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Abstract: In this paper, the design, simulations, and experimental results related to new analog
circuits for voltage controlled synthetic inductors (VCSI) are presented. The new circuits based
on a generalized impedance converter (GIC) are proposed for adaptive resonant piezoelectric
shunt damping. The VCSIs are implemented using (1) an analog multiplier and (2) an operational
transconductance amplifier (OTA) as voltage-controlled resistor. The simulation and experimental
results for the new proposed VCSIs are presented and a comparative analysis follows. The proposed
VCSIs work in a stable manner in parallel with negative impedance converters (NIC) to enhance
structural damping in resonant piezoelectric resistive-inductive shunt applications. The behavior
of the synthetic inductor is identical to a real inductor only in a specific frequency range and this
situation can explain the reported spreading performance in the literature for resonant piezoelectric
shunt damping. The simulation results are validated by a group of experimental investigations that
confirm the improved stability and linearity of the new circuits proposed as VCSIs. Experimental
results show that the VCSI based on an analog multiplier have an enhanced linearity in comparison
with the OTA version in a limited voltage control range.

Keywords: synthetic inductor; voltage control; resonant piezoelectric damping; analog multiplier;
operational transconductance amplifier

1. Introduction

In structural vibration control, piezoelectric materials [1,2] have been used with regularity for a
few decades. The ceramic perovskite (Pb[ZrxTi1−x]O3, 0 ≤ x ≤ 1) is a piezoelectric material transducer
called a PZT patch, which is bonded onto a mechanical structure to obtain a very efficient passive
damping technique using an external resonant resistive-inductive circuit known as an RL shunt. Two
versions of the parallel and series RL shunt circuits are presented in Yamada et al. [3]. The series and
parallel resonant shunts are equivalent in terms of vibration control performance, but the parallel RL
shunt is less sensitive to the mistuning of the optimal resistance value. A synthetic inductor is based
on a generalized impedance converter (GIC), which is well-known as a gyrator [4]. The gyrator was
used instead of a real inductor in the analog circuits era [5] to implement low frequency RC filters.
The drawbacks of a real inductor are related to the physical dimensions, residual resistance, and
electromagnetic interferences. Synthetic inductors are also used for mechatronic applications [6–8],
as in the case of resonant piezoelectric RL shunt vibration damping. The most performant and
frequently used circuits to implement synthetic inductors in mechatronic applications are Riordan [9]
and Antoniou [10] gyrator circuits. The RL shunt damping technique is very sensitive to resonance
frequency mistuning, and adaptive circuits [9,10] were proposed based on an additional piezoelectric
sensor and a voltage-controlled synthetic inductor (VCSI). The analog VCSIs presented in the literature
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are based on a Junction Field Effect Transistor (JFET) [11] or photoresistive opto-isolator [12] used as a
voltage-controlled resistor (VCR). These circuits controlled by an external voltage have the advantages
of a wide range of resistance values but unfortunately have a nonlinear response. The vactrol
(photoresistive opto-isolator) has an extended response time, a significant memory effect, and retains
the advantage of optical isolation. Considering digital electronics, we can obtain equivalent behavior
with previous analog VCSIs versions by using a digital potentiometer [13] as a VCR. To avoid
constraining the abovementioned VCSI based on analog circuits presented in literature, two new
approaches have been used to implement VCRs based on (1) an analog multiplier and (2) an operational
transconductance amplifier (OTA). The best achievement of this paper is related with the linear response
of the resonant frequency to the voltage control in resonant piezoelectric RL shunt vibration damping.

This paper is organized as follows: In Section 2, the classical Antoniou [10] synthetic inductor
circuit design and simulation results are presented. In Section 3, two new circuits for a voltage-controlled
synthetic inductor are simulated. The experimental results, comparative analysis, and mistuning effect
of the VCSI non-linearity in RL shunt vibration damping are presented in Section 4. Finally, Section 5
concludes the paper.

2. Synthetic Inductors Circuit Design

In 1948, Bernard D. H. Tellegen [4] proposed a two-port passive electrical network element as a
kind of transformer in which the primary voltage is converted to a secondary current, and vice versa,
as it is shown in Figure 1. He called this device a gyrator because of a theoretical analogy with a
flywheel (gyroscope).
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Currently, the gyrator is mostly known as an active electronic circuit [9,10], which in a limited
range of voltage, current, and frequency, works as an ideal gyrator based on a transconductance model
given by the following equation:
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where v is the voltage source, g1 and g2 are transconductances and C is the capacitive load.
First, the synthesis with active elements of the gyrator to implement efficient RC filters [5]

happened many years later as a result of the analog circuit’s innovation period. Significant progress
was added by operational amplifier (op-amp) integrated circuits used in Riordan [9] or Antoniou’s [10]
configuration that ensures a stable performance and a high-quality factor of the synthetic inductor.
After some significant applications in analog processing of audio signals, a recent useful technological
support was offered by gyrators in resonant piezoelectric RL shunt vibration damping. To demonstrate
the real performance of synthetic inductor based on an Antoniou op-amp circuit, the PSPICE® simulator
(version 9.1, OrCAD®, Cadence Design Systems, San Jose, CA, 95134, USA) has been used, as shown in
Figure 2a. To satisfy the real experimental condition, the high voltage FET-input op-amps (OPA445) are
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used in a parametric (R5 = Rval) circuit simulation. The circuit impedance simulation results shown in
Figure 2b confirm the limited bandwidth characteristic of the synthetic inductor with a self-resonance
peak in perfect agreement with the behavior of the real inductor without residual resistance. For the
low frequency range, the synthetic inductor is a very reasonable solution for very low mass-volume
applications in dimensional agreement with a PZT patch used as smart materials in vibration damping.
As is expected, the large frequency range can be easily controlled by changing the value of the R5

resistor based on the following equation (symbols are defined in reference to Figure 2):

L =
R1R3R5

R2
Cg (2)
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Figure 2. Synthetic inductor: (a) Antoniou gyrator implemented with an OPA445 Op-Amp.
(b) Impedance simulation results for Rval = {500 kΩ, 200 kΩ, 100 kΩ, 50 kΩ, 20 kΩ, 10 kΩ, 5 kΩ, 2 kΩ,
1 kΩ}.

In conclusion, the Antoniou circuit can be easily adapted based on Equation (2) for numerous real
applications by changing the value of only two components Cg and R5.

In vibration damping experiments with an RL shunt to ensure very stable results for the Antoniou
gyrator circuit, the best choice is R1 = R2 = R3 = R in the range of 1 kΩ to 10 kΩ. Considering the
previous notation, the Equation (2) can be rewritten in simplified form as L = R·R5·Cg. The stability of
the Antoniou gyrator circuit has been experimentally demonstrated [14] by using it in parallel with
negative impedance converters (NIC).

3. Voltage Controlled Synthetic Inductors

The robustness of RL shunts used in resonant piezoelectric vibration damping is improved by
using adaptive circuits based on the phase shift between voltages at the electrodes of two PZT patches.
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One PZT patch used an actuator is shunted with an RL circuit and a second PZT patch is used as a
reference strain sensor [12]. To develop a VCSI with a linear response in frequency of the RL shunt
circuit for a large range is challenging, but it is an important step to implementing simplified adaptive
applications for resonant piezoelectric shunt damping.

3.1. Voltage-Controlled Syntetic Inductor Based on an Analog Multiplier

The VCSI based on an AD633 analog multiplier used as a VCR is shown in Figure 3a. The behavior
of the analog multiplier in the VCR configuration [15] is described by the equation (symbols are defined
in reference to Figure 3):

RVCR =
10Rm

10−VCTRL
(3)

with the constant value “10” expressed in volts.
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Considering Equations (2) and (3), for R1 = R2 = R3 = R, we obtained:

L =
10Rm

10−VCTRL
RCg (4)

where the constant value “10” is expressed in volts.
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In Figure 3b, the frequency resonance of an RL shunt in a parametric simulation based on frequency
swapping in the Thevenin equivalent of the cantilever beam with an attached PZT patch is given [11].
The PSPICE® simulation results for VCSI based on AD633 in an RL shunt application illustrate that
the resonant frequency was not linear for the entire voltage control range from −10 V to 10 V and the
expected behavior was only true for negative voltage values.

3.2. Voltage-Controled Syntetic Inductor Based on an OTA

The OTA LM13700 was used to implement the VCR stage of the VCSI, as shown in Figure 4a.
The behavior of the OTA configured as a VCR was described by the equation:

RVCR =
R8 + R4

19.2 IABCR4
(5)

where IABC is the amplifier bias current [16] and the constant value “19.2” is expressed in A−1.
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Considering Equations (2) and (5), for R1 = R2 = R3 = R, we obtained the equivalent inductance:

L =
R8 + R4

19.2 IABCR4
RCg (6)

where the constant value “19.2” is expressed in A−1.
In Figure 4b, the frequency resonance of the RL shunt in an equivalent simulated situation used in

Section 3.1 is shown. In contrast with the whole voltage control range from −10 V to +10 V, the linear
behavior of the resonant frequency for the RL shunt with a VCSI based on an LM1700 was observed
only for positive voltage values. For both versions of VCSIs, the PSPICE® simulated results showed a
linear response for the resonance frequency of the RL shunt only in a limited voltage control range.

4. Experimental Results and Comparative Analysis

For this study, an equivalent experimental setup with PSPICE® simulations was used.
The methodology was based on a network analyzer to measure the resonant frequency in equivalent
RL shunt damping [12] experiments. Based on Equations (4) and (6), the value of the VCSI inductance
is a function of RCg, and in practice, can be easily modified using a new value for the capacitor. Some
adjustments are also possible using new values for resistors R1, R2, and R3, or only R3 to ensure
very simple tuning facilities. The static capacitance of the PZT patch and VCSI value of inductance
are responsible for the resonance frequency of the electrical circuit ωe = 1/

√
LCPZT and the static

capacitance of the PZT patch is the first element that has to be identified before starting the VCSI
design. A schematic of the experimental configuration is shown in Figure 5. The measurement system
is built around a virtual vector network analyzer (SpectraPLUS-SC®, version 5.3.0.2, Pioneer Hill
Software LLC, Poulsbo, WA 98370, USA) to investigate a VCSI in parallel with a capacitor with an
equivalent value of the static capacitance of the PZT patch (26 nF) used in the RL shunt vibration
damping experiments. The virtual vector network analyzer was configured to measure a complex
transfer function in 24 bits sampling format with a 0.732 Hz spectral line resolution. A white noise
excitation signal is generated by software using a DDS (direct digital synthesis) algorithm. The USB
interface used for data acquisition contained a performant coder-decoder circuit (CA0187-IAQ) boosted
with a high impedance and very low noise amplifiers for both input channels. The excitation signal
from the output of the coder-decoder circuit was passed through a power amplifier with a standard
50 Ω output impedance. An external power supply (+/− 24 V, HP-6236B) was used and voltage control
was derived from it in a −10 V to 10 V range based on a precision voltage reference (AD584) and
op-amps (OP27) in a voltage follower configuration.
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The simulation and experimental results for both versions of the VCSIs are shown in Figure 6a.
To ensure a realistic comparison for both versions of the VCSI, an equal range for the voltage control
was considered. For VCSI implemented with an AD633 analog multiplier as a VCR, the linear response
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to keep the error less than 0.5 Hz was obtained for the voltage control from −10 V to 2 V. In the case
of a VCSI implemented with OTA LM13700 as a VCR, in the condition aforementioned, the linear
response was obtained for the voltage control between −2 V to 10 V. For particular implementations
presented in this paper, the frequency range was 8.4 Hz for the VCSI based on LM13700 and 8.9 Hz
for the version with AD633. It can be considered that both VCSIs covered equal linear frequency
domains for an equivalent voltage control range with a medium resolution of 0.72 Hz/V. With the
experimentally validated linearity and its unique very high resolution, the new VCSIs analyzed in
this paper outperformed the previous analog circuits [11,12] presented up until now in literature.
From analysis of the residuals, for the identical voltage control range presented in Figure 6b, it can
be concluded that the VCSI based on AD633 had a better linearity in comparison with the LM13700
version. Both VCSIs had an equivalent frequency domain for identical linear voltage control ranges
and met the condition of having a frequency deviation less than 0.5 Hz to produce with linear behavior.
From the experimental point of view, the VCSI based on an analog multiplier (AD633) was more easily
implemented using only a resistor mounted external to the integrated circuit.
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Considering a mechanical structure with a PZT patch attached by it and Ωn as the modal vibration
frequency, the maximum vibration damping with an RL shunt method can be obtained for optimal
value of the resistor and equal resonant frequency of the electrical circuit, i.e., Ωn = ωe. The resonant
frequency mistuning effect in the RL shunt vibration damping has been intensive investigated in
References [2,6] and adaptive tuning techniques have been proposed. The VCSI with a linear response
for the RL shunt resonant frequency can be considered a big step forward as technological support
toward implementing new simplified adaptive methods. By increasing the robustness of the RL
shunt against mistuning, future integration of the method in more practical applications is ensured
and these investigations are to be a constant research activity in smart materials and the intelligent
systems community.

To demonstrate the capabilities of the new proposed VCSIs in vibration damping applications
based on an RL shunt, Figure 7 shows the simulation results of the mistuning effect due to the resonant
frequency nonlinearity of the electrical circuit. In Figure 7a, the simulation results for VCSI based on an
analog multiplier is presented in accordance with two reference situations: an open circuit and perfect
tuning where Ωn/ωe = 1.
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Figure 7. Simulations of the mistuning effect of the voltage controlled synthetic inductors (VCSI)
nonlinearity in RL shunt vibration damping: (a) VCSI with an AD633 multiplier as a VCR and (b) VCSI
with an LM13700 OTA as a VCR.
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Three extreme points of residual analysis, as is shown in Figure 6b, were chosen for vibration
damping simulation in this case: −10 V, −4 V, and 2 V. The mistuning effect of nonlinear behavior is
very low with less than 1.84 dB depreciation of the vibration damping performance of the RL shunt.

The simulation results for the VCSI based on an OTA are shown in Figure 7b in accordance with
two reference situations: open circuit and perfect tuning where Ωn/ωe = 1. Based on the residual
analysis, as is shown in Figure 6b, three extreme points were chosen for vibration damping simulation
in this case: −2 V, 4 V, and 10 V. Nonlinear behavior regarding voltage control induced a mistuning
effect that involved a depreciation of vibration damping performance for the RL shunt of less than
1.15 dB in this case.

For both VCSI circuits, the nonlinearity regarding the voltage control induced a mistuning effect
in an insignificant range and the circuits can be used with a very good performance for practical
applications. In a very large bandwidth for the voltage control from −10 V to 10 V, the linearity of the
VCSI version with an OTA used as a VCR was better in comparison with the VCSI based on an analog
multiplier, as shown in Figure 6a. The VCSI based on an analog multiplier was more practical from an
experimental point of view and considering only limited voltage control range, it had a better linearity,
as shown in Figure 6b.

New adaptive and simplified techniques based on open or closed loop strategies can be imagined
in the future to improve RL shunt robustness in the presence of uncertainty under cumulated effects
induced by environmental temperature, materials aging, or modifications in the geometry of the
mechanical structures. The well-known difficulties in tuning the multi-modal RL shunt [6] for more
than two modal vibration frequencies of mechanical structures can be avoided using VCSIs with a
linear response of the RL shunt resonant frequency regarding voltage control.

5. Conclusions

In this paper, new VCSIs for adaptive resonant piezoelectric shunt damping were presented.
The best achievement of this study was related with a linear response to the voltage control of
the resonant frequency of the RL shunt in vibration damping with piezoelectric materials. It was
demonstrated that the new VCSIs had an improved linearity and perfect performances, and can
be used in closed or open loop adaptive control. Validations of the proposed VCSIs were done
using experimental measurements and circuits were implemented using only analog components.
The experimental investigations confirmed improved stability and the linearity of new circuits proposed
as VCSIs. The PSPICE® (version 9.1, OrCAD®, Cadence Design Systems, San Jose, CA, 95134, USA)
simulations showed that the behavior of the synthetic inductor was like a real inductor only in a
frequency range and that this limitation can affect the performance of the resonant piezoelectric shunt
damping. Experimental results showed that the VCSI based on an analog multiplier had a better
linearity in comparison with the OTA version. Nonlinear behavior of both VCSI regarding voltage
control induced a mistuning effect that involved an expected and insignificant depreciation of vibration
damping performance for the RL shunt method.
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