accuracy of detecting DDoS
attacks is higher than that of the other algorithms. Therefore, the GBDT algorithm is selected as the
DDoS attack detection classifier.

For the TCP flow, this paper simply collects 102 features using the GBDT algorithm without
optimization to achieve a test accuracy of approximately 95%; for UDP flows with a total of 49 features,
the GBDT algorithm achieves a test accuracy of 91%. The selected features of Appendix A Table A1
and the GBDT algorithm are valid for DDoS attack traffic detection. However, due to the large number
of features, feature selection is required to improve the generalization ability of the algorithm and
shorten the detection time.

Appl. Sci. 2019, 9, 4633 10 of 26
Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 26

(a) (b) (c)

Figure 3. Accuracy comparison. (a) 1 k data; (b) 10 k data; (c) 100 k data.

(a) (b) (c)

Figure 4. Running time comparison. (a) 1 k data; (b) 10 k data; (c) 100 k data.

Figure 3. Accuracy comparison. (a) 1 k data; (b) 10 k data; (c) 100 k data.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 26

(a) (b) (c)

Figure 3. Accuracy comparison. (a) 1 k data; (b) 10 k data; (c) 100 k data.

(a) (b) (c)

Figure 4. Running time comparison. (a) 1 k data; (b) 10 k data; (c) 100 k data.

Figure 4. Running time comparison. (a) 1 k data; (b) 10 k data; (c) 100 k data.

Appl. Sci. 2019, 9, 4633 11 of 26
Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 26

(a) (b)

Figure 5. ROC curve comparison. (a) ROC comparison of TCP flow datasets; (b) ROC comparison of
UDP flow datasets.

5. DDoS Classifier Optimization

The previous part has shown that the GBDT algorithm as a DDoS attack classifier is better than
other algorithms. This part further considers the GBDT classifier optimization from two aspects. The
first is feature selection, and the second is the specific classifier tuning.

5.1. Feature Selection

Feature selection has two purposes. First, for each DDoS attack, several features that best
characterize the attack behavior are selected. Second, feature selection can help improve detection
accuracy, reduce the false positive rate, and thus accurately use the classifier. Choosing a good attack
feature can not only effectively identify DDoS attack traffic but also improve the response speed of
the algorithm if the recognition rate allows.

Feature selection methods are divided into three types: filtering methods, packaging methods,
and embedding methods. The main idea of the filtering method is to score the importance of each
feature and then select the features according to the ranking of the scores. The main methods are chi-
squared test, information gain, and correlation coefficient. The main idea of the packaging method is to
regard the selection of the subset as a search optimization problem, generate different combinations,
evaluate the combination, and compare it with other combinations. Therefore, this approach regards the
selection of subsets as an optimization problem. The main method is the recursive feature elimination
algorithm. The embedding method identifies the attributes that are important to the model training
during the process of determining the model. Feature selection can also be combined with the
artificial ant colony algorithm, artificial bee colony algorithm, genetic algorithm, annealing
algorithm, and other algorithms to obtain the best features. This paper proposes a new integrated
method of feature selection based on the random forest and Pearson correlation coefficients.

Random forests are a common feature selection method. In terms of DDoS attack feature
selection, Robin. G et al. [48] proposed a feature importance index based on random forests, using
random forest importance scores to gradually increase features. Zahangir Alam et al. [49] used a
random forest importance score to rank and extract top-ranking features. Random forests can
effectively extract the importance scores of features but cannot distinguish the correlation between
features.

The method in this paper aims to calculate and rank all feature importance scores using random
forests. The feature whose feature importance score is less than Ω is removed, and Ω is a threshold
for calculating the feature importance score using the random forest. The rationale of removing the
importance scores that are less than Ω is mainly to remove those features that are not related to the
classification category or those that are extremely related to the classification category. This paper
introduces the Pearson correlation coefficient, which examines the degree of correlation between two
things. If there are two characteristics, X and Y, their correlation is calculated as follows:

Figure 5. ROC curve comparison. (a) ROC comparison of TCP flow datasets; (b) ROC comparison of
UDP flow datasets.

5. DDoS Classifier Optimization

The previous part has shown that the GBDT algorithm as a DDoS attack classifier is better than
other algorithms. This part further considers the GBDT classifier optimization from two aspects.
The first is feature selection, and the second is the specific classifier tuning.

5.1. Feature Selection

Feature selection has two purposes. First, for each DDoS attack, several features that best
characterize the attack behavior are selected. Second, feature selection can help improve detection
accuracy, reduce the false positive rate, and thus accurately use the classifier. Choosing a good attack
feature can not only effectively identify DDoS attack traffic but also improve the response speed of the
algorithm if the recognition rate allows.

Feature selection methods are divided into three types: filtering methods, packaging methods, and
embedding methods. The main idea of the filtering method is to score the importance of each feature
and then select the features according to the ranking of the scores. The main methods are chi-squared
test, information gain, and correlation coefficient. The main idea of the packaging method is to regard
the selection of the subset as a search optimization problem, generate different combinations, evaluate
the combination, and compare it with other combinations. Therefore, this approach regards the
selection of subsets as an optimization problem. The main method is the recursive feature elimination
algorithm. The embedding method identifies the attributes that are important to the model training
during the process of determining the model. Feature selection can also be combined with the artificial
ant colony algorithm, artificial bee colony algorithm, genetic algorithm, annealing algorithm, and other
algorithms to obtain the best features. This paper proposes a new integrated method of feature selection
based on the random forest and Pearson correlation coefficients.

Random forests are a common feature selection method. In terms of DDoS attack feature selection,
Robin. G et al. [48] proposed a feature importance index based on random forests, using random
forest importance scores to gradually increase features. Zahangir Alam et al. [49] used a random forest
importance score to rank and extract top-ranking features. Random forests can effectively extract the
importance scores of features but cannot distinguish the correlation between features.

The method in this paper aims to calculate and rank all feature importance scores using random
forests. The feature whose feature importance score is less than Ω is removed, and Ω is a threshold
for calculating the feature importance score using the random forest. The rationale of removing the
importance scores that are less than Ω is mainly to remove those features that are not related to the
classification category or those that are extremely related to the classification category. This paper

Appl. Sci. 2019, 9, 4633 12 of 26

introduces the Pearson correlation coefficient, which examines the degree of correlation between two
things. If there are two characteristics, X and Y, their correlation is calculated as follows:

ρx,y =
N
∑

XY −
∑

X
∑

Y√
N
∑

X2 − (
∑

X)2
√

N
∑

Y2 − (
∑

Y)2
, (2)

where N is the size of the record. The meaning of the finally calculated correlation coefficient can be
understood as follows: (1) When the correlation coefficient is 0, the X and Y characteristics have no
relationship. (2) When the value of X increases (decreases) and the value of Y increases (decreases),
the two features are positively correlated, and the correlation coefficient is between 0.00 and 1.00.
(3) When the value of X increases (decreases) and the value of Y decreases (increases), the two features
are negatively correlated, and the correlation coefficient is between −1.00 and 0.00. The larger the
absolute value of the correlation coefficient is, the stronger the correlation, and the closer the correlation
coefficient is to 1 or −1, the stronger the correlation, while the closer the correlation coefficient is to 0,
the weaker the correlation.

Algorithm 1: Feature selection algorithm

Input: datasets D;Feature set A;Learning algorithm GBDT;
Threshold value of feature importance score Ω; Pearson correlation coefficient threshold ρ0

Output: feature subset A2

1: Calculate the importance score of feature set A using a random forest.
2: Sort the scores and select the feature subset A1 with a score greater than Ω
3: for i in |A1|:
4: for j in |A1|:
5: % = Pearson(i,j)
6: if % > ρ0 then:
7: list.add([i,j])
8: Combine related features in the list to obtain a new list 1
9: for h in list1:
10: A1 = A1-lowerscore(h)
11: Test = 0, Set A2 = {}
12: A1 sorts in descending order of score
13: for k in A1:
14: testscore = CroossGBDT(A2, k)
15: if testscore > test
16: A2.add(k), test = testscore
17: Output feature subset A2

This paper proposes a feature selection method based on a random forest and Pearson correlation
coefficients. The random forest is used to calculate the importance score for each feature. The features
with a feature importance score that is higher than Ω are then combined into a feature subset.
The pairwise features of the resulting feature subset are calculated for their Pearson correlation
coefficients. The feature for which the Pearson correlation coefficient ρx,y > %0 (%0, the Pearson
correlation coefficient threshold) has the smallest importance score is removed. The remaining feature
subsets are sequentially input into the GBDT algorithm. If the feature and the previous feature
together improve the test accuracy of the GBDT algorithm, the feature is selected as the result feature;
otherwise, the feature is not added as the result feature. The specific algorithm is shown in Algorithm 1.
The Pearson(i, j) function of the fifth line of the algorithm refers to the Pearson correlation coefficient
for calculating the feature i and the feature j. Line 7 describes that if the Pearson correlation coefficient
of feature i and feature j is greater than %0, then features i and j are added to the list. In the algorithm,

Appl. Sci. 2019, 9, 4633 13 of 26

list refers to a list of feature sets, for example list = [[1, 2], [4, 5], [5, 13]], where the Pearson correlation
coefficient of features 41 and 42 is greater than %0, so feature 41 and 42 join the list, resulting in a
new list given by list = [[1, 2], [4, 5], [5, 13], [41, 42]]. Line 8 refers to the combination of two related
features, such as combining the two related features in the list to obtain list = [[1, 2], [4, 5, 13], [41, 42]].
The function of lowerscore(h) on line 10 indicates that features with lower importance scores are
obtained. For example, when h = [4, 5, 13], feature 4 scores the highest, so the function lowerscore(h)
returns the set [5, 13]. The 14th line shows the function CroossGBDT(A2, k), which refers to a new
feature subset consisting of a feature subset and a feature k, and the new feature subset is input into
the GBDT algorithm to return the test set. The feature selection algorithm in this paper is called RFPW
(random forest and Pearson wrap).

5.2. GBDT Algorithm Parameters

After the feature selection, in order to obtain higher accuracy, it is necessary to adjust the
parameters of the GBDT algorithm. The optimization of the GBDT algorithm’s parameters ensures that
the GBDT algorithm achieves better detection accuracy and better generalization ability. There are four
main parameters of the GBDT algorithm, namely, the number of the largest weak learner (CART tree),
the subsampling, the condition of the subtree’s continual division, and the maximum depth of the
subtree. The number of the largest weak learners is represented by n_estimators, such that when
n_estimators are too small, it is easy to underfit; in contrast, when n_estimators are too large, it is easy
to overfit. The sampling uses the subsample to indicate that the GBDT algorithm does not put back the
sample. If the value is less than 1, only a part of the sample will be used for the decision tree fitting of
GBDT. The condition in which the tree continues to be divided is represented by min_samples_split,
which limits the conditions under which the subtree continues to be partitioned. The maximum depth
of the tree is represented by max_depth, which can easily cause overfitting. These four parameters are
important for creating a robust GBDT model.

This article starts with the number of weak learners (n_estimators). The result is shown in Figure 6.
When n_estimators = 400, the training accuracy is optimal. The accuracy of the number of iterations
drops rapidly after 400. Figure 7 shows that the maximum depth max_depth is not as large as possible,
and the minimum division set min_samples_split is not as small as possible. When the maximum depth
max_depth is small, the effect decreases as the minimum division set increases. When max_depth = 16,
min_samples_split = 150, and the precision is 0.9997. Figure 8 shows that the subsample value 0.25 is
optimal. This paper uses the parameters n_estimators = 400, max_depth = 16, min_samples_split = 150,
subsample = 0.25 as the optimized model.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 26

15: if testscore > test
16: A2.add(k), test = testscore
17: Output feature subset A2

5.2. GBDT Algorithm Parameters

After the feature selection, in order to obtain higher accuracy, it is necessary to adjust the
parameters of the GBDT algorithm. The optimization of the GBDT algorithm’s parameters ensures
that the GBDT algorithm achieves better detection accuracy and better generalization ability. There
are four main parameters of the GBDT algorithm, namely, the number of the largest weak learner
(CART tree), the subsampling, the condition of the subtree’s continual division, and the maximum
depth of the subtree. The number of the largest weak learners is represented by n_estimators, such
that when n_estimators are too small, it is easy to underfit; in contrast, when n_estimators are too
large, it is easy to overfit. The sampling uses the subsample to indicate that the GBDT algorithm does
not put back the sample. If the value is less than 1, only a part of the sample will be used for the
decision tree fitting of GBDT. The condition in which the tree continues to be divided is represented by
min_samples_split, which limits the conditions under which the subtree continues to be partitioned.
The maximum depth of the tree is represented by max_depth, which can easily cause overfitting.
These four parameters are important for creating a robust GBDT model.

This article starts with the number of weak learners (n_estimators). The result is shown in Figure
6. When n_estimators = 400, the training accuracy is optimal. The accuracy of the number of iterations
drops rapidly after 400. Figure 7 shows that the maximum depth max_depth is not as large as
possible, and the minimum division set min_samples_split is not as small as possible. When the
maximum depth max_depth is small, the effect decreases as the minimum division set increases. When
max_depth = 16, min_samples_split = 150, and the precision is 0.9997. Figure 8 shows that the
subsample value 0.25 is optimal. This paper uses the parameters n_estimators = 400, max_depth = 16,
min_samples_split = 150, subsample = 0.25 as the optimized model.

Figure 6. n_estimators and accuracy.

Figure 7. max_depth and min_samples_split.

Figure 6. n_estimators and accuracy.

Appl. Sci. 2019, 9, 4633 14 of 26

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 26

15: if testscore > test
16: A2.add(k), test = testscore
17: Output feature subset A2

5.2. GBDT Algorithm Parameters

After the feature selection, in order to obtain higher accuracy, it is necessary to adjust the
parameters of the GBDT algorithm. The optimization of the GBDT algorithm’s parameters ensures
that the GBDT algorithm achieves better detection accuracy and better generalization ability. There
are four main parameters of the GBDT algorithm, namely, the number of the largest weak learner
(CART tree), the subsampling, the condition of the subtree’s continual division, and the maximum
depth of the subtree. The number of the largest weak learners is represented by n_estimators, such
that when n_estimators are too small, it is easy to underfit; in contrast, when n_estimators are too
large, it is easy to overfit. The sampling uses the subsample to indicate that the GBDT algorithm does
not put back the sample. If the value is less than 1, only a part of the sample will be used for the
decision tree fitting of GBDT. The condition in which the tree continues to be divided is represented by
min_samples_split, which limits the conditions under which the subtree continues to be partitioned.
The maximum depth of the tree is represented by max_depth, which can easily cause overfitting.
These four parameters are important for creating a robust GBDT model.

This article starts with the number of weak learners (n_estimators). The result is shown in Figure
6. When n_estimators = 400, the training accuracy is optimal. The accuracy of the number of iterations
drops rapidly after 400. Figure 7 shows that the maximum depth max_depth is not as large as
possible, and the minimum division set min_samples_split is not as small as possible. When the
maximum depth max_depth is small, the effect decreases as the minimum division set increases. When
max_depth = 16, min_samples_split = 150, and the precision is 0.9997. Figure 8 shows that the
subsample value 0.25 is optimal. This paper uses the parameters n_estimators = 400, max_depth = 16,
min_samples_split = 150, subsample = 0.25 as the optimized model.

Figure 6. n_estimators and accuracy.

Figure 7. max_depth and min_samples_split.
Figure 7. max_depth and min_samples_split.Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 26

Figure 8. Subsample and accuracy.

6. The Experimental Results and Analysis

6.1. Datasets

This paper uses the MAWI (Measurement and Analysis on the WIDE Internet) datasets. The
datasets consist of packet tracking from MAWI archives and was released publicly in 2016. Each trace
in this database is a pcap file containing traffic captured within 15 min of a specific date since 2001,
captured on a trans-Pacific link between Japan and the United States. This paper uses the
201710281400.pcap data package [47] collected at 2 p.m. on October 28, 2017. The MAWI datasets is
divided into 10 categories [50]. The types of attack traffic used in this experiment are shown in Table 2.

Table 2. 201710281400.pcap datasets tag list.

Types of attack Specific Type
Normal

Alpha flow attack
salphfl
malphfl
alphfl

Multi. points attack
mptmp
mptp
ptmp

SYN attack
ntscSYN
sntscSYN

HTTP attack
ptmpHTTP
mptpHTTP

UDP attack ptpposcaUDP

The experimental platform configuration is as follows: Intel(R) core(TM) i5-8250U CPU @ 1.6
GHz-1.8 GHz, memory (RAM) 8 G, 64-bit operating system, Windows 10. In this paper, the machine
learning algorithm is used to call the algorithm provided by the sklearn library.

6.2. Performance Measurement

The performance of an anomalous intrusion detection system is assessed by its ability to properly
classify events as attacks or normal behavior. Based on the true nature of the given event and the
prediction of IDS, the four possible outcomes can be understood by the confusion matrix given in Table
3 [11]. Various indicators have been used for performance evaluation. Some key indicators include
accuracy, accuracy rate, false positive rate, F measurement, and recall [51]. True positive (TP): an
event that is actually an attack and successfully marked as an attack; true negative (TN): an event that

Figure 8. Subsample and accuracy.

6. The Experimental Results and Analysis

6.1. Datasets

This paper uses the MAWI (Measurement and Analysis on the WIDE Internet) datasets.
The datasets consist of packet tracking from MAWI archives and was released publicly in 2016.
Each trace in this database is a pcap file containing traffic captured within 15 min of a specific date
since 2001, captured on a trans-Pacific link between Japan and the United States. This paper uses the
201710281400.pcap data package [47] collected at 2 p.m. on October 28, 2017. The MAWI datasets is
divided into 10 categories [50]. The types of attack traffic used in this experiment are shown in Table 2.

Table 2. 201710281400.pcap datasets tag list.

Types of Attack Specific Type

Normal

Alpha flow attack
salphfl
malphfl
alphfl

Multi. points attack
mptmp
mptp
ptmp

SYN attack
ntscSYN
sntscSYN

HTTP attack
ptmpHTTP
mptpHTTP

UDP attack ptpposcaUDP

Appl. Sci. 2019, 9, 4633 15 of 26

The experimental platform configuration is as follows: Intel(R) core(TM) i5-8250U CPU @
1.6 GHz-1.8 GHz, memory (RAM) 8 G, 64-bit operating system, Windows 10. In this paper, the machine
learning algorithm is used to call the algorithm provided by the sklearn library.

6.2. Performance Measurement

The performance of an anomalous intrusion detection system is assessed by its ability to properly
classify events as attacks or normal behavior. Based on the true nature of the given event and the
prediction of IDS, the four possible outcomes can be understood by the confusion matrix given in
Table 3 [11]. Various indicators have been used for performance evaluation. Some key indicators
include accuracy, accuracy rate, false positive rate, F measurement, and recall [51]. True positive (TP):
an event that is actually an attack and successfully marked as an attack; true negative (TN): an event
that is actually normal and successfully marked as normal; false positive (FP): a normal event classified
as an attack; false negative (FN): an attack that is incorrectly classified as a normal event.

Table 3. Binary classification confusion matrix.

Subject Predictive Output

1 0

Actual Output 1 TP FP

0 FN TN

The accuracy formula is as follows:

ACC =
TP + TN

TP + TN + FP + FN
. (3)

The detection rate formula is as follows:

TPR =
TP

TP + FN
. (4)

The false positive rate formula is as follows:

FPR =
FP

FP + TN
. (5)

The precision rate formula is as follows:

PR =
TP

TP + FP
. (6)

The recall rate formula is as follows:

RR =
TP

TP + FN
. (7)

The F_1 measurement formula is as follows:

F1 =
2∗PR ∗RR
PR + RR

. (8)

6.3. Normalization

The data are normalized prior to algorithm input, and the processing formula is as follows:

x́ =
x−min

max−min
, (9)

Appl. Sci. 2019, 9, 4633 16 of 26

where x represents any value in an attribute in a record, min is the minimum value of the attribute, and
max is the maximum value of the attribute.

6.4. Cross-Validation I

The purpose of cross-validation is to obtain a reliable and stable model, such that K-fold
cross-validation divides the datasets into K subsamples, where a single subsample is retained as the
data of the verification model, and the other K-1 samples are used for training. The cross-validation is
repeated K times, each subsample is verified once, and the average results of K-times are used as the
final result. This article uses a 10-fold cross-validation technique.

6.5. Feature Selection Algorithm Experiment

6.5.1. Determine the %0 Value

%0 is a parameter of the RFPW algorithm that represents the value of the Pearson coefficient
correlation. When the %0 values are different, the results obtained by the RFPW algorithm are also
different. When the value of %0 is small, it means that as long as the feature has a slight correlation,
the feature with the small importance score is removed, which will delete many features and even
remove some useful features. When the value of %0 is large, it means that the feature correlation is very
large and then the feature with the smaller importance score is removed, so that fewer features are
removed. However, feature redundancy can also be introduced, which reduces the performance of the
algorithm. Therefore, the value of %0 determines the quality of the RFPW algorithm. The experimental
results (Tables 4 and 5) show the characteristics obtained by the RFPW algorithm for different values of
%0. For TCP traffic, when %0 is greater than or equal to 0.6, the feature tends to be stable, for a total of
10 features. For UDP traffic, when %0 is greater than or equal to 0.3, the feature tends to be stable, for a
total of six features. The accuracy ratio corresponding to the datasets after feature selection that is
input to the GBDT algorithm is shown in Figure 9. For TCP traffic, as %0 becomes larger, the accuracy
increases, but when %0 is greater than or equal to 0.6, the accuracy fluctuates at 0.95. For UDP traffic, as
%0 becomes larger, the accuracy increases, but when %0 is greater than or equal to 0.3, the accuracy
fluctuates at 0.92. Therefore, when detecting the TCP flow, %0 = 0.6 is used in the RFPW algorithm.
When detecting the UDP flow, %0 = 0.3 is used in the RFPW algorithm.

Table 4. Features acquired on the TCP flow dataset when %0 values are different.

%0 Feature Number Feature Subset

0.1 2 [27, 76]
0.2 2 [27, 76]
0.3 6 [9, 10, 27, 33, 76, 80]
0.4 6 [9, 10, 27, 33, 76, 80]
0.5 6 [9, 10, 27, 33, 76, 80]
0.6 6 [9, 10, 27, 33, 76, 80]
0.7 6 [9, 10, 27, 33, 76, 80]
0.8 6 [9, 10, 27, 33, 76, 80]
0.9 6 [9, 10, 27, 33, 76, 80]

Table 5. Features acquired on the UDP flow dataset when %0 values are different.

%0 Feature Number Feature Subset

0.1 2 [27, 76]
0.2 2 [27, 76]
0.3 6 [9, 10, 27, 33, 76, 80]
0.4 6 [9, 10, 27, 33, 76, 80]
0.5 6 [9, 10, 27, 33, 76, 80]
0.6 6 [9, 10, 27, 33, 76, 80]
0.7 6 [9, 10, 27, 33, 76, 80]
0.8 6 [9, 10, 27, 33, 76, 80]
0.9 6 [9, 10, 27, 33, 76, 80]

Appl. Sci. 2019, 9, 4633 17 of 26

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 26

the feature with the small importance score is removed, which will delete many features and even
remove some useful features. When the value of ρ0 is large, it means that the feature correlation is
very large and then the feature with the smaller importance score is removed, so that fewer features
are removed. However, feature redundancy can also be introduced, which reduces the performance
of the algorithm. Therefore, the value of ρ0 determines the quality of the RFPW algorithm. The
experimental results (Tables 4 and 5) show the characteristics obtained by the RFPW algorithm for
different values of ρ0. For TCP traffic, when ρ0 is greater than or equal to 0.6, the feature tends to be
stable, for a total of 10 features. For UDP traffic, when ρ0 is greater than or equal to 0.3, the feature
tends to be stable, for a total of six features. The accuracy ratio corresponding to the datasets after
feature selection that is input to the GBDT algorithm is shown in Figure 9. For TCP traffic, as ρ0
becomes larger, the accuracy increases, but when ρ0 is greater than or equal to 0.6, the accuracy
fluctuates at 0.95. For UDP traffic, as ρ0 becomes larger, the accuracy increases, but when ρ0 is greater
than or equal to 0.3, the accuracy fluctuates at 0.92. Therefore, when detecting the TCP flow, ρ0 = 0.6
is used in the RFPW algorithm. When detecting the UDP flow, ρ0 = 0.3 is used in the RFPW algorithm.

Table 4. Features acquired on the TCP flow dataset when ρ0 values are different. ࣋૙ Feature Number Feature Subset
0.1 2 [27, 76]
0.2 2 [27, 76]
0.3 6 [9, 10, 27, 33, 76, 80]
0.4 6 [9, 10, 27, 33, 76, 80]
0.5 6 [9, 10, 27, 33, 76, 80]
0.6 6 [9, 10, 27, 33, 76, 80]
0.7 6 [9, 10, 27, 33, 76, 80]
0.8 6 [9, 10, 27, 33, 76, 80]
0.9 6 [9, 10, 27, 33, 76, 80]

Table 5. Features acquired on the UDP flow dataset when ρ0 values are different. ࣋૙ Feature Number Feature Subset
0.1 2 [27, 76]
0.2 2 [27, 76]
0.3 6 [9, 10, 27, 33, 76, 80]
0.4 6 [9, 10, 27, 33, 76, 80]
0.5 6 [9, 10, 27, 33, 76, 80]
0.6 6 [9, 10, 27, 33, 76, 80]
0.7 6 [9, 10, 27, 33, 76, 80]
0.8 6 [9, 10, 27, 33, 76, 80]
0.9 6 [9, 10, 27, 33, 76, 80]

Figure 9. The abscissa is the value of %0.

6.5.2. Comparison before and after Feature Selection

In this paper, the 20 k TCP flow dataset and the 20 K UDP flow dataset are used as feature selection
before and after comparison. First, for the TCP datasets, a feature subset of %0 = 0.6 is selected as the
input to the GBDT algorithm. For the UDP datasets, a feature subset of %0 = 0.3 is selected as the input
to the GBDT algorithm. The accuracy before and after feature selection is shown in Figure 10. Whether
it is a TCP flow dataset or a UDP dataset, it is improved accurately after feature selection.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 26

Figure 9. The abscissa is the value of ρ0.

6.5.2. Comparison before and after Feature Selection

In this paper, the 20 k TCP flow dataset and the 20 K UDP flow dataset are used as feature
selection before and after comparison. First, for the TCP datasets, a feature subset of ρ0 = 0.6 is
selected as the input to the GBDT algorithm. For the UDP datasets, a feature subset of ρ0 = 0.3 is
selected as the input to the GBDT algorithm. The accuracy before and after feature selection is shown
in Figure 10. Whether it is a TCP flow dataset or a UDP dataset, it is improved accurately after feature
selection.

Figure 10. FSBtrain represents the training accuracy before feature selection, and FSBtest represents
the test accuracy before feature selection. FSAtrain indicates the training accuracy rate after feature
selection, and FSAtest indicates the test accuracy rate after feature selection.

6.5.3. Comparison of RFPW and the Dimensionality Reduction Algorithm

In this paper, the 20 k TCP flow datasets and the 20K UDP flow datasets are used as the RFPW
algorithm to compare the three dimensionality reduction algorithms of PCA, SVD, and LDA. First,
for the TCP datasets, a feature subset of ρ0 = 0.6 is selected as the input to the GBDT algorithm. For
the UDP datasets, a feature subset of ρ0 = 0.3 is selected as the input to the GBDT algorithm. The
accuracy and number of features before and after feature selection are shown in Figures 11 and 12.

Figure 11. TCP flow datasets feature selection and dimensionality reduction.

Figure 10. FSBtrain represents the training accuracy before feature selection, and FSBtest represents
the test accuracy before feature selection. FSAtrain indicates the training accuracy rate after feature
selection, and FSAtest indicates the test accuracy rate after feature selection.

6.5.3. Comparison of RFPW and the Dimensionality Reduction Algorithm

In this paper, the 20 k TCP flow datasets and the 20K UDP flow datasets are used as the RFPW
algorithm to compare the three dimensionality reduction algorithms of PCA, SVD, and LDA. First,
for the TCP datasets, a feature subset of %0 = 0.6 is selected as the input to the GBDT algorithm. For the
UDP datasets, a feature subset of %0 = 0.3 is selected as the input to the GBDT algorithm. The accuracy
and number of features before and after feature selection are shown in Figures 11 and 12.

Whether it is a TCP flow dataset or a UDP dataset, the RFPW algorithm is superior to the
dimensionality reduction algorithm in accuracy. For the TCP flow dataset used with RFPW, as long as
10-feature accuracy is selected, it will reach approximately 95%, while the PCA (principal component
analysis) algorithm and the SVD (singular value decomposition) algorithm need to retain 30 features
(dimensions) or more to reach 92%. As there are only two classifications in our experiment, the LDA
(linear discriminant analysis) algorithm is directly reduced to one dimension. However, the accuracy

Appl. Sci. 2019, 9, 4633 18 of 26

rate is very large, only approximately 88%. For UDP datasets, the RFPW algorithm can achieve
an accuracy of 93% with only six features, while the SVD algorithm requires 11 features to achieve
an 88% accuracy. PCA requires 11 features to achieve 89% accuracy. LDA has an accuracy of only
approximately 75%.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 26

Figure 9. The abscissa is the value of ρ0.

6.5.2. Comparison before and after Feature Selection

In this paper, the 20 k TCP flow dataset and the 20 K UDP flow dataset are used as feature
selection before and after comparison. First, for the TCP datasets, a feature subset of ρ0 = 0.6 is
selected as the input to the GBDT algorithm. For the UDP datasets, a feature subset of ρ0 = 0.3 is
selected as the input to the GBDT algorithm. The accuracy before and after feature selection is shown
in Figure 10. Whether it is a TCP flow dataset or a UDP dataset, it is improved accurately after feature
selection.

Figure 10. FSBtrain represents the training accuracy before feature selection, and FSBtest represents
the test accuracy before feature selection. FSAtrain indicates the training accuracy rate after feature
selection, and FSAtest indicates the test accuracy rate after feature selection.

6.5.3. Comparison of RFPW and the Dimensionality Reduction Algorithm

In this paper, the 20 k TCP flow datasets and the 20K UDP flow datasets are used as the RFPW
algorithm to compare the three dimensionality reduction algorithms of PCA, SVD, and LDA. First,
for the TCP datasets, a feature subset of ρ0 = 0.6 is selected as the input to the GBDT algorithm. For
the UDP datasets, a feature subset of ρ0 = 0.3 is selected as the input to the GBDT algorithm. The
accuracy and number of features before and after feature selection are shown in Figures 11 and 12.

Figure 11. TCP flow datasets feature selection and dimensionality reduction. Figure 11. TCP flow datasets feature selection and dimensionality reduction.Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 26

Figure 12. UDP flow datasets feature selection and dimensionality reduction.

Whether it is a TCP flow dataset or a UDP dataset, the RFPW algorithm is superior to the
dimensionality reduction algorithm in accuracy. For the TCP flow dataset used with RFPW, as long
as 10-feature accuracy is selected, it will reach approximately 95%, while the PCA (principal
component analysis) algorithm and the SVD (singular value decomposition) algorithm need to retain
30 features (dimensions) or more to reach 92%. As there are only two classifications in our
experiment, the LDA (linear discriminant analysis) algorithm is directly reduced to one dimension.
However, the accuracy rate is very large, only approximately 88%. For UDP datasets, the RFPW
algorithm can achieve an accuracy of 93% with only six features, while the SVD algorithm requires
11 features to achieve an 88% accuracy. PCA requires 11 features to achieve 89% accuracy. LDA has
an accuracy of only approximately 75%.

6.5.4. Feature Selection Comparison

Jarrah et al. [18] proposed random forest-forward selection sorting (RF-FSR) and random forest-
backward sorting (RF-BER). The experimental results show that the selected features on the KDD-
Cup 99 dataset effectively improve their detection rate and reduce the false positive rate, reaching
99.8% and 0.001%, respectively. Wei W et al. [15] used information gain and chi-square methods to
rank the importance of the 41 attributes extracted from network traffic. The Bayesian network and C4.5
algorithm are then used to detect the attack and determine the size of the attribute suitable for fast
detection. The empirical results show that using only the most important nine attributes, the detection
accuracy remains the same or even achieves some improvement compared to all 41 attributes based on
the Bayesian network and the C4.5 method. O.Y. Al Jarrah et al. [19] proposed combining the consistent
subset evaluation (CSE) and DDoS characteristic features (DCF) techniques in feature selection algorithms
to identify and select the most important and relevant features associated with DDoS attacks. This
paper compares the RF-FSR algorithm [18], RF-BER algorithm [18], GI (information gain) [15], CS
(chi-square test) [15], and CSE [19]. In this paper, different methods are used to select features using
the 20k TCP flow dataset and 20k UDP flow dataset. The selected feature subset results are shown in
Table 6 and 7. RF-FSR, RF-BER, GI, and CS are feature selection algorithms, and the selected feature
subsets are large in size. The accuracy of the features selected by different algorithms is shown in
Figure 13.

Table 6. Comparison of TCP flow dataset feature selection algorithms.

Method Feature Subset
Number Feature Subset

RF-FSR 18 [6, 13, 18, 27, 38, 39, 47, 50, 51, 56, 57, 60, 73, 76, 82, 84, 88, 92]

RF-BER 24
[6, 13, 18, 27, 38, 39, 47, 50, 51, 56, 57, 60, 68, 73, 76, 80, 82, 84, 85, 88, 89, 92,
98, 101]

Figure 12. UDP flow datasets feature selection and dimensionality reduction.

6.5.4. Feature Selection Comparison

Jarrah et al. [18] proposed random forest-forward selection sorting (RF-FSR) and random
forest-backward sorting (RF-BER). The experimental results show that the selected features on the
KDD-Cup 99 dataset effectively improve their detection rate and reduce the false positive rate, reaching
99.8% and 0.001%, respectively. Wei W et al. [15] used information gain and chi-square methods to
rank the importance of the 41 attributes extracted from network traffic. The Bayesian network and C4.5
algorithm are then used to detect the attack and determine the size of the attribute suitable for fast
detection. The empirical results show that using only the most important nine attributes, the detection
accuracy remains the same or even achieves some improvement compared to all 41 attributes based
on the Bayesian network and the C4.5 method. O.Y. Al Jarrah et al. [19] proposed combining the
consistent subset evaluation (CSE) and DDoS characteristic features (DCF) techniques in feature
selection algorithms to identify and select the most important and relevant features associated with
DDoS attacks. This paper compares the RF-FSR algorithm [18], RF-BER algorithm [18], GI (information
gain) [15], CS (chi-square test) [15], and CSE [19]. In this paper, different methods are used to select
features using the 20k TCP flow dataset and 20k UDP flow dataset. The selected feature subset results
are shown in Tables 6 and 7. RF-FSR, RF-BER, GI, and CS are feature selection algorithms, and the

Appl. Sci. 2019, 9, 4633 19 of 26

selected feature subsets are large in size. The accuracy of the features selected by different algorithms
is shown in Figure 13.

Table 6. Comparison of TCP flow dataset feature selection algorithms.

Method Feature Subset Number Feature Subset

RF-FSR 18 [6, 13, 18, 27, 38, 39, 47, 50, 51, 56, 57, 60, 73, 76, 82, 84, 88, 92]

RF-BER 24 [6, 13, 18, 27, 38, 39, 47, 50, 51, 56, 57, 60, 68, 73, 76, 80, 82, 84, 85,
88, 89, 92, 98, 101]

GI 35 [1, 12, 13, 14, 39, 43, 44, 45, 50, 51, 59, 60, 63, 64, 65, 66, 67, 71, 72,
73, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95]

CS 34 [13, 14, 15, 16, 17, 18, 21, 27, 39, 45, 46, 60, 61, 64, 65, 66, 67, 68, 69,
72, 74, 80, 81, 88, 89, 90, 93, 94, 95, 96, 99, 100, 101, 102]

CSE 16 [6, 13, 18, 27, 38, 39, 47, 50, 51, 57, 60, 76, 82, 84, 88, 92]

Table 7. Comparison of feature selection algorithms for UDP flow datasets.

Method Feature Subset Number Feature Subset

RF-FSR 20 [0, 1, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 16, 17, 18, 19, 20, 26]

RF-BER 16 [0, 1, 16, 17, 18, 19, 20, 26, 35, 37, 39, 42, 43, 44, 45, 47]

CS 11 [37, 16, 17,18, 19, 26, 27,42, 44, 45,1]

GI 10 [37, 16, 18, 19, 26, 27,42, 43, 44, 45]

CSE 7 [37, 18, 19, 26, 27,42, 44]

Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 26

GI 35
[1, 12, 13, 14, 39, 43, 44, 45, 50, 51, 59, 60, 63, 64, 65, 66, 67, 71, 72, 73, 80, 81,
82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95]

CS 34
[13, 14, 15, 16, 17, 18, 21, 27, 39, 45, 46, 60, 61, 64, 65, 66, 67, 68, 69, 72, 74,
80, 81, 88, 89, 90, 93, 94, 95, 96, 99, 100, 101, 102]

CSE 16 [6, 13, 18, 27, 38, 39, 47, 50, 51, 57, 60, 76, 82, 84, 88, 92]

Table 7. Comparison of feature selection algorithms for UDP flow datasets.

Method Feature Subset
Number Feature Subset

RF-FSR 20 [0, 1, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 16, 17, 18, 19, 20, 26]
RF-BER 16 [0, 1, 16, 17, 18, 19, 20, 26, 35, 37, 39, 42, 43, 44, 45, 47]

CS 11 [37, 16, 17,18, 19, 26, 27,42, 44, 45,1]
GI 10 [37, 16, 18, 19, 26, 27,42, 43, 44, 45]

CSE 7 [37, 18, 19, 26, 27,42, 44]

6.5.5. Comparison of Three Models

Tables 8 and 9 compare the performance indicators of the three models of the GBDT algorithm.
The three models are the unoptimized GBDT model, the GBDT model with feature selection, and the
model of feature selection and parameter optimization. For the convenience of description, we
recorded the three models as GBDT1, GBDT2, and GBDT3. The results show that the optimized GBDT
algorithm has very high accuracy and a very low false detection rate. Table 8 shows the performance
comparison of the three models under the 100 k TCP flow datasets. Table 9 shows the performance
comparison of the three models under the 100 k UDP flow datasets.

6.5.6. DDOS Attack Vector Feature Tree

This experiment extracts each dataset based on a TCP protocol attack and mixes it with the
normal datasets and then selects the feature of these mixed datasets. The goal is to obtain the feature
subset corresponding to each attack type. As shown in Figure 14, the attack range can be quickly
locked according to the change of the feature. If a certain attack feature set indicates that the leaf node
is not a known leaf node but is a child node of a certain node A, then it can be determined that the
attack is a node A. Corresponding to the variant of the attack type, decision support is provided to
the decision maker.

Figure 13. TCPtest and UDPtest represent the accuracy of the test set in the TCP flow and UDP flow
data, respectively.

Figure 13. TCPtest and UDPtest represent the accuracy of the test set in the TCP flow and UDP flow
data, respectively.

6.5.5. Comparison of Three Models

Tables 8 and 9 compare the performance indicators of the three models of the GBDT algorithm.
The three models are the unoptimized GBDT model, the GBDT model with feature selection, and the
model of feature selection and parameter optimization. For the convenience of description, we recorded
the three models as GBDT1, GBDT2, and GBDT3. The results show that the optimized GBDT algorithm
has very high accuracy and a very low false detection rate. Table 8 shows the performance comparison
of the three models under the 100 k TCP flow datasets. Table 9 shows the performance comparison of
the three models under the 100 k UDP flow datasets.

Appl. Sci. 2019, 9, 4633 20 of 26

Table 8. Performance comparison of three models of 100 k WIDE TCP flow datasets.

Model ACC TPR FPR PR RR F1

GBDT1 0.9548 0.9784 0.1499 0.9365 0.9784 0.9569
GBDT2 0.9516 0.9801 0.1455 0.9555 0.9803 0.9677
GBDT3 0.9997 0.9997 0.0007 0.9997 0.9997 0.9997

Table 9. Performance comparison of three models of 100 k WIDE UDP flow datasets.

Model ACC TPR FPR PR RR F1

GBDT1 0.9221 0.8706 0.0270 0.9695 0.8706 0.9174
GBDT2 0.9214 0.8598 0.0256 0.9666 0.8598 0.9101
GBDT3 1.0000 0.9999 0.00003 1.0000 0.9999 0.9999

6.5.6. DDOS Attack Vector Feature Tree

This experiment extracts each dataset based on a TCP protocol attack and mixes it with the normal
datasets and then selects the feature of these mixed datasets. The goal is to obtain the feature subset
corresponding to each attack type. As shown in Figure 14, the attack range can be quickly locked
according to the change of the feature. If a certain attack feature set indicates that the leaf node is
not a known leaf node but is a child node of a certain node A, then it can be determined that the
attack is a node A. Corresponding to the variant of the attack type, decision support is provided to the
decision maker.Appl. Sci. 2019, 9, x FOR PEER REVIEW 21 of 26

Figure 14. Attack vector feature tree.

Table 8. Performance comparison of three models of 100 k WIDE TCP flow datasets.

Model ACC TPR FPR PR RR ࡲ૚
GBDT1 0.9548 0.9784 0.1499 0.9365 0.9784 0.9569
GBDT2 0.9516 0.9801 0.1455 0.9555 0.9803 0.9677
GBDT3 0.9997 0.9997 0.0007 0.9997 0.9997 0.9997

Table 9. Performance comparison of three models of 100 k WIDE UDP flow datasets.

Model ACC TPR FPR PR RR ࡲ૚
GBDT1 0.9221 0.8706 0.0270 0.9695 0.8706 0.9174
GBDT2 0.9214 0.8598 0.0256 0.9666 0.8598 0.9101
GBDT3 1.0000 0.9999 0.00003 1.0000 0.9999 0.9999

7. Conclusions

This paper first used 102 features to detect DDoS attacks based on TCP protocol and 49 features
to detect DDoS attacks based on UDP protocol. In this paper, the GBDT algorithm was compared
with the following four algorithms in terms of detection accuracy and running time: KNN, NB, SVM
and MLP. The results show that the detection accuracy using the GBDT algorithm is higher than the
other algorithms, and the test time is shorter than other algorithms. The RFPW feature selection
algorithm combines random forest scores with Pearson correlation coefficients as a search strategy,
using the GBDT algorithm as the evaluation criteria. This paper compared RFPW with the traditional
dimensionality reduction algorithms and feature selection algorithms. Experiments show that the
number of features selected by the RFPW algorithm is small. As long as the DDoS hybrid attack based
on the TCP protocol has only 10 features and the DDoS hybrid attack of the UDP protocol requires
only six features, the detection accuracy remains the same or increases. At the end of this paper, the
parameters of the GBDT algorithm were tuned, so that the accuracy of DDoS attack detection based
on the TCP protocol reaches 0.9997, and the false positive rate is only 0.0007. The detection rate of
DDoS attacks based on the UDP protocol reached 100%, and the false detection rate was only 0.00003.
The experimental results show that with the detection features and feature selection algorithms
proposed in this paper, the GBDT detection classifier and GBDT parameter tuning can provide fast
and accurate detection for DDoS attacks, which is meaningful for DDoS mitigation. At the end of the
article, the attack special certificate tree was given, and the attack range was quickly locked according
to the attack characteristics. DDoS hybrid attack detection will greatly help DDoS mitigation. In
reality, it is based on mixed DDoS attacks. Constructing a DDoS attack tree with a small number of

Figure 14. Attack vector feature tree.

7. Conclusions

This paper first used 102 features to detect DDoS attacks based on TCP protocol and 49 features
to detect DDoS attacks based on UDP protocol. In this paper, the GBDT algorithm was compared
with the following four algorithms in terms of detection accuracy and running time: KNN, NB, SVM
and MLP. The results show that the detection accuracy using the GBDT algorithm is higher than the
other algorithms, and the test time is shorter than other algorithms. The RFPW feature selection
algorithm combines random forest scores with Pearson correlation coefficients as a search strategy,
using the GBDT algorithm as the evaluation criteria. This paper compared RFPW with the traditional
dimensionality reduction algorithms and feature selection algorithms. Experiments show that the
number of features selected by the RFPW algorithm is small. As long as the DDoS hybrid attack based
on the TCP protocol has only 10 features and the DDoS hybrid attack of the UDP protocol requires

Appl. Sci. 2019, 9, 4633 21 of 26

only six features, the detection accuracy remains the same or increases. At the end of this paper,
the parameters of the GBDT algorithm were tuned, so that the accuracy of DDoS attack detection
based on the TCP protocol reaches 0.9997, and the false positive rate is only 0.0007. The detection
rate of DDoS attacks based on the UDP protocol reached 100%, and the false detection rate was only
0.00003. The experimental results show that with the detection features and feature selection algorithms
proposed in this paper, the GBDT detection classifier and GBDT parameter tuning can provide fast and
accurate detection for DDoS attacks, which is meaningful for DDoS mitigation. At the end of the article,
the attack special certificate tree was given, and the attack range was quickly locked according to the
attack characteristics. DDoS hybrid attack detection will greatly help DDoS mitigation. In reality, it is
based on mixed DDoS attacks. Constructing a DDoS attack tree with a small number of different traffic
characteristics is useful for quickly locating DDoS attack types and then issuing policies or switching
mitigation DDoS models.

Author Contributions: J.Z. proposed to amend the comments and deepen the theoretical part of the thesis. Q.L.
designed the main method of the thesis and did all the experiments. R.J. helped us to modify the small errors and
experimental data collection of the paper. X.L. helped us review the paper.

Funding: This research was funded by Research on Theory and Method of Intelligent Monitoring of Service State
of High Speed Railway Infrastructure Based on Machine Vision, grant number U1734208. And the APC was
funded by National Natural Science Foundation of China Youth Science Fund Project, Flexible Distribution and
Scheduling of Memory in Cloud Computing Environment, grant number 61602523.

Conflicts of Interest: The authors declare no conflict of interest

Appendix A

Table A1. Distributed denial of service (DDoS) attack characteristics.

No. Feature Description

1 syn_in_pps SYNACK-tagged TCP packet flowing out every second

2 synack_out_pps Streaming TCP packets containing ACK tags per second

3 Ack_in_pps Outgoing ACK tag TCP packet per second

4 Ack_out_pps Flow into the TCP packet containing the PUSH tag every second

5 Push_in_pps Outgoing packet containing the PUSH tag TCP every second

6 Push_out_pps FIN tagged TCP packet flowing in per second

7 Fin_in_pps FIN tagged TCP packet flowing out per second

8 Fin_out_pps Streaming TCP packets containing RST tags per second

9 Rst_in_pps Outgoing UDP tagged TCP packet per second

10 Rst_out_pps Flowing into unmarked TCP packets per second

11 Other_in_pps SYNACK-tagged TCP packet flowing out every second

12 Syn_in_pps/In_pps

13 Syn_in_pps/(Syn_in_pps + Synack_out_pps)

14 Syn_in_pps/(Syn_in_pps + Ack_in_pps)

15 Ack_in_pps/in_pps

16 Ack_in_pps/(Ack_out_pps + Ack_in_pps)

17 Ack_in_pps/(Rst_out_pps + Ack_in_pps)

18 Push_in_pps/In_pps

19 Push_in_pps/(Push_in_pps + Push_out_pps)

20 Push_in_pps/(Push_in_pps + Rst_out_pps)

Appl. Sci. 2019, 9, 4633 22 of 26

Table A1. Cont.

No. Feature Description

21 Push_in_pps/(Push_in_pps + ack_out_pps)

22 Rst_in_pps/in_pps

23 Rst_Out_pps/Out_pps

24 Fin_in_pps/in_pps

25 Fin_in_pps/(Fin_in_pps + Fin_out_pps)

26 other_in_pps/in_pps

27 shakehds_pps Handshake times

28 crw_in_pps Streaming TCP packets containing crw tags per second

29 crw_out_pps Flow out of the TCP packet containing the crw tag per second

30 ecn_in_pps Streaming packets containing ecn tag TCP per second

31 ecn_out_pps Ecn tagged TCP packet per second
32 urg_in_pps Flowing into the TCP packet containing the urg tag every second

33 urg_out_pps Outgoing urg tag TCP packet per second

34 crw_in_pps/in_pps

35 crw_in_pps/Ack_in_pps + crw_in_pps

36 ecn_in_pps/in_pps

37 urg_in_pps/in_pps

38 winsize_in_mean Window average flowing into the packet

39 winsize_out_mean Window average of outgoing packets

40 num_urgent Contains the quantity of urgent

41 num_Tos Number of TOS

42 tcpcaplen_in_mean Average size of the TCP header flowing into the packet

43 tcpcaplen_out_mean Outgoing packet TCP header average size

44 tcpcaplen_in_max Flow into the packet TCP header size maximum

45 Tctcpaplen_out_max Outgoing packet TCP header size is the largest

46 tcpcaplen_in_var Flow into the packet TCP header square size

47 tcpcaplen_out_var Outbound packet TCP header square size

48 size_seq_mean Flow into the packet TCP serial number average

49 size_seq_max Flow into the packet TCP serial number maximum

50 size_seq_min Flow into the packet TCP sequence number minimum

51 size_seq_var Flow into the packet TCP serial number square mean

52 ecn_in_pps/(ecn_in_pps + ack_in_pps)

53 ecn_in_pps/(urg_in_pps + ack_in_pps)

54 In_pps Number of packets flowing per second

55 Out_pps Number of packets flowing out per second

56 In_pps/(Out_pps + in_pps)

57 size_in_pps The total size of the packets flowing in per second

58 size_out_pps The total size of packets flowing out per second

59 size_in_max Maximum packet size per second

60 size_out_max Maximum packet size per second

61 size_in_min Minimum packet size per second

Appl. Sci. 2019, 9, 4633 23 of 26

Table A1. Cont.

No. Feature Description

62 size_out_min Minimum packet size per second

63 size_in_mean Average packet size per second

64 size_out_mean Average packet size per second

65 size_in_var Packet size average per second

66 size_out_var Packet size average value per second

67 size_in_median Median size of packets flowing in per second

68 size_out_medin Median packet size per second

69 size_in_14 Flows into the packet size 1/4 bit per second

70 size_out_14 Outgoing packet size 1/4 bit per second

71 size_in_34 Streaming packet size 3/4 min per second

72 size_out_34 Outgoing packet size 3/4 min per second

73 port_in_size Flow into port size

74 port_out_size Outgoing port size

75 ttl Whether the IP header TTL value changes

76 Duration Duration of a flow

77 Interval_in_max Streaming packet interval maximum

78 Interval_in_min Streaming packet time interval minimum

79 Interval_in_mean Average time interval of incoming packets

80 size_in_mean Average packet size

81 size_out_mean Average size of outgoing packets

82 Interval_in_var Flow-in packet time interval mean

83 Interval_out_max Outgoing packet interval maximum

84 Interval_out_min Outgoing packet interval minimum

85 Interval_out_mean Outgoing packet interval average

86 Interval_out_var Mean time interval of outgoing packets

87 Interval_out_14 Outgoing data packet interval 1/4 digit

88 Interval_out_34 Outgoing packet interval 3/4 quart

89 payloadsize_in_max Flow in valid data maximum

90 payload_out_max Outgoing valid data maximum

91 payload_in_min Flow into valid data minimum

92 payload_out_min Outflow valid data minimum

93 payload_in_mean Flowing in the effective data average

94 payload_ou_mean Average value of outflow valid data

95 payloadsize_in_var Average value of flowing data

96 payload_out_var Mean value of outflow valid data

97 payload_in_14 Flow in valid data 1/4 is divided into values

98 payload_out_14 Outflow valid data 1/4 is divided into values

99 payload_in_34 Flow in valid data 3/4 is divided into values

100 payload_out_34 Outflow valid data 3/4 is divided into values

101 payload_in_median Flow in valid data median value

102 payload_out_media Outgoing valid data median value

Appl. Sci. 2019, 9, 4633 24 of 26

References

1. Yu, J.; Lee, H.; Kim, M.S.; Park, D. Traffic flooding attack detection with SNMP MIB using SVM.
Comput. Commun. 2008, 17, 4212–4219. [CrossRef]

2. Bhuyan, M.H.; Kashyap, H.J.; Bhattacharyya, D.K.; Kalita, J.K. Detecting distributed denial of service attacks:
Methods, tools and future directions. Comput. J. 2014, 57, 537–556. [CrossRef]

3. Cui, B.; He, S.; Jin, H. Multi-Layer Anomaly Detection for Internet Traffic Based on Data Mining. In Proceedings
of the International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Santa
Cantarina, Brazil, 8–10 July 2015; pp. 277–282.

4. Zekri, M.; El Kafhali, S.; Aboutabit, N.; Saadi, Y. DDoS attack detection using machine learning techniques
in cloud computing environments. In Proceedings of the International Conference of Cloud Computing
Technologies, Hong Kong, China, 11–14 December 2017; pp. 1–7.

5. Al-Yaseen, W.L.; Othman, Z.A.; Nazri, M.Z.A. Multi-level hybrid support vector machine and extreme
learning machine based on modified K-means for intrusion detection system. Expert Syst. Appl. 2017, 67,
296–303. [CrossRef]

6. Kuang, F.; Xu, W.; Zhang, S. A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft
Comput. 2014, 18, 178–184. [CrossRef]

7. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 28 October 1999).
8. Jiao, J.; Ye, B.; Zhao, Y.; Stones, R.J.; Wang, G.; Liu, X.; Wang, S.; Xie, G. Detecting TCP-Based DDoS Attacks

in Baidu Cloud Computing Data Centers. In Proceedings of the Symposium on Reliable Distributed Systems
(SRDS), Hong Kong, China, 26–29 September 2017; pp. 256–258.

9. Qin, X.; Xu, T.; Wang, C. DDoS Attack Detection Using Flow Entropy and Clustering Technique. In Proceedings
of the International Conference on Computational Intelligence and Security (CIS), Shenzhen, China, 19–20
December 2015.

10. Andrew, W. Moore. Available online: https://www.researchgate.net/publication/243787961_Discriminat-ors_
for_Use_in_Flow-Based_Classification (accessed on 12 January 2005).

11. Feng, Y.; Akiyama, H.; Lu, L.; Sakurai, K. Feature Selection for Machine Learning-Based Early Detection of
Distributed Cyber Attacks. In Proceedings of the 2018 IEEE 16th International Conference on Dependable,
Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing,
4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 173–180.

12. Xiao, L.; Xiao, Y.; Liu, L. XiaoTwo-step feature selection algorithm adapts to intrusion detection Fusion
and Hybrid Information Technology. In Proceedings of the International Joint Conference, Fukuoka, Japan,
18–21 August 2009; pp. 618–622.

13. Lakhina, A.; Crovella, M.; Diot, C. Diagnosing network-wide traffic anomalies. ACM Sigcomm. Comput.
Commun. Rev. 2004, 34, 219–228. [CrossRef]

14. Camacho, J.; Pérez-Villegas, A.; García-Teodoro, P.; Maciá-Fernández, G. PCA-based multivariate statistical
network monitoring for anomaly detection. Comput. Secur. 2016, 59, 118–137. [CrossRef]

15. Wang, W.; Gombault, S. Efficient detection of DDoS attacks with important attributes. In Proceedings of the
Third International Conference on Risks and Security of Internet and Systems, Tozeur, Tunisia, 28–30 October
2008; pp. 61–67.

16. Amiri, F.; Yousefi, M.R.; Lucas, C.; Shakery, A.; Yazdani, N. Mutual information-based feature selection for
intrusion detection systems. J. Netw. Comput. Appl. 2011, 34, 1184–1199. [CrossRef]

17. Li, Y.; Xia, J.; Zhang, S.; Yan, J.; Ai, X.; Dai, K. An efficient intrusion detection system based on support vector
machines and gradually feature removal method. Expert Syst. Appl. 2012, 39, 424–430. [CrossRef]

18. Al-Jarrah, O.Y.; Siddiqui, A.; Elsalamouny, M.; Yoo, P.D.; Muhaidat, S.; Kim, K. Machine-Learning-Based
Feature Selection Techniques for Large-Scale Network Intrusion Detection. In Proceedings of the International
Conference on Distributed Computing Systems Workshops (ICDCSW), Madrid, Spain, 30 June–3 July 2014;
pp. 177–181.

19. Yusof, A.R.A.; Udzir, N.I.; Selamat, A.; Hamdan, H.; Abdullah, M.T. Adaptive feature selection for denial of
services (DoS) attack. In Proceedings of the Conference on Application, Information and Network Security
(AINS), Miri, Malaysia, 13–14 November 2017; pp. 81–84.

http://dx.doi.org/10.1016/j.comcom.2008.09.018
http://dx.doi.org/10.1093/comjnl/bxt031
http://dx.doi.org/10.1016/j.eswa.2016.09.041
http://dx.doi.org/10.1016/j.asoc.2014.01.028
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.researchgate.net/publication/243787961_Discriminat-ors_for_Use_in_Flow-Based_Classification
https://www.researchgate.net/publication/243787961_Discriminat-ors_for_Use_in_Flow-Based_Classification
http://dx.doi.org/10.1145/1030194.1015492
http://dx.doi.org/10.1016/j.cose.2016.02.008
http://dx.doi.org/10.1016/j.jnca.2011.01.002
http://dx.doi.org/10.1016/j.eswa.2011.07.032

Appl. Sci. 2019, 9, 4633 25 of 26

20. Gül, A.; Adalı, E. A feature selection algorithm for IDS. In Proceedings of the International Conference on
Computer Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017; pp. 816–820.

21. Vijayanand, R.; Devaraj, D.; Kannapiran, B. Intrusion detection system for wireless mesh network using
multiple support vector machine classifiers with genetic-algorithm-based feature selection. Comput. Secur.
2018, 77, 304–314. [CrossRef]

22. Hamed, T.; Dara, R.; Kremer, S.C. Network intrusion detection system based on recursive feature addition
and bigram technique. Comput. Secur. 2018, 73, 137–155. [CrossRef]

23. Khammassi, C.; Krichen, S. A GA-LR wrapper approach for feature selection in network intrusion detection.
Comput. Secur. 2017, 70, 255–277. [CrossRef]

24. Li, Y.; Wang, J.L.; Tian, Z.H.; Lu, T.B.; Young, C. Building lightweight intrusion detection system using
wrapper-based feature selection mechanisms. Comput. Secur. 2009, 28, 466–475. [CrossRef]

25. Su, M.Y. Real-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-neighbor
classifiers. Expert Syst. Appl. 2011, 38, 3492–3498. [CrossRef]

26. Mulak, P.; Gaikwad, D.P.; Talhar, N.R. K-Nearest Neighbor and Boundary Cutting Algorithm for Intrusion
Detection System. In Information Systems Design and Intelligent Applications; Springer: New Delhi, India, 2016;
pp. 269–278.

27. Wang, Y.; Li, Y.; Tian, D.; Wang, C.; Wang, W.; Hui, R.; Guo, P.; Zhang, H. A Novel Intrusion Detection System
Based on Advanced Naive Bayesian Classification. In Proceedings of the International Conference on 5G for
Future Wireless Networks, Beijing, China, 21–23 April 2017; pp. 581–588.

28. Thaseen, I.S.; Kumar, C.A. Intrusion Detection Model Using Chi Square Feature Selection and Modified
Naïve Bayes Classifier. In Smart Innovation, Systems and Technologies, Proceedings of the 3rd International
Symposium on Big Data and Cloud Computing Challenges (ISBCC—16’), Tamil Nadu, India, 10–11 March 2016;
Vijayakumar, V., Neelanarayanan, V., Eds.; Springer: Berlin, Germany, 2016; Volume 49, pp. 223–235.

29. Lakshminarasimman, S.; Ruswin, S.; Sundarakantham, K. Detecting DDoS Attacks using Decision Tree
Algorithm. In Proceedings of the Fourth International Conference on Signal Processing, Communication
and Networking (ICSCN), Chennai, India, 16–18 March 2017.

30. Malik, A.J.; Khan, K.F. A hybrid technique using binary particle swarm optimization and decision tree
pruning for network intrusion detection. Clust. Comput. 2017, 21, 667–680. [CrossRef]

31. Abusitta, A.; Bellaiche, M.; Dagenais, M. An SVM-based framework for detecting DoS attacks in virtualized
clouds under changing environment. J. Cloud Comput. 2018, 7, 9. [CrossRef]

32. Wang, H.; Gu, J.; Wang, S.S. An effective intrusion detection framework based on SVM with feature
augmentation. Knowl. Based Syst. 2017, 136, 130–139. [CrossRef]

33. Feng, W.; Zhang, Q.; Hu, G.; Huang, J.X. Mining network data for intrusion detection through combining
SVMs with ant colony networks. Future Gener. Comput. Syst. 2018, 37, 127–140. [CrossRef]

34. Tjhai, G.C.; Furnell, S.M.; Papadaki, M.; Clarke, N.L. A preliminary two-stage alarm correlation and filtering
system using SOM neural network and K-means algorithm. Comput. Secur. 2010, 29, 712–723. [CrossRef]

35. Ravale, U.; Marathe, N.; Padiya, P. Feature Selection Based Hybrid Anomaly Intrusion Detection System
Using K Means and RBF Kernel Function. Procedia Comput. Sci. 2015, 45, 428–435. [CrossRef]

36. Chiba, Z.; Abghour, N.; Moussaid, K.; El Omri, A.; Rida, M. A novel architecture combined with
optimal parameters for back propagation neural networks applied to anomaly network intrusion detection.
Comput. Secur. 2018, 75, 36–58.

37. Cui, Y.; Yan, L.; Li, S.; Xing, H.; Pan, W.; Zhu, J.; Zheng, X. SD-Anti-DDoS: Fast and efficient DDoS defense in
software-defined networks. J. Netw. Comput. Appl. 2016, 68, 65–79. [CrossRef]

38. Available online: http://www.riorey.com/types-of-ddos-attacks/#11 (accessed on 2 April 2018).
39. Available online: https://www.corero.com/resources/glossary.html#Slow%20Read%20Attack (accessed on

1 March 2018).
40. Available online: https://ddos-guard.net/en/terminology?cat_filter=attack_type&page=2&per-page=10

(accessed on 2 April 2017).
41. Aziz, A.S.A.; Sanaa, E.L.; Hassanien, A.E. Comparison of classification techniques applied for network

intrusion detection and classification. J. Appl. Log. 2017, 24, 109–118. [CrossRef]
42. Umer, M.F.; Sher, M.; Bi, Y. Flow-based intrusion detection: Techniques and challenges. Comput. Secur. 2017,

70, 238–254. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2018.04.010
http://dx.doi.org/10.1016/j.cose.2017.10.011
http://dx.doi.org/10.1016/j.cose.2017.06.005
http://dx.doi.org/10.1016/j.cose.2009.01.001
http://dx.doi.org/10.1016/j.eswa.2010.08.137
http://dx.doi.org/10.1007/s10586-017-0971-8
http://dx.doi.org/10.1186/s13677-018-0109-4
http://dx.doi.org/10.1016/j.knosys.2017.09.014
http://dx.doi.org/10.1016/j.future.2013.06.027
http://dx.doi.org/10.1016/j.cose.2010.02.001
http://dx.doi.org/10.1016/j.procs.2015.03.174
http://dx.doi.org/10.1016/j.jnca.2016.04.005
http://www.riorey.com/types-of-ddos-attacks/#11
https://www.corero.com/resources/glossary.html#Slow%20Read%20Attack
https://ddos-guard.net/en/terminology?cat_filter=attack_type&page=2&per-page=10
http://dx.doi.org/10.1016/j.jal.2016.11.018
http://dx.doi.org/10.1016/j.cose.2017.05.009

Appl. Sci. 2019, 9, 4633 26 of 26

43. Mazel, J.; Fontugne, R.; Fukuda, K. A taxonomy of anomalies in backbone network traffic. In Proceedings of
the International Wireless Communications and Mobile Computing Conference (IWCMC), Nicosia, Cyprus,
4–8 August 2014; pp. 30–36.

44. Behal, S.; Kumar, K.; Sachdeva, M. Characterizing DDoS attacks and flash events: Review, research gaps and
future directions. Comput. Sci. Rev. 2017, 25, 101–114. [CrossRef]

45. Available online: http://kafka.apache.org/ (accessed on 1 June 2019).
46. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2000, 29, 1189–1232.

[CrossRef]
47. FUKUDA-LAB. MAWILab. 2016. Available online: http://www.fukuda-lab.org/mawilab/ (accessed on 1

July 2010).
48. Robin, G.; Jean, M.P.; Christine, T.M. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31,

2225–2236.
49. Alam, M.Z.; Rahman, M.S.; Rahman, M.S. A Random Forest based predictor for medical data classification

using feature ranking. Inform. Med. Unlocked 2019, 15. [CrossRef]
50. Available online: http://www.fukuda-lab.org/mawilab/documentation.html (accessed on 1 July 2010).
51. Prashant, K.; Himanshu, B.; Balasu, B.R. Anomaly Based Intrusion Detection Using Filter Based Feature Selection

on KDD-CUP 99; IEEE: Piscataway, NJ, USA, 2017; pp. 839–844.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cosrev.2017.07.003
http://kafka.apache.org/
http://dx.doi.org/10.1214/aos/1013203451
http:// www.fukuda-lab.org/mawilab/
http://dx.doi.org/10.1016/j.imu.2019.100180
http://www.fukuda-lab.org/mawilab/documentation.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	System Model and Problem Statement
	DDoS Classifier
	DDoS Classifier Optimization
	Feature Selection
	GBDT Algorithm Parameters

	The Experimental Results and Analysis
	Datasets
	Performance Measurement
	Normalization
	Cross-Validation I
	Feature Selection Algorithm Experiment
	Determine the 0 Value
	Comparison before and after Feature Selection
	Comparison of RFPW and the Dimensionality Reduction Algorithm
	Feature Selection Comparison
	Comparison of Three Models
	DDOS Attack Vector Feature Tree

	Conclusions
	
	References

