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Abstract: Updating road networks using remote sensing imagery is among the most important topics
in city planning, traffic management and disaster management. As a good alternative to manual
methods, which are considered to be expensive and time consuming, deep learning techniques
provide great improvements in these regards. One of these techniques is the use of deep convolution
neural networks (DCNNs). This study presents a road segmentation model consisting of a skip
connection of U-net and residual blocks (ResBlocks) in the encoding part and convolution layers (Conv.
layer) in the decoding part. Although the model uses fewer residual blocks in the encoding part and
fewer convolution layers in the decoding part, it produces better image predictions in comparison
with other state-of-the-art models. This model automatically and efficiently extracts road networks
from high-resolution aerial imagery in an unexpansive manner using a small training dataset.

Keywords: Deep neural network; automated road extraction; remote sensing imagery; Dice similarity
coefficient

1. Introduction

Recent improvements and evolutions in computer vision and artificial intelligence contribute to
different applications with major impacts on modern society. One such application is remote sensing,
which has direct effects on city planning, road navigation, unmanned vehicles, etc. [1–5]. To keep maps
up to date and to perform updates efficiently, tremendous amounts of effort, time, and money are
required. Automatically extracting roads might be the most convenient way to overcome this problem.
Finding an efficient way to automatically and efficiently extract road networks is a hot topic that has
been discussed in many studies [6–15], in which different methods and algorithms have been used.
Most studies agree that extracting roads from aerial images is a complicated task due to the occlusion
and shadows from buildings and trees as well as the different types of roads in aerial imagery, and
these situations make it difficult to precisely extract roads [1,16–18].

To extract roads from aerial imagery, the previous research studied the characteristics and features
of roads and classified them into five aspects [1,19,20]: geometrical aspects, including the elongation
and curvature of the roads, radiometric aspects, including the homogeneity of the road surface and the
consistency of the gray color contrast, topological aspects, including the characteristics of creating a
network due to the roads intersecting with each other and not ending without a topological reason,
functional aspects, including connecting different areas such as residential, commercial and so on in
one city and then connecting that city with other cities, and contextual aspects, including the occlusion
from high buildings and trees and the shadows that are created from bridges and flyovers. All these
aspects create the general definition of the road, but the occlusions and the illumination will affect
some aspects of their appearance, which leads to increased difficulties in the road extraction task [1].
From this perspective, the earlier models for road extraction have different design characteristics,
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which consist of four steps [8]. The first one is road sharpening, which calculates the magnitude and
direction for each pixel and indicates the likelihood of that pixel on a road. The second step is road
finding, which estimates the sequence of possible road points based on the output of the first step.
The outputs of this step are called road seeds. The third step is road tracking, which extends the road
seeds to form a road segment. Line-tracking algorithms are employed in this step. The last step is
road linking, which connects the road segments and fills in the gaps between them. An optimization
procedure or knowledge-based rules are used to complete the roads. In the early 2000s, the artificial
neural network (ANN) was used in road extraction models [17]. The ANN consists of neurodes that
are arranged in layers, including the input layer, hidden layers and output layer. The backpropagation
algorithm is employed in the training process. In the study, the authors used Ikonos images, and 10
neurodes were assigned to the hidden layer in their proposed model. However, the calculation of this
model is slow. It requires more samples for training, and it easily falls into the local minima. If the
number of classes increases, the model provides inadequate accuracy because of overfitting [1].

To overcome the aforementioned problems, Krizhevsky et al [21] provided a breakthrough: his
representation of convolutional neural networks (AlexNet) included five convolutional layers and three
fully connected layers and has been generally used to advance many topics in deep learning. One of
these topics is the use of remote sensing to extract objects including buildings, roads, etc. AlexNet was
trained for the classification task by using high resolution images for the ImageNet LSVRC-2010 contest.
They used data augmentation to avoid overfitting, and their work confirmed that more convolution
layers increased the performance. After that, many studies have been conducted using CNNs to extract
roads from aerial images. One of the first and most well-known works using the basic architecture
of convolutional neural networks (CNNs) to detect roads from aerial images is the study by Mnih
et al. [22]. These authors used a patch-based approach that uses smaller patches of images, and they
confirm that they need a large dataset to achieve better performance. They applied preprocessing to
reduce the dimensionality of the input data, and these authors also show the importance of adding
postprocessing to the CNN architecture to obtain better performance. Delio Vicini et al [23] follow
Mnih’s patch-based approach with larger patch sizes and postprocessing by using a support vector
machine classifier. Their CNN consists of four convolutional layers and two fully connected layers, but
their network has worse performance for the images that contain diagonal roads.

Wang et al. [24] created a segmentation model by stacking 11 layers in a convolutional neural
network. They used polarimetric SAR images that included L-band data from over San Francisco bay
area and C-band data for Flevoland. They found that the average and max pooling procedures provide
similar performance. The basic design of the CNN also has been used in classification problems [25],
and their classification model consists of seven convolutional layers and global average pooling. Their
model succeeded in classifying the images into four teeth categories.

Neural networks have undergone great enhancements and improvements to their design
architecture to address different problems. One of these problems is training a deep convolutional
neural network, which includes more stacked layers than the previous traditional CNN. When training
these deep neural networks, the convergence will be inhibited due to the exploding or vanishing
gradients [26,27]. Two such improvements are deep residual blocks and identity mapping [26,27].
These improvements ease the training of deep neural networks by preventing the gradients from
vanishing or exploding, which inhibit the convergence of the networks. Long et al. [28] present a new
evolution architecture for the CNN that replaces the fully connected layers with convolution layers
(Conv. layer). This special CNN is referred to as a fully convolutional network (FCN). The goal of
their network is to produce an output image size similar to the input ones with adequate learning and
inference. They use the architectures of AlexNet [21], VGG Net [29] and GoogleNet [30] and convert
the method into an FCN. Many improvements and new designs for neural networks based on the FCN
design concept have appeared. U-Net [31] is considered to be a revolutionary design for dealing with
semantic segmentation tasks, particularly in medical imagery. U-Net uses a relatively small number
of datasets that are preprocessed by using an intensive data augmentation procedure; it is known
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as a symmetric architecture with a contracting or encoding part that can deal with the context and
an expanding or decoding part to deal with object localization. SegNet [32] represents a deep fully
convolutional neural network with a basic auto-encoder design that followed the VGGNet design [29]
and has 13 convolutional layers. The decoder part is responsible for enhancing the resolution of the
low feature map to prepare it for the semantic segmentation task. SegNet also provides good results
for semantic segmentation problems. Zhang et al. [33] present a semantic segmentation model for road
extraction from aerial images. This model combined U-net with three ResBlocks for both contracting
and expanding paths. They use only a cropping technique on the dataset to get smaller image sizes
without using any further data augmentation, and their network provides good segmentation results
for road extraction problems. Buslaev et al. [34] also focus on road extraction from aerial images using
a segmentation model combining U-net with a Residual neural network (ResNet-34 pretrained on
ImageNet) on the contracting path with a vanilla U-net on the expanding path. They applied data
augmentation on their dataset, and they emphasized the importance of preparing high quality labeled
masks in order to achieve good predictions. Xu et al. [35] extracted roads from high-resolution aerial
imagery with global and local information using DenseNet. Based on the symmetric design of U-Net,
their architecture consists of two parts: one is the encoding part based on a pretrained DenseNet model,
and the other is the decoding part that creates the classification map. They also design the local and
global attention units in the decoding part to enhance the predictions.

As mentioned above, the design of CNNs went through many phases. In the first phase, the ANN
faced overfitting problems and produced less accurate results if three or more classes were considered.
In the design of the first architecture of the CNN with convolution layers, the disadvantage was that it
required using many preprocessing and postprocessing techniques in order to improve the predictions.
In the current phase, the DCNN overcomes many obstacles that the traditional CNN faced, such as the
training problems for deep layers. The DCNN produces better predictions with less preprocessing and
it requires almost no postprocessing.

As a part of the DCNN family, the U-net architecture has been well researched in combination with
different types of convolutional neural networks. U-net provides good results, especially in semantic
segmentation problems and especially in comparison with other architectures. Therefore, a DCNN will
be used in this study to automatically and efficiently extract the road networks. Our model combines
U-net as a basic architecture with ResBlocks in the encoding part and simple Conv. layers in the
decoding part. The aim of this architecture is to design an efficient neural network that can simply and
efficiently deal with semantic segmentation problems using small amounts of data.

Currently, many DCNN architectures have achieved outstanding results, especially in semantic
segmentation tasks, compared with the state-of-the-art models, but they also have very expensive
computational costs because of their complicated designs. our proposed model is lighter, less
complicated to implement in any machine, and generates good predictions.

2. Methodology

The aim of this paper is to design a road segmentation model that can be used later for real
time road extraction from aerial images. The first challenge was determining the design elements
that can empower our model in the segmentation task: we got our inspiration from U-Net [31] and
ResBlocks [26,27], and after testing a number of models, we established our current model. The second
step is to preprocess the dataset by dividing it into two sets: a training and a test set. The images were
cropped to generate consistent sized images in the dataset. The output of this model was a binary
mask for road and background segmentation, which had the same size as the input images. All these
steps will be explained in detail in the next sections.

2.1. The Proposed Model

Since the aim of this work is to extract road networks from aerial images, the model must
successfully handle semantic segmentation problems. One of the best architectures for such tasks is
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the U-Net model [31]. The two symmetric parts of the U-net help to extract the road pixels in the
encoding part and generate the segmentation map for these pixels in the decoding part. In addition,
ResBlocks [26,27] help to ease the training process while being deeper due to all the stacked layers.
U-Net also produced better results than regular CNNs in classification and segmentation problems.
The proposed model consists of a U-net for the encoding and decoding parts, ResBlocks in the encoding
part to enhance the feature extraction process, and Conv. layers in the decoding part to create the
segmentation map. The architecture of the proposed model is shown in Figure 1.
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Because the input image size of ResNet is 224 × 224 pixels, the ResBlocks in the encoding part
of the proposed model will preferably use the same input image size. In the encoding part, three
ResBlocks with a filter size of 3 × 3 pixels are implemented, and these three ResBlocks have 64, 128, and
256 filters, respectively. An additional ResBlock with 512 filters connects the encoding and decoding
parts. The ResBlocks in the encoding part consist of an activation function (ReLU) after the batch
normalization layer (BN), and before the convolution layer (weight) with a shortcut or the identity
map (Addition), as described in [26,27]. Each ResBlock in the encoding part is connected with a
Conv. layer in the decoding part by a concatenation layer that represents the skip connection for the
U-Net [31], and these Conv. layers have 256, 128, and 64 filters, respectively. The proposed model is in
auto–encoder pattern, which means that the encoding part is similar to a regular CNN but without the
fully connected layers. The output image of the encoding part will be smaller and low resolution than
the input image. In the auto-encoder pattern, the decoding part will be implemented instead of the
fully connected layers. To increase the size of the image from the encoding part, we need to use an
upsampling layer to double the size of the output image in the decoding part, which corresponds to
the output of the neural network. Before each concatenation layer in the decoding part, an upsampling
layer is implemented to double the size and increase the resolution of the feature map, which had
already been downsized in the encoding part. This change will allow the feature map to be used as an
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input for the segmentation part. The size of the output image will be equal to the input image size (see
Figure 1).

It should be noted that the Conv. layers in the decoding part consist of two layers. These layers
use the same filter size of 3 × 3 pixels and have 256, 128, and 64 filters, respectively. The second Conv.
layer has been added to increase the number of layers and to facilitate the process of upsampling the
feature maps. After connecting the encoding and decoding parts together, the process continues in two
64-filter Conv. layers with a filter size of 3 × 3 pixels. The final layer is a 1 × 1 convolutional layer
using a sigmoid activation function to produce a binary mask with a size of 224 × 224 pixels as an
output. The process is shown in Figure 1.

2.2. Dataset

The dataset used in this work is the high-resolution images set from Cheng et al. [36], who
collected the data from Google Earth [37]. Cheng et al. manually labeled the ground truth for each
image. The images have a resolution of 1.2 m per pixel, and the dataset consists of 224 differently
sized images. The smallest image size is 600 × 600 pixels, and the road width is approximately 12–15
pixels. The images have substantial occlusion from buildings, trees, and cars, which makes the task of
extracting road networks from these images difficult.

Before feeding this dataset to the proposed model, it is randomly divided into two sets with 80%
of the images assigned to the training set and 20% to the test set.

Since the dataset consists of different image sizes and since 224 images are not enough to train a
deep neural network, the images and ground truths that are used in the training and test sets were
cropped to 224 × 224 pixels to correspond to the input images’ size; this cropping was done by using a
sliding window with a stride of 64 pixels [35,38]. The cropping technique alone increases the number
of images in the dataset to 8064 images, where 6480 images are used for the training set and 1584
images were used for the test set. All the cropped images were preprocessed using the on-the-fly
data augmentation technique in the Keras framework [39], which helps to increase the number of
images within each epoch in the training process. The number of images reached 1,146,938 for the 88th
epoch. The standard Keras data augmentations include random rotations, random width and height
shifts, shearing, zooming, and horizontal and vertical flips. Data augmentation is the most powerful
technique to prevent the overfitting problem.

3. Results

3.1. Training and Implementation Details

The model is implemented using the Keras framework [39] operating on a Microsoft Windows 10
computer with one NVIDIA GeForce GTX 1070 GPU. The optimizer that was used during training is
Adam [40], and the learning rate is set at 0.0001. To maximize the model’s efficiency, the loss or error
should be minimized. Because the task is binary segmentation, the binary cross-entropy is used as a
loss function (Equation(1)): [41,42]

L(y, p(y)) = −
1
N

n∑
i=0

(y ∗ logp(y)) + (1− y ) ∗ log(1− p(y)) (1)

where p(y) is the predicted value, y is the true label, and N is the number of samples.
To assess the performance efficiency of the proposed model, two evaluation metrics were used.

The first metric is the overall accuracy (OAA), which is defined in Equation (2) [43,44]. The definitions
of TP, TN, FP, and FN are shown in Table 1.

OAA =
TP + TN

TP + TN + FP + FN
(2)
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Table 1. Definitions of TP, TN, FP, and FN

Predicted

Road
(1)

Background
(0)

Actual
Road

(1) True positive (TP) False positive (FP)

Background
(0) False negative (FN) True negative (TN)

The other metric is the Dice similarity coefficient (DSC) [45–48], which is also known as
Czekanowski’s binary index, Zijdenbos’ similarity index, or the F1 score [46]. The DSC is a metric to
measure the segmentation performance, and it is shown in Equation (3). If the DSC is equal to 1, the road
is perfectly segmented. Conversely, if the DSC is equal to 0, the roads are completely missegmented.

DSC =
2TP

2TP + FP + FN
(3)

It is preferable to use more than one metric in the evaluation process. The OAA uses the TN,
while the DSC does not. The DSC counts the true positives (TPs) twice, and it is more suitable for
evaluating the results for imbalanced datasets. It should be mentioned that the authors do not use a
pretrained model in the training process, and our model is trained from scratch. The results of the
evaluation metrics in Equations (2) and (3) are shown in Table 2 and Figure 2.

Table 2. The results of the evaluation metrics

OAA DSC

Proposed Model 98.35% 90.97%
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Figure 2. Evaluation of the proposed model in terms of (a) the overall accuracy, (b) the DSC, and (c)
the loss.

The proposed model provides good results according to the evaluation metrics with a 98.35%
overall accuracy and a 90.97% DSC.

According to Figure 3(1), the proposed model produces a reasonable prediction that is comparable
to the ground truth image. It should be mentioned that the labeling of the ground truth images
includes two problems: the shoulders of the roads in the true labels are sometimes marked as part
of the road and sometimes they are not (Figure 3(2)–(4)), and some side roads or local roads are
incorrectly labeled in the ground truth image (Figure 3(5)). The first problem increases the difficulties
of extracting clear edges for the road networks, but our model produced correct predictions in most of
the images, as shown in Figure 3(2)–(4). The proposed model overcame the second problem, as shown
in Figure 3(5).

With respect to the problems of the labels that were mentioned above, it is very difficult to observe
these problems, even after cropping the images into small sizes, and subsequently, it is very difficult
to correct them. These problems are very common when labeling datasets because these labels are
manually set, and they are prone to human errors.
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3.2. Comparisons with Other models

To evaluate the validity of our model, these results were compared with those of other
state-of-the-art models. For the sake of clarity, it should be mentioned that the authors trained
these models in the same manner as described in Section 3.1.

To make a meaningful comparison, the models that were considered were models that generally
produced good results in semantic segmentation tasks. Because the proposed model is a combination
of U-Net [31] and ResBlocks [26,27], it was most suitable to compare the proposed model with
Res-Unet [33] and U-net [31]. Table 3 and Figure 4 show the evaluation metrics (OAA and DSC) for the
U-Net and Res-Unet models and for the proposed model.



Appl. Sci. 2019, 9, 4825 9 of 16

Table 3. The comparison results.

Model OAA DSC

Res-Unet 96.96% 81.73%
U-Net 97.52% 84.84%

Our Model 98.35% 90.97%
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The proposed model achieved a better OAA and DSC than the Res-Unet and U-net models.
Figure 5 presents a more detailed explanation and analyses. It shows the differences among the
predictions that were made by Res-Unet, U-Net, and the proposed models. Figure 5(1) shows good
predictions for the intersecting roads for U-Net and the proposed model, while the Res-Unet model was
less successful in this task. Figure 5(2) shows that the proposed model performed significantly better
than both the U-Net and Res-Unet models in predicting different types of roads, which had different
pavement colors in the original image. In Figure 5(3), Res-Unet mistakenly recognized background
pixels as the road class, while U-Net and the proposed model predicted them correctly. For intersecting
roads, the three models performed similarly in making predictions.
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Figure 5(4), which captured local roads, shows the predictions of different types of roads that had
different pavement colors in the original image. The U-net model provides better results than the
proposed model, and the Res-Unet model failed to make a correct prediction.

Figure 5(5) shows a case in which our model clearly outperformed both Res-Unet and Unet. While
these two models predicted different parts of parking lot pixels as road pixels, our model predicted
almost all these pixels as the background class.

The evaluation metrics that are shown in Table 3 and Figure 4 combined with The results that
are shown in Figure 5, suggest that the proposed model produces generally better results over both
Res-Unet and U-Net for extracting road networks.



Appl. Sci. 2019, 9, 4825 11 of 16

4. Discussion

U-Net has provided remarkable results in semantic segmentation tasks, and it has been combined
with other architectures in many studies [33–38]. ResNet and ResBlocks [26,27] have also been shown
to well enhance the design of deep neural networks in general, to ease training while stacking more
layers in the network and to overcome the vanishing gradient problem. Numerous designs had been
tested to choose the optimal design that provides the most accurate segmentation results compared to
our model.

Our first trial method was an auto-encoder design with ResBlocks [26,27] in both the encoding
and decoding parts. The ResBlocks [26,27] have a similar architecture to the ResNet-18 layers in an
auto-encoder structure. We trained and evaluated the model, The evaluation metrics show an OAA of
97.51% and a DSC of 85.84% (Table 4 and Figure 6), and the predictions that are shown in Figure 7c,j,p
have several issues: unclear edges for the extracted roads, prediction problems in some intersecting
roads, and background pixels mistakenly predicted as the road class.
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Table 4. Comparison of the results.

Model Overall Accuracy DSC

Auto-encoder.ResNet (first trial) 97.51% 85.84%
1Full Res-Unet
(second model)

98.30% 89.02%

Res-Unet (2Orig. Rse.)
(third model)

98.33% 89.23%

Our Model 98.35% 90.97%
1 Full Res-Unet where ResBlocks are used in both the encoding and decoding parts, 2 Orig. Rse. is the
Original ResBlock.

Based on the analysis mentioned above that was related to the first model, when designing
our second model, we enhanced it by adding a long skip connection for U-net [31] to avoid the
unsatisfactory results of the first model. In addition, an extra ResBlock with 1024 filters was included
as a bridge or connection between the encoding and decoding parts. Figure 7d,k,q show that better
predictions were achieved in the second trial compared with the first. The edges that were extracted
for the roads have been enhanced, and the two issues related to mistakenly predicted pixels and the
detection of intersecting roads were somewhat improved. The second model has an OAA of 98.30%
and a DSC of 89.02% (Table 4 and Figure 6).

The third model was similar to the proposed model, but the ResBlocks were designed following
the original model that was described by He et al. [24]. In Figure 7e,l,r, we can see that the predictions
that it produced were similar to (e,l) or slightly improved upon (r) the second model. The results show
an OAA of 98.33% and DSC of 89.23% (Table 4 and Figure 6).

After analyzing all the predictions from the three models that were mentioned above, the final
model that was used was the proposed one, as shown in Figure 1. Figure 7 compares the predictions of
the proposed model with those of the previous models. The OAA and DSC of the proposed model
were 98.35% and 90.79%, respectively (Table 4 and Figure 6). The proposed model achieved the best
prediction and results for the road extraction task in comparison with earlier models. The evolution
of these models clarifies the importance of the combination of the skip connection for U-Net [29],
the ResBlocks [24,25], and the plain convolutional layers. The combination provides a simple shape yet
an effective architecture. Although the proposed model is simple, it helps to efficiently and accurately
extract the road networks, and it achieved the goal of this paper.

The current results of our study are the first step to continuing our work to develop a real-time
road extraction algorithm that can be embedded in any machine. The second step will be extracting
the centerline of the road. In combination with the result of the first step for the road extraction,
this algorithm will help to estimate the approximate width of the road and the type of the road. This step
has huge importance in city planning, the geometric design of highways, transportation engineering,
traffic engineering, and disaster mitigation. To achieve that goal, several steps will be included in the
future work, including creating our own dataset focused on road and centerline extraction, using the
weight of the proposed model to train the new data to improve the prediction performance when
utilizing the transfer learning technique, and working to achieve the goal of obtaining a real-time road
extraction model that can be used as embedded software.

5. Conclusions

In this paper, a new Res-Unet has been presented. The proposed architecture is a simpler, lighter,
and simultaneously more efficient segmentation model. Many earlier experiments were conducted
using different algorithms, and these experiments showed that the combination of the U-net, ResBlocks,
and plain convolutional layers gave the best results in comparison with other state-of-the-art models.
This study represents our first step toward achieving our goal of creating a real time road extraction
model that can be used in any machine. The study also lists several steps that can be used in our future
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work. For example, the performed experiments and the comparison of predictions with the ground
truth images revealed the importance of the availability of good, correctly labeled ground truth images
and their impact on the predicted results. This finding should be considered when creating our two
datasets for road extraction and centerline extraction. It is expected that the proposed model will give
better results when using the pretrained model, and this hypothesis will be tested in future work.
In these future studies, we will use transfer learning to train the proposed model on our new dataset.
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