iriried applied
L sciences

Article
Helping the Visually Impaired See via Image
Multi-labeling Based on SqueezeNet CNN

Haikel Alhichri *, Yakoub Bazi'”, Naif Alajlan and Bilel Bin Jdira

Advanced Lab for Intelligent Systems research (ALISR), Computer Engineering, College of Comp. and Info.
Sciences, King Saud University, Riyadh 11543, Saudi Arabia; ybazi@ksu.edu.sa (Y.B.); najlan@ksu.edu.sa (N.A.);
bjdira@ksu.edu.sa (B.B.J.)

* Correspondence: hhichri@ksu.edu.sa; Tel.: +966-11-469-6294

check for
Received: 28 September 2019; Accepted: 30 October 2019; Published: 1 November 2019 updates

Abstract: This work presents a deep learning method for scene description. (1) Background:
This method is part of a larger system, called BlindSys, that assists the visually impaired in an indoor
environment. The method detects the presence of certain objects, regardless of their position in the
scene. This problem is also known as image multi-labeling. (2) Methods: Our proposed deep learning
solution is based on a light-weight pre-trained CNN called SqueezeNet. We improved the SqueezeNet
architecture by resetting the last convolutional layer to free weights, replacing its activation function
from a rectified linear unit (ReLU) to a LeakyReLU, and adding a BatchNormalization layer thereafter.
We also replaced the activation functions at the output layer from softmax to linear functions.
These adjustments make up the main contributions in this work. (3) Results: The proposed solution
is tested on four image multi-labeling datasets representing different indoor environments. It has
achieved results better than state-of-the-art solutions both in terms of accuracy and processing time.
(4) Conclusions: The proposed deep CNN is an effective solution for predicting the presence of objects
in a scene and can be successfully used as a module within BlindSys.

Keywords: visually impaired; multiple object detection; image multi-labeling; convolutional neural
networks (CNN), SqueezeNet

1. Introduction

Visual impairment is a major problem affecting many people in the world. In 2018, the World
Health Organization has estimated the number of people suffering from this impairment to be 1.3 billion,
of whom 36 million are blind [1]. Visually impaired (VI) individuals face many hurdles in their daily
lives. They have trouble performing many of the daily actions we take for granted such as reading
text, navigating the environment, or recognizing people and objects around them. In the past, VI
individuals made use of white canes or guide dogs to aid them in such tasks as navigation. They rely
on braille systems for reading and learning. They also rely on other people to help them from time
to time especially with more complex tasks. However, technology can offer many solutions for VI
individuals with a more consistent and contentious service. Early examples include refreshable braille
displays, which allowed the VI to type and view text [2,3]. It is a kind of keyboard composed of cells
that can be refreshed with braille characters to reflect the text on a screen. Another solution is the
screen reader, which is a type of text-to-speech supplication, developed by researchers at IBM [4,5].
Other types of technological solutions include the use of robotics to aid the VI in navigation and to
serve as a home assistant [6,7].

Nowadays, technology solutions based on advances in computer vision and machine learning
has evolved into one of the most exciting areas of technological innovation today. The overwhelming
majority of the contributions can be categorized under one of the two categories confined to navigation

Appl. Sci. 2019, 9, 4656; doi:10.3390/app9214656 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2164-043X
https://orcid.org/0000-0001-9287-0596
http://www.mdpi.com/2076-3417/9/21/4656?type=check_update&version=1
http://dx.doi.org/10.3390/app9214656
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4656 2 0f 20

(i.e., by allowing more freedom in terms of mobility, orientation, and obstacle avoidance) and recognition
(i.e., by providing the blind person with information related to the nature of objects encountered in
his/her context). The category of research work focusing on the recognition task for blind people
consists of several notable works [8-14]. However, many challenging issues are still unresolved due to
the complex nature of indoor scenes and the need to recognize many types of objects in a short period
of time for the system to be useful to a blind person. One way to reduce the complexity of the problem
is not to care about providing the exact location of objects in the scene to the blind person. Instead,
only detect the mere presence of the objects in the scene. Then, this problem becomes similar to what
is known as image multi-labeling, or in other words assigning an image to many classes instead of
just one. In this context, Mekhalfi et al. proposed a method for the detection of the presence of a
set of objects based on the comparison to a set of stored images with known object contents [8]. To
compare the query image to the stored images, the authors proposed to use features based on scale
invariant feature transform (SIFT), the notion of a bag of words (BOW), and principal component
analysis (PCA). Besides, using hand-crafted features which may not be able to describe the images well,
their method relies on selecting a set of representative images to be used for comparison. However,
in addition, comparing to this set of images for every query image is computationally expensive.
The authors in [9] proposed another method which exploits Compressive Sensing (CS) theory for
image representation and a semantic similarity metric for image likelihood estimation through learned
Gaussian Process Regression (GPR) models. Malek et al. [12] used three low-level feature extraction
algorithms, namely the histogram of oriented gradient (HOG), the BOW, and the local binary pattern
(LBP). They merged these features using a deep learning approach, in particular an auto encoder neural
network (AE), to create a new high-level feature representation. Finally, a single layer neural network
was used to map the AE features into image multi-labels.

Recently there has been a major development in the field of computer vision for object detection
and recognition-based deep learning approaches, in particular the set of convolutional neural networks
(CNNSs) [15-18]. Deep learning is a family of machine learning based on learning data representation.
The learning can be supervised or unsupervised depending on the adopted architecture. The most
famous deep architectures are the stacked AutoEncoder (SAE) [19], which consists in a concatenation
of many AutoEncoders (AEs), a deep belief network (DBN) [20], which is based on a series of restricted
Boltzmann machines (RBMs), and CNNs [21]. Deep CNNs have achieved impressive results on a
variety of applications including image classification [22-25], object detection [15-18], and image
segmentation [26]. Thanks to their sophisticated structure, they have the ability to learn powerful
generic image representations in a hierarchical way compared to state-of-the-art shallow methods
based on handcrafted features. Modern CNNs are made up of several alternating convolution and
pooling layers followed by some fully connected layers. The feature maps produced by the convolution
layers are usually fed to a nonlinear gating function such as the sigmoid function or the more advanced
rectified linear unit (ReLU) function. The output of this activation function can then be further subjected
to normalization (i.e., local response normalization) to help with generalization. The whole CNN
architecture is trained end-to-end using the backpropagation algorithm [27].

Like any other classification model that learns a mapping between input data and its labels,
CNN s are prone to overfitting. Overfitting refers to a model that learns the training data too well,
but when it comes to the unseen testing data, it fails. Overfitting is more likely with nonparametric
and nonlinear models that have more flexibility when learning a target function. CNNs are nonlinear
models that have large amounts of free weights that can be learned. Thus, they have more flexibility to
learn training data too well. They can learn the detail and noise in the training data to the extent that it
negatively impacts the performance of the model on unseen testing data. When we have large amounts
of labeled training data, then overfitting is drastically reduced. However, with small training data,
overfitting is a major problem for deep machine learning. In this case, it has been shown that it is more
interesting to transfer knowledge from CNNSs (such as AlexNet [28], VGG-VD [29], GoogLeNet [30],
and ResNet [24]) pre-trained on an auxiliary recognition task with a very large amount of labeled

Appl. Sci. 2019, 9, 4656 30f 20

data instead of training a CNN from scratch [31-34]. The possible transfer learning solutions include
fine-tuning the pre-trained CNN on the labeled data of the target dataset or to exploit the CNN feature
representations with an external classifier. We refer the reader to [32] where the authors introduce and
investigate several factors affecting the transferability of these representations.

In this work, we build a real-time deep learning solution for the image multi-labeling problem.
The image multi-labeling solution is a module within a larger system, called BlindSys, that helps the
visually impaired see. Through the image multi-labeling module, the visually impaired can become
aware of the presence of a given set of objects in his environment. Our proposed deep learning solution
is based on a light-weight pre-trained CNN called SqueezeNet that has less than 1.5 million weights.
We improve the SqueezeNet architecture by resetting the last convolutional layer to free weights,
replacing its activation function from a ReLU to a LeakyReLU, and adding a BatchNormalization layer
thereafter. We also replace the activation functions at the output layer from softmax to linear functions.
These adjustments help with the generalization capability of the network as demonstrated by the
experimental results. Due to its small size, the proposed deep CNN for image multi-labeling can be
trained using a fine-tuning approach with reasonable computational resources. Therefore, the main
contributions of this work can be summarized as follows:

1) A novel deep learning solution for image multi-labeling based on knowledge transfer from the
pre-trained SqueezeNet CNN.

2) The proposed CNN architecture improves the SqueezeNet CNN by using the more advanced
LeakyReLU activation function and the BatchNormalization technique. It also reduces the number
of weights (to less than 900,000) to combat overfitting.

3) Theproposed deep solution uses a fine-tuning approach to adapt the CNN to the new target dataset.

The rest of the paper is organized as follows. In Section 2, we give a full description of the methodology,
including the problem formulation, the CNN theory, and the proposed deep CNN solution based on
SqueezeNet. Section 3 presents the datasets and the experimental results. Finally, concluding remarks are
given in Section 4.

2. Materials and Methods

First, this section defines the problem at hand formally. We then explain how to solve image
multi-labeling using pre-trained convolutional neural networks in Section 2.2. Finally, we present our
proposed solution based on the pre-trained model known as SqueezeNet.

2.1. Problem Formulation

RO g an image of size w x 1 x 3, and y; € R is

Let {Ii, yi}?: . be a training set where I, €
its corresponding “object indicator” vector of size ¢, which is equal to number of objects of concern.
Vector y; is composed of a binary sequence where one indicated the presence of an object in the scene,
while zero indicated otherwise. Let also flCNN, I=1,...,Lbe a CNN model with L layers pre-trained

on a large amount of labeled auxiliary images from a different domain. Here, flCNN

refers the output of
the I"* layer. Our aim is to develop a deep learning system that can map the test images {I;}!" | to binary
vectors y; (which indicates the presence or no presence of objects) based on the available training set

as well the pre-trained CNN model. Figure 1 clarifies the image multi-labeling problem further.

Appl. Sci. 2019, 9, 4656 4 0f 20

Output
Learned
outputs yi
0.89 1 Object 1
0.34 0 Object 2
Deep learning model |05 1 Object 3
0.17 0 Object 4
> Tp
I
0.73 1 Object C

Figure 1. Overview of the image multi-labeling problem.

2.2. Deep CNN Architectures

Deep learning CNNs are composed of several layers of processing, each comprising linear
as well as non-linear operators, which are learnt jointly, in an end-to-end way, to solve specific
tasks [10,11]. Specifically, deep CNNs are commonly made up of four types: 1) a convolutional layer;
2) anormalization layer, 3) a pooling layer, and 4) a fully connected layer. The convolutional layer is
the core building block of the CNN, and its parameters consist of a set of learnable filters. Every filter
is small spatially (along width and height), but extends through the full depth of the input image.
The feature maps produced via convolving these filters across the input image are fed to a non-linear
gating function such as the sigmoid or ReLU functions [28].

Regarding the pooling layer, it takes small rectangular blocks from the convolutional layer and
subsamples it to produce a single output from each block. There are several ways to perform pooling,
such as taking the average or the maximum, or a learned linear combination of the values in the
block. The main two reasons of using this layer are 1) to control overfitting and 2) to reduce the
amount of parameters and computation in the network. After several convolutional and pooling layers,
the high-level reasoning in the neural network is done via fully connected layers. A fully connected
layer takes all neurons in the previous layer and connects it to every single neuron it has. All the
weights in the CNN are learned using the well-known back-propagation technique.

2.3. Image Multi-Labeling Based on a Pre-Trained CNN

Typically, early deep leaning solutions use a pre-trained CNN as an extractor of high level features.
The complete learning model then uses extra network layers (usually fully connected layers) to adapt
the network to another problem. Given the deep nature of a CNN, one can extract features at different
layers. Thus, given an image I;, we can generate a feature representation vector x; € RP of dimension
D as follows:

ki = FENN((NN (L)) =1, @

where k is a layer within the network. For example, we can use the output of the hidden fully connected
(FC) layer just before the last output layer (which is used to produce a classification result in the original
CNN framework), to represent the training and test images. In this case, k = L-1, where L is the total
number of layers in the network. Next, the extracted feature is fed into a fully connected (dense) layer
that has free trainable weights that can be trained on the new dataset at hand. Figure 2 illustrates this
typical architecture.

Appl. Sci. 2019, 9, 4656 50f 20

Fixed pre-trained CNN

224x224x3

112x112x128

56X56x256

28n28012 14x14x512

7X7X512 1,1x4096 1x1x4096 1x1x1000

=I=, [—
New

layers

@ Convolutional+ReLU *l
) maxpooling - cometied DX
3 —————
@ Fully connected + RelLU
@ Softmax 2

Figure 2. Feature extraction using a pre-trained Convolutional Neural Network (CNN) model, where a

new fully connected layer followed by a softmax layer with C neurons (equal to number of classes) are
added for learning.

In the extra hidden FC layer, the input x; € RP is mapped to the hidden representation h; € RS of
dimension S through the nonlinear activation function f as follows:

hi = (W x; + b)) @

where W € RS*D is the weight matrix, and b € RS is the bias vector. Similarly, the output vector
y;, is computed through a nonlinear activation function F as follows:

y; = f(WO h; + b)) 3)

Typical choice of the activation function is the sigmoid function, i.e., f(v) = 1/(1 + exp(-v)),
or the more advanced functions called ReLU or LeakyReLU shown in Figure 3.

Figure 3. State-of-the-art activation functions. (a) ReLU activation function; (b) LeakyReLU
activation functions.

In order to utilize this pre-trained CNN to solve a new classification problem, we need to build
the output layer so that it has as many neurons as the number of classes (typically the original CNN
has an output layer with size 1000). Furthermore, for a typical classification problem, the output layer
uses a softmax activation function and the categorical cross entropy loss function. Given the outputs
hi(l) of the last layer before the output layer, the softmax activation function produces an estimate of
the posterior probability for each class label c = 1,2, ..., C as in Equation (4):

exp((wgz))Thfl))

T

p(9 = i) = @

Appl. Sci. 2019, 9, 4656 6 0f 20

1 2 C
refers to the transpose operation. This softmax activation function turns the outputs of the neurons in

the last layer into probabilities by ensuring that their total sum is equal to one. This is important for
classification problems because we expect only one neuron to output one (because each input image
must be assigned to one class) while the rest will be zero. However, it is not appropriate for image
multi-labeling because we expect many neurons to output the value one and hence the sum will not
be equal to one. Thus, we use other activation functions, such as linear or sigmoid, in the output

where W) = [w(2) w? .. w(z)] € RI*C are the weights of the softmax layer and the superscript ()"

layer and optimize the mean squared error (MSE) loss function, similar to deep models for regression
problems. The linear activation is more appropriate because it has a derivative equal to one, which is
preferable for the backpropagation algorithm used during training. Furthermore, the linear function is
not limited to the interval [0, 1] like the sigmoid function, so each output neuron is free to estimate
values below or above the correct outputs of zero or one.

To train the neural network, we use the back propagation technique and minimize the following
cost function [35]:

n

L (h
2(ONN) = o ZZH% - Onn(x)I*+ 5 ZIIW)||F+Z||W |2 (5)

i=1 k=

where Oy (x;) is the output of the NN for an input x;, W and W are the weights of the hidden
layer and the output layer, respectively, and H is the size of the hidden layer. The first term of (1) refers
to the mean squared error between the estimated labels and the training labels, while the second term
is the weight decay penalty that helps to prevent overfitting. Note also that # is the number of training
samples, and C is the output vector size (the number of objects to be recognized). The estimation of the
vector of parameters Oyy = {W(h), W(o)} of the NN starts by initializing the weights to small random
values. The cost (1) is then minimized with a min-batch gradient descent algorithm [36].

At test time, we feed each test image to the CNN and assume that an output node j having a
predicted value larger than a given threshold (for example, 0.5) indicates the presence of the object j.
We call this parameter the presence threshold T),.

2.4. The Proposed Solution Based on the SqueezeNet CNN

During training on the new given dataset, the weights of the pre-trained CNN are either fixed or
allowed to be updated. The latter case is known as fine-tuning and is obviously more time-consuming
due to the large number of weights that need to be optimized. For example, successful CNNs such as
AlexNet CNN [28] and the VGG-very-deep-16 CNN model [29] have more than 60 and 138 million
weights, respectively. This makes them quite difficult to fine-tune for typical low-end workstations.
Furthermore, because this image multi-labeling module is running on a mobile device, computational
resources are limited, and hence execution time of the solution at test time must be as fast as possible.
That is why, we have selected a much lighter pre-trained CNN, called SqueezeNet, that has less than
1.5 million weights, yet its accuracy is close to that of the AlexNet CNN [28].

Figure 4a shows the architecture of SqueezeNet. It has 26 convolutional layers (with 34 other
types of layers) and about 860 million multiply-accumulate operations compared to 1140 million for
AlexNet [28]. With the help of model compression techniques, SqueezeNet has a file size of less than
0.5 MB (510 times smaller than AlexNet). SqueezeNet also accepts images of variable size (as low as
48 x 48) without the need for resizing, albeit 224 X 224 is still the ideal size. All these properties make
it suitable for us to build and train our solution.

Appl. Sci. 2019, 9, 4656 7 of 20

Output size Output size Output size Output size Output size Conv2D with

onvl of fire2, fire3: of firea, fire5: of fire6, fire7: of fires, fireg: Stride (1,1)
Output size: g5t sjze:

1x1x1000

55x55x128 27x27x256 13x13x384 13x13x512 43,1341000

Input size: maxpool maxpool s P
224x224x3 =2 » _’5=2 = e S |
= =
(a)
64
1x1 Conv
Squeeze
16
1x1 Conv 3x3 Conv
Expand Expand
64 64

Concat Eltwize
128

(b)

Figure 4. Overview of the SqueezeNet architecture. (a) Overall architecture; (b) the fire module with

squeeze and expand layers.

The building block of SqueezeNet is called the fire module, illustrated in Figure 4b. It contains two
layers: a squeeze layer and an expand layer. A SqueezeNet stacks a bunch of these fire modules and a
few pooling layers. The squeeze layer decreases the size of the feature map, while the expand layer
increases it again. As a result, the same feature map size is maintained. Another pattern is increasing
depth, while reducing the feature map size to obtain a high level abstract. This is accomplished through
increasing the number of filters and using a stride of two in the convolutional layers.

In this work, we propose a solution for the image multi-labeling problem based on fine-tuning
an improved version of a pre-trained SqueezeNet CNN. In particular, we designed two improved
SqueezeNet models to be used with the fine-tuning approach. We also build a base model or Model 1,
illustrated in Figure 5a, that uses the pre-trained SqueezeNet as a feature extractor (i.e. its weights are
fixed) and adds a fully connected layer for adapting to the given dataset. The other two improved
models, referred to as Model 2 and Model 3, are illustrated in Figure 5b,c, respectively. In Model
2, we fine-tune Model 1, by making all weights of the SqueezeNet layers trainable. In Model 3,
we get rid of the extra FC layer of Model 1 and reset the last convolutional layer of the SqueezeNet
model to random weights. Removing the FC layer has the advantage of reducing the weights of the
deep network, which consequently decreases computational costs. Resetting the weights of the last
convolutional layer improves the generalization capability and affords a greater chance for the network
to adapt to the new dataset. Furthermore, in all models above, we replaced the ReLU activation
function of the hidden layer with new weights with the more advanced LeakyReLU activation function.
We then inserted a BatchNormalization layer thereafter to fight overfitting and improve generalization
capability of the network. This was not present in the original SqueezeNet model.

The BatchNormalization layer was introduced back in 2014 in the second version of GoogLeNet
by Szegedy et al. [37]. BatchNormalization is similar to the concept of standardization (make the data
have zero mean and sometimes also unit standard deviation) of the network input, which is a common
thing to do before using a CNN on any data. BatchNormalization does the same thing inside the
CNN. Specifically, we add a normalization layer after the convolutional layer, which makes the data in
the current training batch (data is divided in batches to make sure it fits in computer RAM) follow a
normal distribution. This way the model focuses on learning the patterns in the data and is not misled

Appl. Sci. 2019, 9, 4656 8 of 20

by large values in it. This in turn helps with combating overfitting and increasing the generalization
ability of the network. Another advantage of the BatchNormalization technique is that it allows the
model to converge faster in training and hence allows us to use higher learning rates.

Conv2D with
tride (1,1) Output
Output size S
i i of fires, fireg: QUIPUL SIZeX g5t ize: 5 Slz: Is ;
&9 13x13xs12 13X13x1000 45444000 umber. o
111x111x64 ———— classes
— ~ 3 -
Input size: =3 maxpool > ‘ a
224x224x3 g' = g% _..g
/-
Fixed pre-trained weights Trainable new weights
(a)
Conv2D with
stride (1,1) Output
i Output size
"“" of fires, fire9: ?;t';gt 15("20% Output size: Nsulf is .
13x13x512 RISX 1x1x1000 Umper-o
classes
Input size: maxpool fa‘) g é_
224x224x3 ‘: =
F ¢}
Trainable pre-trained weights Trainable new weights
(b)
Conv2D with
Output size stride (1,1) O.utpfn
Outpy Output size: Qutput size: Size is
p of fire8, fire9: 13x13x1000 Numb £
‘ 13313512 KX 1x1x1000 umber o
classes
Input size: maxpool %‘ 5
224x224x3 _’E —_— = £
[¢]
Trainable pre-trained weights Trainable new weights
(c)

Figure 5. Proposed architecture using the SqueezeNet pre-trained model. (a) Model 1: base model with
fixed pre-trained SqueezeNet. (b) Model 2: fine-tuned Model 1. (c) Model 3: fine-tuned SqueezeNet
with new random weights for the last convolutional layer (after fire9).

The proposed solution fights overfitting by transferring the knowledge from a CNN pre-trained
on a large auxiliary dataset (namely ImageNet), instead of training it with random initial weights.
In addition, we also combat overfitting by reducing the number of free weights and hence reducing the
flexibility of the network so that it does not learn the small details or noise in the dataset. Finally, the new
BatchNormalization technique introduced inside the network improves the generalization ability of
the network and fights overfitting, because it forces all feature values inside the network to be within
the same small range (zero to one), instead of having the flexibility to use feature values as large as it
wants in order to fit the training data.

3. Experimental Results

This section presents the experimental work of this paper. As we mentioned before, this work is
part of a larger project, called BlindSys, that aims at designing an IT system to help the visually impaired

Appl. Sci. 2019, 9, 4656 9 0f 20

perform important tasks in their lives. This system is also the source of one of the datasets used in this
paper. As a result, we first present this IT system in the next subsection. After that, we describe the
image datasets used in the paper and some experimental setup issues. Finally, we present the results
and compare them to state-of-the-art methods.

3.1. BlindSys: A Smart IT Solution to Assist the Visually Impaired

Figure 6 shows an overview of the BlindSys system for guiding VI people and helping them
recognize objects and text in indoor environments. The BlindSys hardware is composed of a high
resolution camera that is mounted at the chest of the VI person, a wireless headphone for voice
communication with the VI user, and a mobile device that houses the BlindSys software and enables
interface with the system.

High Resqlution Camera

Tablet Processing Unit
w use @ Real-timeinstructions
e —
fr—

On-demand
Information

@ z/i/ The Blind User: Go To r-._\
B The office. A
The System: Go to the ﬁ_{
left... =
Thisis Salimin front of

N I Y you

Earphone

University Building !

Figure 6. Overview of the BlindSys system for the visually impaired (VI). Diagram shows the camera
on the chest, tablet, and headphones for voice communication.

The VI user can use the system via voice commands or through a graphic user interface (GUI) to
select one of four functions: 1) indoor navigation, 2) text detection and recognition, 3) scene description,
or 4) face detection and recognition. Indoor navigation operates on the video stream in real time,
while the other functions operate on a single image captured upon request from the video stream.
To ease operation of the system, the mobile device has the simple GUI shown in Figure 7b, where the
whole screen is divided into four large buttons. The VI user can press the buttons simply by touching
an area close to the corners of the device. In order to avoid accidental touching, the VI user should tap
the button twice consecutively. BlindSys has another main GUI, shown in Figure 7a, that can be used
for testing and operator support. All processing results are communicated to the VI user via voice
using text-to-speech synthesis.

The BlindSys software is based on three main parts. 1) The main application contains the
application GUI and the business logic under it that manipulates all the gathered information to
give navigation details to the user (video extracted information, IMU (inertial measurement unit)
information, and so on). 2) Auxiliary applications that are independent from the main application are
responsible for performing other functions such as OCR, face recognition, scene description, and so
on. 3) Libraries are used to implement the different parts of the main application or the auxiliary
applications. They are linked to the application statically or dynamically.

Appl. Sci. 2019, 9, 4656 10 of 20

Face
Recognition

(b)

Figure 7. Graphic user interface (GUI) of the prototype implemented to collect dataset images at King
Saud University. (a) Detailed GUI for testing and operator support. (b) Simple GUI on the mobile
device to be used by the VI.

The scene description module can detect the presence of a set of objects in a scene image without
giving exact locations. The module can detect a set of 15 objects that are commonly found in an
indoor environment.

3.2. Dataset Description

The experiments in this paper use four datasets of multi-labeled images for evaluating the
efficiency of the proposed deep learning solution. The first two datasets pertain to the college of the
computer and the information sciences building at the King Saud University (KSU), Saudi Arabia.
They have been collected by our team using the BlindSys system described in Section 3.1. The second
two datasets were collected by the authors of [8] in two different buildings of the University of Trento,
Italy. The cameras used to capture these images are from a company called IDS-imaging [38]. For the
KSU datasets, the camera used was a UI-1220SE -C-HQ, USB 2.0, CMOS, 87.2 fps, 752 x 480, 0.36 MPix,
1/3”, ON Semiconductor, Global Shutter. For the UTrento datasets, the camera used was a UI-1240LE
-C-HQ, USB 2.0, CMOS, 25.8 fps, 1280 x 1024, 1.31 MPix, 1/1.8”, e2v, Global Shutter, Global Start Shutter,
Rolling Shutter. Both cameras were equipped with a KOWA LM4NCL 1/2”, 3.5 mm, F1.4 manual IRIS

Appl. Sci. 2019, 9, 4656 11 0f 20

C-Mount lens from RMA Electronics Inc. [39]. The details of these four datasets are given in Table 1,
which also presents the list of objects considered in every dataset.

Table 1. Details of the four datasets of multi-labeled images used in the work.

Dataset Train/Test Sizes Objects Considered

KSU1 161/159 pillar, fire extinguisher/hose, trash can, chairs, external door, hallway,
self-service, reception, didactic service machine, display screen, board,
stairs, elevator, laboratory, internal door

KSU2 86/88 board, fire extinguisher/hose, trash cans, chairs, external door, didactic
service machine, self-service, reception, cafeteria, display screen, pillar,
stairs, elevator, prayer room, internal door

UTrentol 58/72 external window, board, table, external door, stair door, access control
reader, office, pillar, display screen, people, ATM, chairs, bins, internal
door, and elevator

UTrento2 61/70 stairs, heater, corridor, board, laboratories, bins, office, people, pillar,
elevator, reception, chairs, self-service, external door, and display screen

The King Saud University 1 (KSU1) dataset is composed of 320 images, divided into 161 training
images and 159 testing images. The King Saud University 2 (KSU2) dataset is composed of 174 images,
divided into 86 training images and 88 testing images. The University of Trento 1 (UTrentol) dataset
accounts for a total of 130 images acquired in two separate daytimes (morning and evening), and
these were split into 58 training images (i.e., for training the NN model) and 72 for testing purposes.
Finally, the University of Trento 2 (UTrento2) dataset is composed of 131 images, divided into 61
training images and 70 testing images. It is noteworthy that the training images for all datasets
were selected in such a way to cover all the predefined objects in the considered indoor environment.
Thereupon, we have selected the objects deemed to be the most important ones in the considered
indoor environments. Figures 8 and 9 show sample images from the KSU2 and UTrento2 datasets
with the list of objects contained within. Furthermore, Figure 10 presents the number of occurrences of
objects in the training set and the test set of every dataset.

[Pitar| Fire
extinguisher/hose

el
extinguisher/hose | Chairs

‘Tissh Halway|

Internal
Door

Chairs ”n ‘ Ha\lway‘

Internal 2 Internal
Door g sl S Door

Board

can

External
Door

Chairs

‘ P\Har‘

External
Door

1| Self-service

Fire
extinguisherihose Bijngusherihose

Chairs service
machine

Display
Screen

Board

Stairs

External
Door

Trash
R

(st

‘ Se\'-serviue‘

Stairs

Figure 8. Sample images from the King Saud University 2 dataset (KSU2) and the corresponding labels
(objects).

Appl. Sci. 2019, 9, 4656 12 of 20

Laboratories

Display

External
Door

Figure 9. Sample images from the University of Trento 2 dataset (UTrento2) and the corresponding
labels (objects).

KSU1 dataset: Training set KSU1 dataset: Testing set

KSU2 dataset: Training set KSU2 dataset: Testing set

100 100

80 80

60| 60|

40 35 37
25 og 25
20t 18 16 16
10 6 4 5 72 8
0
0 2 4 B 8 10 12 14 16 [1] 2 4 B 8 10 12 14 16
UTrento1 dataset: Training set UTrento1 dataset: Testing set

100 100

80 80

60| 60|

40+ 37 35 40+ 35 37

28 = 26 26 32 25
0 14 14 18 14 20+ 12 14
4 5 1 7 5 7 4 6 8 3 7 8
0 0
0 2 4 B 8 10 12 14 16 [1] 2 4 B 8 10 12 14 16

100 UTrento2 dataset: Trainina set 100 UTrento2 dataset: Testina set

80 801

Figure 10. Number of occurrences of objects in each dataset. The x axis represents the object number
according to the list given in Table 1.

Appl. Sci. 2019, 9, 4656 13 0f 20

3.3. Experimental Setup

We implemented the proposed deep CNN solution for image multi-labeling in the Keras
environment, which is a high level neural network application programming interface written
in Python. We set the number of epochs to 100 and fixed the mini-batch size to 16. Additionally, we set
the learning rate of the Adam optimization method to 0.0001. Regarding the exponential decay rates for
the moment estimates and epsilon, we use the following default values: 0.9, 0.999, and 1e-8 respectively.

The datasets contain images of size 640 X 480. Rescaling the images to the usual size of 224 x 224
is not necessary because the SqueezeNet model is able to accept images of different sizes directly.
In fact, this is one the advantages of the SqueezeNet model. Based on the input size of 640 x 480,
Model 3, presented in Figure 5c, now has a low number of weights between 756,559 to 858,191 only.

The efficiency of the proposed framework is expressed in terms of the measures known as
sensitivity (SEN), specificity (SPE), and their average (AVG) defined in [9,40]. SEN expresses the
probability of correct detection of the presence of an object, while SPE expresses the probability of
correct detection of the absence of an object, respectively. They are computed as follows:

True Positives

SEN = 6
True Positives + False Negatives (©)
True Negatives
SPE = , —)
True Negatives + False Positives
AVG = w (8)

All experiments are conducted on an HP-laptop with an Intel Core i7-7700HQ CPU of 2.80 GHz,
16 GB of RAM, and the NVIDIA graphics card GeForce GTX 1050 Ti with a 4 GB dedicated memory.

3.4. Results of the Proposed Deep Solution for Image Multi-Labeling

First, we present the results for the baseline model (Model 1) shown in Figure 5a based on the
SqueezeNet CNN with fixed pre-trained weights. We perform sensitivity analysis for this model by
varying the presence threshold T}, in a range from 0.1 to 0.8 with a step size of 0.1 and by varying the
hidden layer size as the following values 64, 128, 256, or 512. Figure 11 shows the analysis for the
different datasets. The first observation in these figures is that a presence threshold value equal to 0.5
does not provide the most accurate results. In fact, a T, = 0.4 gives us the highest AVG score result
overall. Secondly, in terms of the optimal hidden layer size, we can see from the figures that a hidden
layer size between 64 and 128 is the most appropriate when considering all datasets.

Next, we present the results of fine-tuning Models 2 and 3 shown in Figure 5b,c, respectively.
Figures 12 and 13 gives sensitivity analysis for Models 2 and 3, respectively. As can be seen, Model
3 gives us the best performance in terms of AVG score. Moreover, in general, a presence threshold
Ty = 0.3 is the best choice considering all datasets. The number of filters for the CONV2D layer in
Model 3 does not significantly affect the results. Therefore, we selected a number equal to 256 that
gives good results for most datasets, but keeps processing time per test image low.

Appl. Sci. 2019, 9, 4656 14 of 20

100
95
w90 my
o o
£ 85 - k4
w g w
[Z: 1o @
[©] 9]
z 75 z
70 70
65 . 65
0.1 02 03 04 05 06 07 08 0.1 02 03 04 05 06 07 08
Threshold Threshold
(@) (b)
100 100
64 64
95 --128 95 128
-~ 256 - - 256
%0 —-512 90 o512
85 85

AVG(SEN+SPE)
AVG(SEN+SPE)

65 . .

0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.1 0.2 03 0.4 0.5 0.6 07 0.8
Threshold Threshold
(© (d)

Figure 11. Effect of the hidden layer size and the presence thresholds T, on the AVG score for the
Model 1 (base model): (a) KSU1 dataset, (b) KSU2 dataset, (c¢) UTrentol, and (d) UTrento2.

Ksu1 Ksu2
100
95
i 90}~ m
o o
? st 2
> 8 z
i o]
9 80 2
g g
< 75 <
70
65 ‘ ‘ 65 :
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold Threshold
(a) (b)
UTrento1 UTrento2
100 100
64 64
9% --128 951 --128
—_ - 256 — —--256
g o =512 g o =512
¢ 2
> 8 z
w w
28 22
] o
>
z z
65 N . N . ‘
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold Threshold
(V] (d)

Figure 12. Effect of the hidden layer size and the presence thresholds T), on the AVG score for Model 2:
(a) KSU1 dataset, (b) KSU2 dataset, (c) UTrentol, and (d) UTrento2.

Appl. Sci. 2019, 9, 4656 15 of 20

KeU 100 Ksu2

64

AVG(SEN+SPE)
AVG(SEN+SPE)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
Threshold Threshold

(a) (b)

UTrento1 UTrento2

9% 95 --128

% T T 256

. ///// \ 512
w AN

75

90
85

80/

AVG(SEN+SPE)

75

AVG(SEN+SPE)

70 70

65 65
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Threshold

(c)

Threshold

(d)

Figure 13. Effect of the hidden layer size and the presence thresholds T, on the AVG score for Model 3:
(a) KSU1 dataset, (b) KSU2 dataset, (c¢) UTrentol, and (d) UTrento2.

3.5. Comparison to the State of the Art

Table 2 presents a comparison between the proposed method and the state-of-the-art methods
based on compressive sensing and Gaussian process regression (CS + GP) [9], SURF feature
matching, and Gaussian process regression (SURF + GPR) [9], multi-resolution random projection
(MR-random-proj) [13], fine-tuning of GoogLeNet [13], and AE fusion of HOG + BOW + LBP
features [12]. These results are obtained using the proposed Model 3 with a hidden layer size of 256,
and a presence threshold of 0.3, as suggested by the sensitivity analysis.

Table 2. Comparison to state-of-the-art methods.

Dataset Method SEN SPE AVG Time(s)
EDCS + GPR [9] 73.82 80.53 77.18 >1
KSU1 MR random projection [13] 71.65 94.81 83.23 0.035
Pre-trained GooglLeNet [13] 73.56 97.95 85.75 0.064
Fine-tune improved SqueezeNet [ours] 94.14 96.54 95.34 0.024
EDCS + GPR [9] 64.46 7291 68.69 >1
KSU 2 MR random projection [13] 70.00 92.33 81.16 0.037
Pre-trained GoogLeNet [13] 67.76 95.91 81.84 0.067
Fine-tune improved SqueezeNet [ours] 94.51 93.79 94.15 0.029
SURF + GPR [9] 71.16 100.00 85.58 1.17
EDCS + GPR [9] 69.66 80.19 74.93 1.08
UTrentol \iR random projection [13] 71.16 83.20 77.18 0.037
Pre-trained GoogLeNet [13] 61.79 96.55 79.17 0.068
AE fusion of HOG + BOW + LBP [12] 89.51 81.3 85.41 0.022
Fine-tune improved SqueezeNet [ours] 88.14 88.49 88.31 0.013

Appl. Sci. 2019, 9, 4656 16 of 20

Table 2. Cont.

Dataset Method SEN SPE AVG Time(s)
SURF + GPR [9] 77.72 100.00 88.86 1.17
EDCS + GPR [9] 70.00 90.12 80.06 1.2
UTrento2 \iR random projection [13] 7718 9141 8430 0.037
Pre-trained GooglLeNet [13] 67.27 98.55 82.91 0.066
AE fusion of HOG + BOW + LBP [12] 90.00 90.12 90.06 0.022
Fine-tune improved SqueezeNet [ours] 94.91 89.97 92.44 0.014

The results in Table 2 clearly show the superiority of the proposed method for all datasets, not only
in terms of AVG accuracy but also in terms of execution time per image. This is mainly due to the
effectiveness of the image features extracted with the help of the pre-trained SqueezeNet CNN and the
improvements that we have proposed for the architecture.

4. Discussion

The results achieved in this study indicate clearly the power of SqueezeNet CNNs in extracting
highly descriptive features from images, despite its small size. The improvements that we have
proposed for the architecture enhanced the results significantly compared to the typical techniques
for utilizing a pre-trained CNN. For example, a pre-trained GoogLeNet has been proposed in [13],
but the method of fine-tuning it did not produce good results [13]. The reasons for this are several:
1) GoogLeNet has more weights (more than seven million), which requires larger datasets for training,
and 2) GoogLeNet requires that the images be of size 224 x 224, which means all images have to be
resized from the original size of 640 X 480 to 224 x 244. This modifies the aspect ratio of the images
and causes deterioration in the classification accuracy of the network. When it comes to the SquezeNet
architecture used in this study, no resizing of images is needed.

Table 3 presents the AVG scores achieved by Model 3 for all object classes and all datasets where
the CONV2D layer size is fixed to 256 and T, = 0.3. In general, some objects are harder to recognize
because of their low occurrence number in the datasets. For example, if we look at object 10 (class of
people) in the Utrentol dataset, we can see that it appears only once in the whole dataset. This explains
the recognition rate of 50% achieved, because with only one example of this object, the network achieves
a rate equal to random guessing. In the Utrento2 dataset, the same class of objects (the “people” object)
appeared slightly more often (8 times) and was recognized 66% of the time only. Therefore, another
reason for the low score for this object class is that it is a complex object with high variability, making it
difficult to detect without a large number of training samples.

However, for other objects and despite the low number of occurrence for some of them, their
recognition rate is mostly above 80% (see Figure 14). This is actually due to the fact that most of the
objects are man-made and have low intra-class variability in their appearance, especially with the
same dataset coming from the same building. This is also explained by the power of the pre-trained
CNN to transfer knowledge from an auxiliary domain with a large dataset to another domain with a
smaller dataset.

In the UTrento datasets, there are large barrel geometric distortions of the images. In our opinion,
this partly explains the lower AVG scores achieved on these datasets compared to the KSU datasets.
For example, in Figure 9, one can observe that the “Board” objects are sometimes located on the
edges/corners of the image and hence become distorted, making them harder for the network to
recognize. This partly explains the relatively lower AVG score achieved for this object, namely 85.90%
and 79.96% in the UTrentol and UTrento2 dataset, respectively, despite their high number of occurrences.

Appl. Sci. 2019, 9, 4656

Table 3. Detailed results per object using Model 3 with the CONV2D layer size = 256 and T), = 0.3.

KSU1 KSU2
Objects # Occ AVG Objects # Occ AVG
pillar 7 93.75 board 38 79.10
fire extinguisher/hose 65 92.44 fire extinguisher/hose 28 92.70
trash can 20 94.41 trash cans 22 91.73
chairs 83 90.12 chairs 37 85.22
external door 21 92.89 external door 18 95.29
hallway 44 93.86 didactic service machine 7 97.97
self-service 17 94.37 self-service 17 90.45
reception 5 99.77 reception 8 98.11
didactic service machine 10 92.2 cafeteria 5 97.74
display screen 11 99.08 display screen 14 98.61
board 24 92.92 pillar 4 99.12
stairs 16 96.7 stairs 7 97.90
elevator 9 99.59 elevator 6 98.29
laboratory 5 100.00 prayer room 5 81.06
internal door 53 84.59 internal door 32 78.38
- SEN 94.14 - SEN 94.51
- SPE 96.54 - SPE 93.79
- AVG 95.34 - AVG 94.15
UTrentol UTrento2
Objects # Occ AVG Objects # Occ AVG
external window 9 81.49 stairs 14 98.26
board 28 85.90 heater 12 94.79
table 4 98.09 corridor 33 95.54
external door 14 91.03 board 45 79.96
stair door 14 90.70 laboratories 15 86.70
access control reader 5 79.17 bins 15 84.32
office 37 88.33 office 13 95.80
pillar 34 92.19 people 8 66.09
display screen 18 90.31 pillar 11 98.56
people 1 50.00 elevator 6 99.17
ATM 7 94.33 reception 10 95.63
chairs 28 84.97 chairs 4 99.18
bins 14 84.25 self-service 6 87.86
internal door 35 76.57 external door 6 95.71
elevator 5 91.25 display screen 8 95.37
- SEN 88.14 - SEN 9491
- SPE 88.49 - SPE 89.97
- AVG 88.31 - AVG 92.44
KsU1 KsU2
" w0 .o... See . . ° o o 100 LIYTTY . K . .
8 80 é 80 . .
S, S .
< <
S }l:lun;l)erqo]f ocmcure“ncesn C Number of occurences
() (b)
UTrentol UTrento2
o™ e gL e R e .
8 80 ° L4 S 8 80 . .
< <

0 5 10 15 20 25 30 35 40

Number of occurences

()

Figure 14. Distribution of objects with respect to AVG score versus the number of occurrences using

0 10 20 30 40

Number of occurences

(d)

Model 3: (a) KSU1 dataset, (b) KSU2 dataset, (c¢) UTrentol, and (d) UTrento2.

Appl. Sci. 2019, 9, 4656 18 of 20

5. Conclusions

In this paper, we have presented an efficient deep learning method for image multi-labeling.
This method is a module belonging to a larger system for helping the visually impaired to navigate
his environment and recognize objects therein. The system makes the VI person aware of the
presence/absence of a given set of objects in his environment. Our solution is based on a light-weight
pre-trained CNN called SqueezeNet. We developed an improved version of the SqueezeNet by
resetting the weights of the last convolutional layer to new random values, changing the activation
function from a ReLU to LeakyReLU, and adding a BatchNormalization layer. Next, using a fine-tuning
approach, we successfully trained the proposed deep CNN on four image multi-labeling datasets.
Experimental results have shown the effectiveness of our proposed deep CNN, because it has provided
significant improvements over the state of the art and has reduced the computational time per image.

Upon inspection of Figure 10, we can observe that the objects have a different number of occurrences
in each dataset. This creates a class imbalance problem that negatively affects any classification method.
Thus, one future direction of research in order to improve the classification results is to address the
class imbalance problem. One way to do this is through augmentation techniques to increase samples
in the infrequent classes. Another direction is the use of an ensemble of deep classifiers, where each
one is responsible for learning to detect a set of objects that are more balanced in terms of their
frequency of occurrence. An intelligent fusion technique could then be used to merge the results of the
classifier ensemble.

Author Contributions: Conceptualization, H.A., Y.B., and N.A.; methodology, H.A.; software, B.B.J.; formal
analysis, H.A; investigation, H.A.; writing—original draft preparation, H.A.; writing—review and editing, Y.B.
and N.A; supervision, H.A.; project administration, N.A.; funding acquisition, N.A.

Funding: This work was supported by NSTIP strategic technologies programs, No. 13-MED1343-02, in the
Kingdom of Saudi Arabia.

Acknowledgments: This work was supported by NSTIP strategic technologies programs, number (13-MED1343-02)
in the Kingdom of Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Vision Impairment and Blindness. Available online: https://www.who.int/news-
room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 29 August 2019).

2. Becker,].V.,; Hinton, D.E.; Anderson, H.G., Jr. Braille Computer Monitor. U.S. Patent 6,700,553, 2 March 2004.

3. US Patent Application for Refreshable Braille Display Patent Application (Application #20130203022 issued
8 August 2013)—Justia Patents Search. Available online: https://patents justia.com/patent/20130203022
(accessed on 29 August 2019).

4. Thatcher, J. Screen Reader/2—Programmed access to the GUI. In Computers for Handicapped Persons; Springer:
Berlin/Heidelberg, Germany, 1994; pp. 76-88.

5. IBM SCREEN READER/2. 23 June 1992. Available online: www-01.ibm.com/common/ssi/cgi-bin/ssialias
(accessed on 29 August 2019).

6. Min, B,; Saxena, S.; Steinfeld, A.; Dias, M.B. Incorporating information from trusted sources to enhance urban
navigation for blind travelers. In Proceedings of the 2015 IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, USA, 26-30 May 2015; pp. 4511-4518.

7. Min, B.-C,; Steinfeld, A.; Dias, M.B. How Would You Describe Assistive Robots to People Who Are Blind or
Low Vision? In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot,
Portland, OR, USA, 2-5 March 2015; pp. 91-92.

8. Mekhalfi, M.L.; Melgani, F.; Bazi, Y.; Alajlan, N. Toward an assisted indoor scene perception for blind people
with image multilabeling strategies. Expert Syst. Appl. 2015, 42, 2907-2918. [CrossRef]

9. Mekhalfi, M.L.; Melgani, F; Bazi, Y.; Alajlan, N. A compressive sensing approach to describe indoor scenes
for blind people. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1246-1257. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://patents.justia.com/patent/20130203022
www-01.ibm.com/common/ssi/cgi-bin/ssialias
http://dx.doi.org/10.1016/j.eswa.2014.11.017
http://dx.doi.org/10.1109/TCSVT.2014.2372371

Appl. Sci. 2019, 9, 4656 19 0f 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1915-1929. [CrossRef]

Brosch, T.; Tam, R. Efficient training of convolutional deep belief networks in the frequency domain for
application to high-resolution 2D and 3D images. Neural Comput. 2015, 27, 211-227. [CrossRef]

Malek, S.; Melgani, F.; Mekhalfi, M.L.; Bazi, Y. Real-time indoor scene description for the visually impaired
using autoencoder fusion strategies with visible cameras. Sensors 2017, 17, 2641. [CrossRef]

Mekhalfi, M.L.; Melgani, F.; Bazi, Y.; Alajlan, N. Fast indoor scene description for blind people with
multiresolution random projections. J. Vis. Commun. Image Represent. 2017, 44, 95-105. [CrossRef]
Alhichri, H.; Jdira, B.B.; Bazi, Y.; Alajlan, N. Multiple Object Scene Description for the Visually Impaired Using
Pre-trained Convolutional Neural Networks. In Image Analysis and Recognition; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 290-295.

Ren, S.; He, K,; Girshick, R.B.; Zhang, X.; Sun, J. Object detection networks on convolutional feature maps.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1476-1481. [CrossRef]

Ren, S.; He, K.; Girshick, R.B.; Sun,]. Faster r-cnn: towards real-time object detection with region proposal
networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137-1149. [CrossRef]

Ouyang, W.; Zeng, X.; Wang, X.; Qiu, S.; Luo, P; Tian, Y.; Wang, K.; Yan, J.; Loy, C.-C.; Tang, X,; et al.
DeepID-Net: Object detection with deformable part based convolutional neural networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1320-1334. [CrossRef]

Ammour, N.; Alhichri, H.; Bazi, Y.; Benjdira, B.; Alajlan, N.; Zuair, M. Deep learning approach for car
detection in UAV imagery. Remote Sens. 2017, 9, 312. [CrossRef]

Bengio, Y.; Lamblin, P; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Proceedings
of the 19th International Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, USA,
2006; pp- 153-160.

Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput.
2006, 18, 1527-1554. [CrossRef] [PubMed]

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278-2324. [CrossRef]

Mariolis, I.; Peleka, G.; Kargakos, A.; Malassiotis, S. Pose and category recognition of highly deformable
objects using deep learning. In Proceedings of the 2015 International Conference on Advanced Robotics
(ICAR), Istanbul, Turkey, 27-31 July 2015; pp. 655-662.

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
Commun. ACM 2017, 60, 84-90. [CrossRef]

He, K,; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June
2016; pp. 770-778.

Alhichri, H.; Othman, E.; Zuair, M.; Ammour, N.; Bazi, Y. Tile-Based Semisupervised Classification of
Large-Scale VHR Remote Sensing Images. J. Sens. 2018, 2018, 14. [CrossRef]

Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of
the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June
2015; pp. 3431-3440.

Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems 25; Pereira, E.,, Burges, C.J.C., Bottou, L., Weinberger, K.Q.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097-1105.

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:14091556.

Szegedy, C.; Liu, W,; Jia, Y.; Sermanet, P; Reed, S.; Anguelov, D.; Rabinovich, A.; Erhan, D.; Vanhoucke, V.;
Google Inc.; et al. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June 2015; pp. 1-9.

Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into
convolutional nets. arXiv 2014, arXiv:14053531.

Azizpour, H.; Razavian, A.S; Sullivan, J.; Maki, A.; Carlsson, S. Factors of transferability for a generic convnet
representation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 38, 1790-1802. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1162/NECO_a_00682
http://dx.doi.org/10.3390/s17112641
http://dx.doi.org/10.1016/j.jvcir.2017.01.025
http://dx.doi.org/10.1109/TPAMI.2016.2601099
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2587642
http://dx.doi.org/10.3390/rs9040312
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1155/2018/6257810
http://dx.doi.org/10.1109/TPAMI.2015.2500224

Appl. Sci. 2019, 9, 4656 20 of 20

33.

34.

35.

36.

37.

38.

39.

40.

Nogueira, R.F; de Lotufo, R.A.; Machado, R.C. Fingerprint liveness detection using convolutional neural
networks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1206-1213. [CrossRef]

Gao, C.; Li, P; Zhang, Y.; Liu, J.; Wang, L. People counting based on head detection combining Adaboost and
CNN in crowded surveillance environment. Neurocomputing 2016, 28, 108-116. [CrossRef]

Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1798-1828. [CrossRef]

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117. [CrossRef]
[PubMed]

Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd JMLR International Conference on Machine Learning, Lille, France, 6-11 July
2015; pp. 448-456.

IDS Imaging Development Systems GmbH. Industrial Cameras—IDS Imaging Development Systems GmbH.
Available online: https://en.ids-imaging.com/ (accessed on 21 October 2019).

RMA Electronics, Inc. Kowa LM4NCL 122”7 3.5mm F1.4 Manual Iris C-Mount Lens; RMA Electronics,
Inc.: Hingham, MA, USA; Available online: https://www.rmaelectronics.com/kowa-lm4ncl/ (accessed on
21 October 2019).

Razavi, N.; Gall, J.; Van Gool, L. Scalable multi-class object detection. In Proceedings of the 2011
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 20-25 June 2011;
pp. 1505-1512.

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIFS.2016.2520880
http://dx.doi.org/10.1016/j.neucom.2016.01.097
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://en.ids-imaging.com/
https://www.rmaelectronics.com/kowa-lm4ncl/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Problem Formulation
	Deep CNN Architectures
	Image Multi-Labeling Based on a Pre-Trained CNN
	The Proposed Solution Based on the SqueezeNet CNN

	Experimental Results
	BlindSys: A Smart IT Solution to Assist the Visually Impaired
	Dataset Description
	Experimental Setup
	Results of the Proposed Deep Solution for Image Multi-Labeling
	Comparison to the State of the Art

	Discussion
	Conclusions
	References

