
applied
sciences

Article

Variable Neighborhood Search Algorithms for an
Integrated Manufacturing and Batch Delivery
Scheduling Minimizing Total Tardiness

Cheol Min Joo 1 and Byung Soo Kim 2,*
1 Division of Mechatronic Engineering, Dongseo University, Busan 617-716, Korea; cmjoo@dongseo.ac.kr
2 Department of Industrial and Management Engineering, Incheon National University, Incheon 22012, Korea
* Correspondence: bskim@inu.ac.kr; Tel.: +82-32-835-8482

Received: 22 September 2019; Accepted: 31 October 2019; Published: 4 November 2019
����������
�������

Abstract: This article addresses an integrated problem of one batching and two scheduling decisions
between a manufacturing plant and multi-delivery sites. In this problem, two scheduling problems and
one batching problem must be simultaneously determined. In the manufacturing plant, jobs ordered
by multiple customers are first manufactured by one of the machines in the plant. They are grouped
to the same delivery place and delivered to the corresponding customers using a set of delivery
trucks within a limited capacity. For the optimal solution, a mixed integer linear programming model
is developed and two variable neighborhood search algorithms employing different probabilistic
schemes. We tested the proposed algorithms to compare the performance and conclude that the
variable neighborhood search algorithm with dynamic case selection probability finds better solutions
in reasonable computing times compared with the variable neighborhood search algorithm with
static case selection probability and genetic algorithms based on the test results.

Keywords: variable neighborhood search; meta-heuristic; scheduling; total tardiness; mixed
integer programming

1. Introduction

Over the past several decades, supply chain management (SCM) has emerged as an important
topic and many operational research problems for the SCM have been attracted. Even though many
researchers obtained local operational efficiency by optimizing the logistics flow of each entity (i.e.,
raw-material providers, manufacturing plants, whole-sale distributers, and customers) within supply
chain (SC), they have become to recognize that the coordination between the entities in the SC is
important to obtain global efficiency of logistics throughout the entities in the SC. Due to this reason,
an integrated schedule of manufacturing and delivery has recently received great attention from
the researchers.

One review article by Chen [1] introduced several single-period optimization models for
integrating inbound-production and outbound-truck scheduling in the SC. The article introduced
the integrated optimization models based on various objective function types using time, cost, and
profit. For integrated scheduling problems between production and delivery, Fan et al. [2] studied the
integrated production with a single machine and delivery scheduling with batching. The limitation
of the study was that they considered the batch delivery to only one customer. Cakici et al. [3,4]
investigated a similar problem with Fan et al. [2]. They extended the integrated scheduling problem
to parallel machines in a production plant and multi-customers for batch delivery. However, they
assumed that the delivery operation was processed using only a single truck. Agnetis et al. [5] studied
the coordination problem of the batching and delivery problem, where product-part batches were

Appl. Sci. 2019, 9, 4702; doi:10.3390/app9214702 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3821-5627
http://www.mdpi.com/2076-3417/9/21/4702?type=check_update&version=1
http://dx.doi.org/10.3390/app9214702
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4702 2 of 15

delivered between production sites by a 3PL provider. Between the delivery process from upstream
to downstream production sites, only the batch with all jobs completed at the upstream site can be
delivered to the downstream site with two transportation modes. Li et al. [6] studied a coordination
problem between the assembly manufacturing plant with parallel machines and multi-destination
transportation with a constraint of make to order (MTO) inventory strategy. They decomposed
the overall problem into a sub-problem of parallel machine scheduling and a sub-problem of 3PL
transportation and solved the problem. Chang et al. [7] considered a coordination problem between a
manufacturing plant with the unrelated parallel machines and multi-destination transportation with
capacitated delivery trucks. Their problem minimizes biobjectives with the total distribution cost and
the delivery time without batching and inventory strategies. Li et al. [8] considered a coordination
problem of vehicle schedule and routing between the manufacturing plant with the parallel batch
machines and multi-destination transportation with capacitated delivery trucks by the third-party
logistics provider. The objective function of the article was to maximize the total profit of the company.

Meanwhile, an integrated scheduling problem between two production processes had a structural
similarity with the integrated scheduling problems between production and delivery in the SC.
Several studies on the two-stage production and assembly scheduling problem were introduced [9–11].
In recent years, several meta-heuristic algorithms were proposed to optimally solve the integrated
scheduling problem between production and delivery under different problem frameworks [12–18].

The fulfillment of due dates of customers is important to obtain a global logistics efficiency in
the overall supply chain. Even though the tardiness factor is a significant factor on the integrated
scheduling, to the best of our knowledge, a few meta-heuristic algorithms generate a near-optimal
solution for the integrated scheduling problems. Furthermore, to the best of our knowledge, none
of the research has an integrated scheduling problem, including a batching decision between the
scheduling problems with a tardiness objective measure. In this article, based on the contribution of
the problem, we propose two effective and efficient variable neighborhood search (VNS) algorithms
for minimizing total tardiness of our integrated scheduling framework.

2. Problem Statement and Mixed Integer Linear Programming (MILP) Model

A number of orders were sequentially carried out by manufacturing, batching, and delivery
operations between a manufacturing plant and multi-delivery sites. Many jobs in the various orders
by customers were firstly received and produced by one of the identical parallel machines in a
manufacturing plant. The jobs to be shipped to the same customer were grouped in a batch. The batch
was loaded into one of the available trucks with a truck containing limit and delivered to the associated
customer. Once the trucks were successfully delivered to the current delivery location, for the next
delivery, they were directly returned to the manufacturing plant. In this article, three main decisions
are to be determined: (1) machine scheduling, which gives a job assignment to a machine and a job
sequence produced in each machine, (2) batching, which decides grouping the jobs to the same delivery
place within a delivery capacity, and (3) truck delivery scheduling, which decides a batch assignment
to truck and a batch sequence delivered in each truck. Total tardiness violating due times of each job is
important to improve the service level of customers. Thus, the objective function is to minimize the
total tardiness. For the mathematical formulation, the parameters and decision variables were defined
in Appendix A.

In this model, the variables zM
iim and zT

kkt were specially introduced. The variable zM
iim equals 1, if

job i is assigned to the first processing sequence of machine m at the manufacturing plant. Similarly, the
variable zT

kkt equals 1, if batch k is assigned to the first delivery sequence to truck t. Since the batching
is one main decision in the model, the initial set B is defined as the set of maximum available batches
and the number of maximum available batches equals the number of jobs (|B| = |J|). Some dummy
batches had no assigned jobs in set B, and we ignored the batches on the truck delivery scheduling. In
these cases, we ignored the batches on the truck delivery scheduling, which were yC

kn = 0 for ∀n ∈ C.

Appl. Sci. 2019, 9, 4702 3 of 15

For illustrating the proposed problem, a simple example is given in Figure 1 and Table 1. In the
example, nine jobs from three orders by the corresponding customers were required to schedule
manufacturing and delivery by two machines and two trucks. Jobs 1 and 2 were ordered by customer
1, jobs 3, 4, 5, and 6 were ordered by customer 2, and jobs 7, 8, and 9 were ordered by customer 3,
respectively. In Table 1, the parameters of processing time, due time, and volume of each jobs, and
transportation time to each customer are shown. From Figure 1, machine 1 sequentially produces jobs
3, 7, 5, and 9, and machine 2 also sequentially produces jobs 1, 4, 8, 6, and 2 at the plant. According
to the truck containing capacity (V = 10) and the ordering customer, 6 batches were grouped using
the manufactured jobs. Once batching was completed, truck scheduling was processed based on the
batches. For truck scheduling, truck 1 sequentially delivered three batches 3, 5, and 6 to customers 2, 3,
and 3, and truck 2 sequentially delivered three batches, 1, 4, and 2, to customers 1, 2, and 1, respectively.
From these schedules, the tardiness of each job is calculated in the last column of Table 1. Hence,
the total tardiness of these schedules becomes 150.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 15

the truck delivery scheduling. In these cases, we ignored the batches on the truck delivery scheduling,
which were 𝑦 = 0 for ∀ 𝑛 ∈ 𝐶.

For illustrating the proposed problem, a simple example is given in Figure 1 and Table 1. In the
example, nine jobs from three orders by the corresponding customers were required to schedule
manufacturing and delivery by two machines and two trucks. Jobs 1 and 2 were ordered by customer
1, jobs 3, 4, 5, and 6 were ordered by customer 2, and jobs 7, 8, and 9 were ordered by customer 3,
respectively. In Table 1, the parameters of processing time, due time, and volume of each jobs, and
transportation time to each customer are shown. From Figure 1, machine 1 sequentially produces jobs
3, 7, 5, and 9, and machine 2 also sequentially produces jobs 1, 4, 8, 6, and 2 at the plant. According
to the truck containing capacity (𝑉 = 10) and the ordering customer, 6 batches were grouped using
the manufactured jobs. Once batching was completed, truck scheduling was processed based on the
batches. For truck scheduling, truck 1 sequentially delivered three batches 3, 5, and 6 to customers 2,
3, and 3, and truck 2 sequentially delivered three batches, 1, 4, and 2, to customers 1, 2, and 1,
respectively. From these schedules, the tardiness of each job is calculated in the last column of Table
1. Hence, the total tardiness of these schedules becomes 150.

Figure 1. An example of schedules for the integrated scheduling problem.

Table 1. Input data and the resulting tardiness of each job.

Orders Plant Batches Delivery
Tardiness

Customer Job 𝒑𝒋 𝒅𝒋 𝒗𝒋 𝒉𝒏 Machine 𝒙𝒋 𝒙𝒋 + 𝒑𝒋 Batch Truck 𝒓𝒌 𝒓𝒌 + 𝒉𝒏

1
J1 40 150 8

90
2 0 40 B1 2 40 130 0

J2 60 300 7 2 140 200 B2 2 240 330 30

2

J3 30 100 10

100

1 0 30 B3 1 30 130 30
J4 30 200 3 2 40 70

B4 2 140 240
40

J5 50 250 4 1 80 130 0
J6 20 250 2 2 120 140 0

3
J7 50 180 5

80
1 30 80 B5 1 120 200 20

J8 50 200 4 2 70 120 0
J9 40 250 7 1 130 170 B6 1 200 280 30

Using the above problem parameters and decision variables, the MILP model for the proposed
problem is as follows: 𝑀𝑖𝑛 z = 𝜏 (1)

s.t.

𝑥 + 𝑝 ≤ 𝑥 + 𝑄 ∙ 1 − z∈ , 𝑓𝑜𝑟 ∀𝑖, 𝑗 ∈ 𝐽; 𝑗 ≠ 𝑖 (2)

Figure 1. An example of schedules for the integrated scheduling problem.

Table 1. Input data and the resulting tardiness of each job.

Orders Plant Batches Delivery
Tardiness

Customer Job pj dj vj hn Machine xj xj+pj Batch Truck rk rk+hn

1
J1 40 150 8

90
2 0 40 B1 2 40 130 0

J2 60 300 7 2 140 200 B2 2 240 330 30

2

J3 30 100 10

100

1 0 30 B3 1 30 130 30
J4 30 200 3 2 40 70

B4 2 140 240
40

J5 50 250 4 1 80 130 0
J6 20 250 2 2 120 140 0

3
J7 50 180 5

80
1 30 80

B5 1 120 200
20

J8 50 200 4 2 70 120 0
J9 40 250 7 1 130 170 B6 1 200 280 30

Using the above problem parameters and decision variables, the MILP model for the proposed
problem is as follows:

Min z =
∑
iεJ

τi (1)

s.t.

xi + pi ≤ x j + Q·

1−
∑
m∈M

zM
ijm

, f or ∀i, j ∈ J; j , i (2)

∑
m∈M

yM
im = 1, f or ∀i ∈ J (3)

∑
i∈J

zM
iim ≤ 1, f or ∀m ∈M (4)

Appl. Sci. 2019, 9, 4702 4 of 15

∑
j∈J

zM
jim = yM

im , f or ∀i ∈ J; ∀m ∈M (5)

∑
j ∈ J
j , i

zM
ijm ≤ yM

im , f or ∀i ∈ J; ∀m ∈M (6)

∑
k∈B

yB
ik = 1, f or ∀i ∈ J (7)

∑
i∈J

viyB
ik ≤ V, f or ∀k ∈ B (8)

yB
ik + yB

jk ≤ 1 +
∑
nεC

Rin·R jn, f or ∀k ∈ B;∀ i, j ∈ J and i < j (9)

rk ≥ (xi + pi) −Q·
(
1− yB

ik

)
, f or ∀i ∈ J; ∀k ∈ B (10)∑

n∈C

yC
kn ≤ 1, f or ∀k ∈ B (11)

yC
kn ≥ Rin·yB

ik, f or ∀i ∈ J; ∀k ∈ B;∀n ∈ C (12)

rk +
∑
n∈C

hn·yc
kn ≤ rl + Q·

1−
∑
t∈T

zT
klt

, f or ∀k, l ∈ B; k , l (13)

∑
t∈T

yT
kt = 1, f or ∀k ∈ B (14)

∑
k∈B

zT
kkt ≤ 1, f or ∀t ∈ T (15)

∑
l∈B

zT
lkt = yT

kt, f or ∀k ∈ B; ∀t ∈ T (16)

∑
l ∈ B
l , k

zT
klt ≤ yT

kt, f or ∀k ∈ B; ∀t ∈ T (17)

rk +
∑
n∈C

hn·yc
kn − di ≤ τi + Q

(
1− yB

ik

)
, f or ∀i ∈ J; ∀k ∈ B (18)

xi, τirk ≥ 0, f or ∀i ∈ J; ∀k ∈ B (19)

yM
im , yB

ik, yT
kt, yC

kn = 0 or 1, f or ∀i ∈ J; ∀k ∈ B;∀t ∈ T; ∀n ∈ C (20)

zM
ijm, zT

klt = 0 or 1, f or ∀i, j ∈ J; ∀m ∈M; ∀k, l ∈ B; ∀t ∈ T (21)

Constraint (2) is to determine the precedence relation of producing jobs within the same machine
at the manufacturing plant and calculate the starting time of processing the jobs. Constraint (3) restricts
that each job must be assigned to one of the machines in the manufacturing plant. Constraints (4)–(6)
have a relation that jobs assigned to the same machine must appear exactly once in their sequence.
Constraint (4) ensures that the beginning of the production sequence in each machine can assign, at
most, one job. So, one job must be assigned to the first position if the rest of jobs are succeeded by the
job in each machine. Constraint (5) guarantees that one job will be immediately preceded by one job
in a machine if it is assigned to the machine, and Constraint (6) also guarantees that one job will be
immediately succeeded by at most one job, if the job is assigned to one of machines. Also, no succeeding
job is allowed if the job exists at the last position of the sequence in machines. Constraint (7) ensures

Appl. Sci. 2019, 9, 4702 5 of 15

that each job must be assigned to exactly one of the batches. Constraint (8) confirms that the total
volume of jobs in batches must not be over the truck containing capacity.

Constraint (9) guarantees that all jobs in the same batch should belong and be shipped to the
same customer. Constraint (10) restricts that the shipping starting time of each batch must be the
longest completion time of manufacturing jobs in the batch. Constraints (11)–(12) force a relation
between the jobs in the batch and the customer. In Constraint (13), the shipping time of each batch
can be calculated by determining the precedence relation of the batches delivered by the same truck.
Constraint (14) confirms that a truck must deliver only one batch to an associated customer at a time.
Constraints (15)–(17) have a relation that batches assigned to the same truck must appear exactly once
in their sequence. Constraint (15) ensures that the beginning of the delivery sequence in each truck can
assign, at most, one batch. So, one batch must be assigned to the first position if the rest of the batches
are succeeded by the batch in each truck. Constraint (5) guarantees that one batch will be immediately
preceded by one batch in a truck if it is shipped to the truck, and Constraint (6) also guarantees that one
batch will be immediately succeeded by at most one batch, if the batch is shipped to one of the trucks.

The above MILP formulation guarantees obtaining an optimal solution. However, the size of
the formulation makes it hard to find an optimal solution within a limited time. This difficulty
occurs from the number of integer variables and constraints. By the derived formulation, the
numbers of integer variables and constraints depend on

(
JM + BJ + TB + CB + J2M + B2T

)
and{

4J + M + 4B + T + J2 + B2 + 3(JM + TB + BT) + JBC + BJ2 + J2M + B2T
}
, respectively. Thus, CPLEX

failed to obtain an optimal solution before running out of memory in large-sized problems. If the
problem is reduced to consider only a machine scheduling problem, it is equivalent to a total tardiness
parallel-machine scheduling problem. If the problem is reduced to considering only a batching problem,
it is equivalent to a well-known bin-packing problem. If the problem is reduced to considering only a
truck scheduling problem, it is equivalent to a total tardiness parallel-machine scheduling problem.
Each of those problems are known to be –NP-hard [19]. Thus, it is necessary to propose an efficient
heuristic to solve the problem within a short amount of time.

3. Variable Neighborhood Search (VNS) Algorithms

We develop VNS algorithms to solve the integrated scheduling problem efficiently. The VNS
algorithm is designed to enrich the search space by restarting a local search heuristic with randomly
generated neighborhood solutions from an incumbent solution by a pre-determined set of neighborhood
structures. Systematic changes of the neighborhood solution within the local search is a key concept
of VNS algorithms to improve a solution quality. Thus, the performance of VNS algorithm is
mainly influenced by the local search heuristic and the neighborhood structure to meet problem
characteristics [20].

The basic VNS algorithm starts with a randomly generated initial solution and repeats the shaking
and moving steps until the termination condition (maximum neighborhood number) is met. In the
shaking step, a neighbor of the incumbent solution is randomly generated, and the local search heuristic
is performed. After the shaking step, the incumbent solution is compared with the local optimal
solution and updates the incumbent solution when the local optimal solution is better. Algorithm 1
shows the procedure of the basic VNS scheme given as follows:

Appl. Sci. 2019, 9, 4702 6 of 15

Algorithm 1. Basic VNS scheme

Begin
Find an initial solution set S∗.
Let iteration index k← 1 .
Define maximum neighborhood number kmax.
While (k ≤ kmax)
Shaking: find a random solution set S ∈ Nk(S∗).
Perform a local search with S to find a local optimum S′.
Move or not:
If f (S′) ≤ f (S∗) then
S∗ ← S′ .
k← 1 .
Else
k← k + 1 .
End If
End While
End

3.1. Neighboorhood Structure

A solution of the integrated scheduling problem is represented by three sequences in this article:
a job sequence for each machine, a job sequence for each batch, and a batch sequence for each truck.
The example solution of the integrated schedule in Figure 1 is represented as shown in Figure 2.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 15

The basic VNS algorithm starts with a randomly generated initial solution and repeats the
shaking and moving steps until the termination condition (maximum neighborhood number) is met.
In the shaking step, a neighbor of the incumbent solution is randomly generated, and the local search
heuristic is performed. After the shaking step, the incumbent solution is compared with the local
optimal solution and updates the incumbent solution when the local optimal solution is better.
Algorithm 1 shows the procedure of the basic VNS scheme given as follows:

Algorithm 1. Basic VNS scheme
Begin

Find an initial solution set 𝑆∗.
Let iteration index 𝑘 ← 1.
Define maximum neighborhood number 𝑘 .
While (𝑘 ≤ 𝑘)

Shaking: find a random solution set 𝑆 ∈ 𝑁 (𝑆∗).
Perform a local search with 𝑆 to find a local optimum 𝑆 .

Move or not:
If 𝑓(𝑆) ≤ 𝑓(𝑆∗) then 𝑆∗ ← 𝑆 . 𝑘 ← 1.
Else 𝑘 ← 𝑘 + 1.
End If

End While
End

3.1. Neighboorhood Structure

A solution of the integrated scheduling problem is represented by three sequences in this article:
a job sequence for each machine, a job sequence for each batch, and a batch sequence for each truck.
The example solution of the integrated schedule in Figure 1 is represented as shown in Figure 2.

Figure 2. A solution representation for the integrated scheduling problem.

The neighborhood solutions are generated by operations describing how they change the
incumbent solution. In this article, we use the following nine basic neighborhood operations, for
machine schedule (M1, M2, M3, M4), batching (B1), and truck schedule (T1, T2, T3, T4):

3.1.1. Neighborhood Operations for Machine Schedule

• Within single machine: A machine and a job position p in the job sequence of the machine are
randomly selected. Another job position q is randomly selected within the range [max(0, p-
gapJob), min(p+gapJob, current number of jobs assigned to the machine)]. The interval gap
between selecting jobs is defined as gapJob = n(J) × preR, where preR (0 ≤ 𝑝𝑟𝑒𝑅 ≤ 1) is the
predetermined relative interval ratio.

M1. InsertOnMachine (gapJob): The job at the position p is removed and inserted to the position
q in the job sequence of the machine.

Figure 2. A solution representation for the integrated scheduling problem.

The neighborhood solutions are generated by operations describing how they change the
incumbent solution. In this article, we use the following nine basic neighborhood operations, for
machine schedule (M1, M2, M3, M4), batching (B1), and truck schedule (T1, T2, T3, T4):

3.1.1. Neighborhood Operations for Machine Schedule

• Within single machine: A machine and a job position p in the job sequence of the machine are
randomly selected. Another job position q is randomly selected within the range [max(0, p-gapJob),
min(p+gapJob, current number of jobs assigned to the machine)]. The interval gap between
selecting jobs is defined as gapJob = n(J) × preR, where preR (0 ≤ preR ≤ 1) is the predetermined
relative interval ratio.

M1. InsertOnMachine (gapJob): The job at the position p is removed and inserted to the position
q in the job sequence of the machine.

M2. SwapOnMachine (gapJob): The jobs at the positions p and q are interchanged in the job
sequence of the machine.

• Across machines: A machine m and a job position p in the job sequence of the machine m are
randomly selected. Another machine n and job position q in the job sequence of the machine n
are randomly selected within the range [max(0, p-gapJob), min(p+gapJob, current number of jobs
assigned to the machine n)].

Appl. Sci. 2019, 9, 4702 7 of 15

M3. InsertAcrossMachine (gapJob): The job at the position p in the job sequence of the machine m
is removed and inserted to the position q in the job sequence of the machine n.

M4. SwapAcrossMachine (gapJob): The job at the positions p and q are interchanged in the
associated job sequence of the machines m and n, respectively.

3.1.2. Neighborhood Operations for Batching

B. SwapAcrossBatch(): Two batches and job i and j in each batch are randomly selected with checking
the feasibility of the truck capacity. The job i and j are interchanged.

3.1.3. Neighborhood Operations for Truck Schedule

• Within single truck: A truck and a batch position r in the batch sequence of the truck are
randomly selected. Another batch position s is randomly selected within the range [max(0,
r-gapBatch), min(r+gapBatch, current number of batches assigned to the truck)]. The interval gap
between selecting batches is defined as gapBatch = n(B) × preR, where preR (0 ≤ preR ≤ 1) is the
predetermined relative interval ratio.

T1. InsertOnTruck (gapBatch): The batch in the position r is removed and inserted to the
position s in the batch sequence of the truck.

T2. SwapOnTruck (gapBatch): The batches in the position r and s are interchanged in the batch
sequence of the truck.

• Across trucks: A truck k and a batch position r in the batch sequence of the truck k are randomly
selected. Another truck l and batch position s in the batch sequence of the truck l are randomly
selected within the range [max(0, r-gapBatch), min(r+gapBatch, current number of batches assigned
to the truck l)].

T3. InsertAcrossTruck (gapBatch): The batch at the position r in the batch sequence of the truck
k is removed and inserted to the position s in the batch sequence of the truck l.

T4. SwapAcrossTruck (gapBatch): The batch at the positions r and s are interchanged in the
batch sequence of the associated trucks k and l, respectively.

In order to simultaneously determine machine schedule, batch assignment, and truck delivery schedule,
a combination of the basic neighborhood operations for each decision would be examined in each
iteration of the main VNS scheme. For the combination, the neighborhood operations for each decision
are grouped, respectively, and an operation is randomly selected in each group when making a
neighborhood. The grouped neighborhood structure is shown in Table 2.

Table 2. Grouped neighborhood structure.

Group for Machine Schedule Group for Batching Group for Truck Schedule

{NONE, M1, M2, M3, M4} {NONE, B} {NONE, T1, T2, T3, T4}

3.2. Local Search Scheme

For the local search in VNS algorithms, we used a search method based on sequence arrays
(SMSA). To apply SMSA to the integrated scheduling problem, three sequence arrays were used,
which are machine scheduling, batching, and truck scheduling arrays. The sequence arrays, which
are represented by a single dimensional string array with digits, and those require assignment rules
to determine manufacturing sequence of machines, batching construction, and shipping sequence
of trucks. The digits for machine, batching, and truck scheduling represent a job sequence to apply
to the machine assignment rule, the batching rule, and the truck assignment rule, respectively [21].
The decoding processes of the sequence arrays are carried out by the three rules. Joo and Kim [16]

Appl. Sci. 2019, 9, 4702 8 of 15

studied a similar problem (makespan problem) and compared the several assigning rules for their
GA algorithm. The processing time and completion time-based assigning rules for machine and truck
sequence arrays, and the minmax-based and rotation-based batching rules for batch sequence array
were compared. They concluded that the completion time-based assigning rule for the machine and
truck sequence arrays and the rotation-based batching rule for batch sequence array provided the best
performance in terms of its effectiveness and efficiency for their algorithm. According to their result,
we used three rules for decoding the sequence arrays to a compound solution for our local search
scheme. The procedures of the three rules are as follows:

• Machine assignment rule: Calculate the completion times of each machine by temporarily
assigning the current job to the end of the sequence in the corresponding machine. And then, find
the machine with the shortest completion time is found and the job is permanently assigned to the
machine and placed on the end-position of the manufacturing sequence of the machine.

• Batching rule: Find the first available batch, allowing the capacity of the batch to be greater than
the volume of the job, as well as shipping towards the same customer and assigning the job to the
batch. If no batch was satisfied by the conditions from the current available batches, create a new
batch and assigned the job to the batch.

• Truck assignment rule: Calculate the completion times of each truck by temporarily assigning
the current batch to the end of the sequence in the corresponding truck. And then, find the truck
with the shortest completion time and the batch was permanently assigned to the truck and placed
on the end-position of the shipping sequence of the truck.

For the local search with SMSA, we classified seven modification cases according to which
sequence arrays were selected to apply the modification (see Table 3). Cases 1, 2, and 3 applied only
one sequence array to the modification process and cases 4, 5, and 6 applied two of three sequence
arrays to the modification process. Case 7 applies all three sequence arrays to the modification process.
One of seven cases is randomly chosen according to the case selection probability Pc in every iteration
of the local search with SMSA.

Table 3. The modification cases.

Case

Modify or Not

Case

Modify or Not

Machine
Sequence

Array

Batch
Sequence

Array

Truck
Sequence

Array

Machine
Sequence

Array

Batch
Sequence

Array

Truck
Sequence

Array

1 O X X 4 O O X
2 X O X 5 X O O
3 X X O 6 O X O

7 O O O

In this article, we developed two kinds of procedures for the local search with SMSA. The difference
between two procedures is to update whether the case selection probabilities are used or not when the
modification of sequence array is processed. The first local search uses the static even case selection
probability with the value 1/(the number of modification cases). The second local search uses the
dynamic case selection probability, which is increased when the case is selected and decreases with
a deterioration rate when the case is not selected. Three sequence operators for the modification of
sequence array in SMSA were used. For the operators, two front and rear positions were randomly
selected in the original sequence array.

• Pull operator: All digits between two positions (including the digits in the positions) are removed
and placed to the end of the sequence array and the digits on the right side of the rear position are
pulled to the position of the front point.

Appl. Sci. 2019, 9, 4702 9 of 15

• Insert operator: The digit in the rear position is removed and simply inserted into the position in
front of the digit in the front position.

• Swap operator: The two digits at the front position and the rear position are mutually interchanged.

The pseudo codes of two local search procedures with SMSA are given in Algorithm 2 and 3
as follows:

Algorithm 2. Local search with static case selection probability

Begin
Define termination count tmax.
Define number of modification cases Cmax

Let the initial case selection probability Pc ← 1/Cmax .
Find an initial sequence arrays C∗ encoded from the solution set S.
Let current local optimum S′ ← S .
Let iteration index t← 1 .
While (t ≤ tmax)
Modification of Sequence Arrays:
Find a random number r← uni f orm(0, 1) .
Let the case index c← 1 .
While (c ≤ Cmax)
If r ≤

∑c
j=1 P j then

Selecting case cs← c .
Break
End If
End While
Modify the sequence arrays C∗ to a new sequence arrays C according to case cs.
Generate a corresponding solution set S′′ decoded from the sequence arrays C.
Move or not:
If f (S′′) ≤ f (S′) then
S′ ← S′′ .
C∗ ← C .
t← 1 .
Else
t← t + 1.
End If
End While
Return the local optimum S′.
End

Appl. Sci. 2019, 9, 4702 10 of 15

Algorithm 3. Local search with dynamic case selection probability

Begin
Define termination count tmax.
Define number of modification cases Cmax

Let the initial case selection probability Pc ← 1/Cmax .
Let the deterioration rate α, 0 < α < 1.
Find an initial sequence arrays C∗ encoded from the solution set S.
Let current local optimum S′ ← S .
Let iteration index t← 1 .
While (t ≤ tmax)
Modification of Sequence Arrays:
Find a random number r← uni f orm(0, 1) .
Let the case index c← 1 .
While (c ≤ Cmax)
If r ≤

∑c
j=1 P j then

Selecting case cs← c .
Break
End If
End While
Modify the sequence arrays C∗ to a new sequence arrays C according to case cs.
Generate a corresponding solution set S′′ decoded from the sequence arrays C.
Move or not:
If f (S′′) ≤ f (S′) then
Pcs ← Pcs +

{
f (S′) − f (S′′)

}
/ f (S′) .

S′ ← S′′ .
C∗ ← C .
t← 1 .
Else
Pcs ← Pcs × α .
t← t + 1.
End If
End While
Return the local optimum S′.
End

3.3. Encoding and Decoding of a Solution

SMSA used for local search in VNS algorithms is operated with three sequence arrays that have
single dimensional string arrays. So, the encoding and decoding procedures between the compound
(integrated) solution and sequence arrays for SMSA are required. The procedures used are the three
assigning rules applied to the local search in Section 3.2. Figure 3 describes encoding and decoding
procedures with the example integrated schedule presented in Figure 2 and Table 1.

Appl. Sci. 2019, 9, 4702 11 of 15

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 15

Let the case index 𝑐 ← 1.
While (𝑐 ≤ 𝐶)

If 𝑟 ≤ ∑ 𝑃 then
Selecting case 𝑐𝑠 ← 𝑐.
Break

End If
End While
Modify the sequence arrays 𝐶∗ to a new sequence arrays 𝐶 according to case 𝑐𝑠.
Generate a corresponding solution set 𝑆 decoded from the sequence arrays 𝐶.

Move or not:
If 𝑓(𝑆) ≤ 𝑓(𝑆) then 𝑃 ← 𝑃 + {𝑓(𝑆) − 𝑓(𝑆)}/𝑓(𝑆). 𝑆 ← 𝑆 . 𝐶∗ ← 𝐶. 𝑡 ← 1.
Else 𝑃 ← 𝑃 × 𝛼. 𝑡 ← 𝑡 + 1.
End If

End While
Return the local optimum 𝑆 .

End

3.3. Encoding and Decoding of a Solution

SMSA used for local search in VNS algorithms is operated with three sequence arrays that have
single dimensional string arrays. So, the encoding and decoding procedures between the compound
(integrated) solution and sequence arrays for SMSA are required. The procedures used are the three
assigning rules applied to the local search in Section 3.2. Figure 3 describes encoding and decoding
procedures with the example integrated schedule presented in Figure 2 and Table 1.

Figure 3. Encoding and decoding procedures.

4. Computational Testing Experiments

In this section, we conduct extensive computational testing experiments to access the
performance of two VNS algorithms using the local search with static case selection probability
(VNS_S) and VNS algorithm using the local search with dynamic case selection probability (VNS_D).

Since the problem complexity increases as the number of jobs (J) increases, we divided the test
problems into two groups using J. The first group is to compare the performances of VNS algorithms

Figure 3. Encoding and decoding procedures.

4. Computational Testing Experiments

In this section, we conduct extensive computational testing experiments to access the performance
of two VNS algorithms using the local search with static case selection probability (VNS_S) and VNS
algorithm using the local search with dynamic case selection probability (VNS_D).

Since the problem complexity increases as the number of jobs (J) increases, we divided the test
problems into two groups using J. The first group is to compare the performances of VNS algorithms
with the optimal solution, and the test problems in the group are randomly generated with J selecting
between 5 and 10. For the optimal solution, ILOG CPLEX 12.7 was adopted to solve the MILP
formulation in Section 2. We terminated a particular run if an optimal solution was not found in an
imposed 7200 (s) time limit. The test problems in the second group are randomly generated with J
selecting more than 10. The group is to compare the relative performance of the solutions obtained by
VNS algorithms. VNS algorithms were coded with the language C#, and all experiments were tested
on a PC with 1.86 GHz Intel Core 2 CPU processor and 2 GB RAM.

The problem complexity is affected by five problem parameters which are the number of jobs (J),
the number of machines (M), the number of trucks (T), the number of customers (C), and tardiness
factor (δ)). Test problems are randomly made according to the five parameters. The tardiness factor
δ (0 ≤ δ ≤ 1) is to generate the due times for each job. The due times for each job generated are
more scattered as the value of δ is increased. Three values, 0.1, 0.3, and 0.5, are considered for the
tardiness factor.

In the small-sized group, eight test problems were randomly generated for each tardiness factor.
Under the predetermined one of tardiness factor values, the size of four problem parameters, which
are the numbers of jobs, machines, trucks, and customers, were randomly selected by U [5,10], U [2,6],
U [2,4], and U [3,4], respectively. In the large-sized group, a total of 24 test problems with 20, 40, and
60 jobs were randomly generated for each tardiness factor. Under the predetermined one of job sizes
and one of tardiness factor values, the size of three problem parameters, which are the numbers of
machines, trucks, and customers, were randomly selected by U [3,6], U [2,4], and U [3,6], respectively.
The processing time and the transportation time were randomly selected by U [60,120] and U [60,240].
The volume of jobs was randomly selected by U [5,10] with a fixed value of the batch capacity as 20.
The relative interval ratio selected by truck schedule were predetermined as {0.05, 0.1, 0.2, 0.4, 0.7, 1.0}.

The performance of VNS algorithms were relatively compared, and two performance measures,
called relative deviation index (RDI) and mean absolute deviation (MAD), were defined. The measures
are expressed by Equations (22) and (23), respectively.

Appl. Sci. 2019, 9, 4702 12 of 15

RDI =
OBJsol −OBJbest

OBJworst −OBJbest
, (22)

where OBJbest and OBJworst are the objective function values of the best feasible solution obtained by
one of the algorithms (or the optimal solution by CPLEX) and the worst feasible solution obtained
by one of the algorithms, respectively. OBJsol is an objective function value obtained by any VNS
algorithm.

MAD(%) =
|OBJsol −OBJmean|

OBJmean
× 100, (23)

where OBJmean is a mean value of the replicated objective function values by any VNS algorithm.
All problems were tested by 30 replications. The performance results of the small-sized group are

presented in Table 4. The objective function values of the optimal solution by CPLEX are represented,
and the average RDI and MAD by VNS algorithms are compared. For the small-sized group, low
values of RDI and MAD are indications that all VNS algorithms give good performances. In Table 4,
computational times (CPU times) of instances are also calculated. We can find the CPU time of CPLEX
exponentially increases as the number of jobs increases. Meanwhile, CPLEX could not search an
optimal solution for problems over 7–8 jobs in the given time limit.

Table 4. Test results of small-sized group.

Test Problems CPLEX VNS_S VNS_D

δ J M T C Obj. CPU RDI MAD CPU RDI MAD CPU

0.1 5 3 2 4 918 2.52 0.00 0.00 0.02 0.00 0.00 0.05
5 4 3 3 1068 1.55 1.00 0.00 0.02 1.00 0.00 0.05
6 5 3 2 896 118.18 1.00 0.00 0.03 1.00 0.00 0.06
6 3 2 5 1306 217.10 0.00 0.00 0.03 0.00 0.00 0.11
7 3 4 3 1994 7200+ 0.00 0.00 0.05 0.00 0.00 0.16
8 5 2 5 2007 7200+ 0.00 0.00 0.06 0.00 0.00 0.16
9 4 4 6 2091 7200+ 0.86 0.10 0.08 0.89 0.23 0.13
10 6 3 4 2717 7200+ 0.00 0.00 0.08 0.00 0.00 0.21

0.3 5 3 2 4 371 2.36 0.25 0.00 0.02 0.25 0.00 0.07
5 4 2 3 720 2.08 0.00 0.00 0.01 0.00 0.00 0.04
6 5 4 2 757 1.78 0.00 0.00 0.03 0.00 0.00 0.08
6 3 2 5 674 25.83 0.00 0.00 0.02 0.00 0.00 0.10
7 3 3 3 308 7200+ 0.25 0.00 0.04 0.25 0.00 0.14
8 5 3 5 787 7200+ 0.00 0.00 0.06 0.00 0.00 0.16
9 4 4 6 439 7200+ 0.33 0.00 0.08 0.33 0.00 0.17
10 6 3 4 1489 7200+ 0.00 0.00 0.08 0.00 0.00 0.21

0.5 5 3 3 3 42 1.11 1.00 0.00 0.01 1.00 0.00 0.04
5 4 3 4 298 1.69 1.00 0.00 0.02 1.00 0.00 0.03
6 5 2 2 0 0.44 0.00 0.00 0.02 0.00 0.00 0.05
6 3 4 5 442 133.63 0.78 0.00 0.03 0.78 0.00 0.07
7 5 3 5 369 102.64 0.00 0.00 0.04 0.00 0.00 0.09
8 6 2 6 64 7200+ 0.00 0.00 0.05 0.00 0.00 0.14
9 4 4 3 138 7200+ 0.21 0.13 0.08 0.20 0.00 0.24
10 6 2 6 143 7200+ 0.00 0.00 0.08 0.00 0.00 0.18

Average 0.28 0.01 0.04 0.28 0.01 0.11

In Table 5, the performance results of the large-sized group are summarized. The average RDI and
MAD of VNS_D is lower than those of VNS_S. The results indicate that VNS algorithms with a local
search with dynamic case selection probability significantly improve the performance of the algorithms
compared to VNS algorithms with a local search with static case selection probability. The CPU times
of each VNS algorithm are short enough to obtain the best solution. The observed differences between
two local search schemes are more statistically significant as tardiness factors decrease. This result

Appl. Sci. 2019, 9, 4702 13 of 15

indicates that VNS_D gives a better performance for the proposed scheduling problem as the due date
becomes more tightly controlled.

Table 5. Test results of large-sized group.

Test Problems VNS_S VNS_D GA

δ J RDI MAD CPU RDI MAD CPU RDI MAD CPU

0.1 20 0.14 0.76 1.09 0.08 0.64 2.50 0.60 2.25 1.51
40 0.18 1.18 9.51 0.09 0.91 15.07 0.70 2.68 8.63
60 0.25 1.88 37.45 0.12 1.42 55.08 0.79 2.48 24.16
80 0.15 11.44 78.75 0.05 8.79 102.96 0.85 5.94 37.43

100 0.08 19.77 200.82 0.05 27.14 195.62 0.86 7.27 67.41
0.3 20 0.14 2.51 6.92 0.08 1.84 11.34 0.59 6.18 1.43

40 0.24 5.14 6.67 0.14 3.76 9.90 0.77 5.64 7.20
60 0.22 8.25 22.32 0.12 9.92 27.40 0.73 9.93 20.31
80 0.07 41.01 74.15 0.02 57.11 83.61 0.84 9.51 36.95

100 0.05 38.68 166.17 0.03 32.83 101.86 0.83 10.20 67.53
0.5 20 0.04 38.78 3.06 0.05 23.04 3.18 0.31 38.74 1.36

40 0.01 4.76 1.17 0.01 8.78 1.37 0.00 0.00 7.21
60 0.03 1.88 4.00 0.02 2.29 4.08 0.12 10.75 18.70
80 0.04 27.80 50.01 0.03 33.98 40.95 0.76 16.56 36.80

100 0.03 55.51 111.13 0.02 21.86 69.68 0.72 18.65 66.95

Average 0.11 17.29 51.55 0.06 15.62 48.31 0.64 9.83 26.92

To compare the performances of the VNS algorithms with the other meta-heuristics, we tested
GA-based algorithms with the same problem sets. The performance results are also presented in
Table 5. The tested GA is a single-stage algorithm with independent dispatching rules. It uses a
chromosome representing two string arrays for machine and truck scheduling and one string array
with job batching. In this article, VNS algorithms proposed give better performance than GA in any
job size and any tardiness factors. The results indicate that VNS algorithms improve the performance
by broadly exploring the solution space compared with GA.

5. Conclusions

This article considered an integrated problem of one batching and two scheduling decisions
between a manufacturing plant and multi-delivery sites. Many jobs ordered by multiple customers are
firstly manufactured by one of machines in the plant. In this problem, two scheduling (machine and
delivery truck scheduling) problems and one batching problem must be simultaneously determined to
minimize the total tardiness. To find the optimal solution, a MILP model was developed. We mainly
found an optimal solution using CPLEX for small-sized groups, but it was inefficient and impractical
to find the optimal solution for the problems of large-sized groups. Thus, two VNS algorithms,
which were applied with different local search schemes, were applied to improve the performance
of the algorithm. We conclude that the VNS algorithm with dynamic case selection probability finds
better solutions in reasonable CPU times, compared with the VNS algorithm with static case selection
probability and the GA based on the test results.

Author Contributions: Conceptualization, B.S.K.; methodology, C.M.J. and B.S.K.; software, C.M.J. and B.S.K.;
validation, C.M.J.; formal analysis, C.M.J. and B.S.K.; investigation, B.S.K.; data curation, B.S.K.; writing—original
draft preparation, C.M.J. and B.S.K.; writing—review and editing, C.M.J. and B.S.K.; visualization, C.M.J.; funding
acquisition, B.S.K.

Funding: This work was supported by the Incheon National University Research Grant in 2017.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2019, 9, 4702 14 of 15

Appendix A

For the mathematical formulation, the parameters and decision variables were defined.

Parameters

J : job-set
M: machine-set
B : batch-set
T : truck-set
C : customer-set
p j : processing time without deterioration of job j ∈ J
d j : due time of job j ∈ J
hn : transportation time, including return time for delivery of customer n ∈ C
R jn : 1, if job j ∈ J is required by customer n ∈ C; 0 otherwise
v j : volume of job j ∈ J
V : truck containing capacity
Q: A large value

Continuous variables

x j : production starting time of job j
rk : shipping starting time of batch k
τ j : tardiness of job j

Binary variables

yM
im : 1 if machine m assigns job i at the manufacturing plant; 0 otherwise

yB
ik : 1 if batch k assigns job i; 0 otherwise

yT
kt : 1 if truck t assigns batch k; 0 otherwise

yC
km : 1 if customer m assigns batch k; 0 otherwise

zM
ijm : 1 if job i immediately precedes job j at machine m at the manufacturing plant; 0

otherwise
zT

klt : 1 if batch k immediately precedes batch l in truck t; 0 otherwise

References

1. Chen, Z.L. Integrated Production and Outbound Distribution Scheduling: Review and Extensions. Oper. Res.
2010, 58, 130–148. [CrossRef]

2. Fan, J.; Lu, X.; Liu, P. Integrated scheduling of production and delivery on a single machine with availability
constraint. Theor. Comput. Sci. 2015, 562, 581–589. [CrossRef]

3. Cakici, E.; Mason, S.J.; Fowler, J.W.; Geismar, H.N. Batch scheduling on parallel machines with dynamic job
arrivals and incompatible job families. Int. J. Prod. Res. 2013, 51, 2462–2477. [CrossRef]

4. Cakici, E.; Mason, S.J.; Geismar, H.N.; Fowler, J.W. Scheduling parallel machines with single vehicle delivery.
J. Heuristics 2014, 20, 511–537. [CrossRef]

5. Agnetis, A.; Aloulou, M.A.; Fu, L.L. Coordination of production and interstage batch delivery with outsourced
distribution. Eur. J. Oper. Res. 2014, 238, 130–142. [CrossRef]

6. Li, K.; Sivakumar, A.I.; Ganesan, V.K. Analysis and algorithms for coordinated scheduling of parallel machine
manufacturing and 3PL transportation. Int. J. Prod. Econ. 2008, 115, 482–491. [CrossRef]

7. Chang, Y.C.; Li, V.C.; Chiang, C.J. An ant colony optimization heuristic for an integrated production and
distribution scheduling problem. Eng. Optim. 2014, 46, 503–520. [CrossRef]

8. Li, K.; Jia, Z.H.; Leung, J.Y.T. Integrated production and delivery on parallel batching machines. Eur. J.
Oper. Res. 2015, 247, 755–763. [CrossRef]

9. Lee, C.-Y.; Cheng, T.C.E.; Lin, B.M.T. Minimizing the makespan in the 3-machine assembly-type flowshop
scheduling problem. Manag. Sci. 1993, 39, 616–625. [CrossRef]

10. Potts, C.N.; Sevast’janov, S.V.; Strusevich, V.A.; Van Wassenhove, L.N.; Zwaneveld, C.M. The Two-stage
Assembly Scheduling Problem: Complexity and Approximation. Oper. Res. 1995, 43, 346–355. [CrossRef]

http://dx.doi.org/10.1287/opre.1080.0688
http://dx.doi.org/10.1016/j.tcs.2014.10.047
http://dx.doi.org/10.1080/00207543.2012.748227
http://dx.doi.org/10.1007/s10732-014-9249-y
http://dx.doi.org/10.1016/j.ejor.2014.03.039
http://dx.doi.org/10.1016/j.ijpe.2008.07.007
http://dx.doi.org/10.1080/0305215X.2013.786062
http://dx.doi.org/10.1016/j.ejor.2015.06.051
http://dx.doi.org/10.1287/mnsc.39.5.616
http://dx.doi.org/10.1287/opre.43.2.346

Appl. Sci. 2019, 9, 4702 15 of 15

11. Yokoyama, M. Flow-shop scheduling with setup and assembly operations. Eur. J. Oper. Res. 2008, 187,
1184–1195. [CrossRef]

12. Toptal, A.; Koc, U.; Sabuncuoglu, I. A joint production and transportation planning problem with
heterogeneous vehicles. J. Oper. Res. Soc. 2013, 65, 180–196. [CrossRef]

13. Ullrich, C.A. Integrated machine scheduling and vehicle routing with time windows. Eur. J. Oper. Res. 2013,
227, 152–165. [CrossRef]

14. Hajiaghaei-Keshteli, M.; Aminnayeri, M. Solving the integrated scheduling of production and rail
transportation problem by Keshtel algorithm. Appl. Soft Comput. J. 2014, 25, 184–203. [CrossRef]

15. Low, C.; Chang, C.M.; Li, R.K.; Huang, C.L. Coordination of production scheduling and delivery problems
with heterogeneous fleet. Int. J. Prod. Econ. 2014, 153, 138–148. [CrossRef]

16. Joo, C.M.; Kim, B.S. Rule-based meta-heuristics for integrated scheduling of unrelated parallel machines,
batches, and heterogeneous delivery trucks. Appl. Soft Comput. J. 2017, 53, 457–476. [CrossRef]

17. Tian, Y.; Liu, D.; Yuan, D.; Wang, K. A discrete PSO for two-stage assembly scheduling problem. Int. J. Adv.
Manuf. Technol. 2013, 66, 481–499. [CrossRef]

18. Allahverdi, A.; Aydilek, H. The two stage assembly flowshop scheduling problem to minimize total tardiness.
J. Intell. Manuf. 2015, 26, 225–237. [CrossRef]

19. Johnson, D.; Garey, M. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman &
Company: New York, NY, USA, 1979.

20. Glover, F.W.; Kochenberger, G.A. Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2006.
21. Joo, C.M.; Kim, B.S. Batch delivery scheduling of trucks integrated with parallel machine schedule of job

orders from multi-customers. J. Adv. Mech. Des. Syst. Manuf. 2018, 12. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2006.06.067
http://dx.doi.org/10.1057/jors.2012.184
http://dx.doi.org/10.1016/j.ejor.2012.11.049
http://dx.doi.org/10.1016/j.asoc.2014.09.034
http://dx.doi.org/10.1016/j.ijpe.2014.02.014
http://dx.doi.org/10.1016/j.asoc.2016.12.038
http://dx.doi.org/10.1007/s00170-012-4343-5
http://dx.doi.org/10.1007/s10845-013-0775-5
http://dx.doi.org/10.1299/jamdsm.2018jamdsm0041
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement and Mixed Integer Linear Programming (MILP) Model
	Variable Neighborhood Search (VNS) Algorithms
	Neighboorhood Structure
	Neighborhood Operations for Machine Schedule
	Neighborhood Operations for Batching
	Neighborhood Operations for Truck Schedule

	Local Search Scheme
	Encoding and Decoding of a Solution

	Computational Testing Experiments
	Conclusions
	
	References

