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and reasoning algorithms in industrial applications.

Abstract: Recent developments in the area of cyber-physical systems (CPSs) and Internet of Things
(IoT) are among the drivers for the emergence of the Industry 4.0 concept, setting new requirements
for the architecture, technology, and design approaches of modern industrial systems. Industry 4.0
assumes a higher level of intelligence, and thus autonomy of the systems and subsystems, and a larger
focus on the analysis of gathered data for further utilization. The Virtual Factory Open Operating
System (v{-OS) project is intended to respond to some of these key challenges, in particular for the
smart factory application domain. Complementarily, data and knowledge storage and processing are
also in the scope of vf-OS. This article introduces the semantic management component of v{-OS,
which aims to analyze the interrelations among stored entities, as well as to define the closeness
among them to generate meaningful suggestions, which can be later used by other subsystems
or operators in a user-friendly way. The semantic managing system makes use of non relational
approaches, namely a graph database, which enables data to be represented as graphs for further
semantic querying. The developed prototype and an illustrative application case are also presented.

Keywords: cyber-physical systems; Industry 4.0; semantic management; v{-OS; collaborative
environment

1. Introduction

Cyber-physical systems (CPSs) have found their application in many areas of human activity, from
home automation to large industrial complexes containing hundreds of systems and subsystems. The
growing complexity of the modern CPS forces to cope with challenges such as interoperability, scalability,
and increasing volumes of generated data, which leads to the need of new system architectures and
frameworks. CPSs [1] have become one of the key elements of the Industry 4.0 concept, which is
gaining more and more attention from both academia and industry. For instance, in [2] the authors offer
insight on how the concept of Industry 4.0 influences the overall state of manufacturing in Europe, with
respect to socio-economical aspects such as improved product manufacturability, reduced production
time, and reduced negative impact on the environment. In line with this trend, several key projects
have been launched in the framework of the European Horizon 2020 program (e.g., Virtual Factory
Open Operating System (vf-OS), DISRUPT, SAFIRE, ENACT, Boost 4.0, and many others) to support
the implementation of ideas brought up in Industry 4.0. Smart manufacturing is one of the topics of
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focus for some of these projects, contributing to a convergence of the digital and physical worlds in the
manufacturing domain [3]. The vf-OS project precisely targets issues related to these technologies,
enabling the fulfilment of some key requirements and needs of Industry 4.0 by developing a set of
modular services for better integration of manufacturing and logistics processes [4].

According to [5], smart manufacturing is moving from knowledge-based manufacturing towards
data-driven or knowledge-enabled manufacturing. Thus, the data generated over the entire complex
and distributed manufacturing units become a resource that can be utilized to improve the system’s
efficiency, as well as to find the system’s weak and strong points. This makes data processing
and analysis a critically important challenge for advanced CPSs, requiring novel Information and
communications technology (ICT) support platforms.

An important requirement for platform development that supports the ongoing digital
transformation in different application domains is modularity, both in terms of the involved
technological process and autonomy. Moreover, for platforms developed for Industry 4.0, a hybrid
approach can be implemented [6]. This approach assumes that every subsystem or system entity
deployed in a certain location performs actions independently, while some form of centralized data
assembly is performed. However, the modularity requirement sets several challenges in terms of
orchestration and interoperability. For instance, some of the facilities might be dependent on the output
from another facility, and data should be “understandable” to all parties.

Furthermore, with the increasing autonomy and embedded intelligence of components, CPSs
are becoming complex networks of collaborative units, leading to the notion of collaborative CPSs [7].
In fact, collaboration issues are at the heart of most challenges in modern industrial systems. The
effective materialization of the fourth industrial revolution strongly depends on properly addressing
collaborative organizational structures, processes, and mechanisms along the six dimensions of Industry
4.0: vertical integration, horizontal integration, through-engineering across value chain, acceleration of
manufacturing, digitalization, and new business models [8].

To better explore the data generated by complex systems, methods and techniques coming from
semantic theory are used. Semantic theory assumes that words often appear in text with other related
words. This principle can be applied not only in studying text structures but also complex systems such
as CPSs, as the language is just “the reflection of objective reality” [9]. CPS systems typically contain a
lot of heterogeneous components that communicate with each other and generate data. In order to
perform reasoning actions over the collected data, there is a need to understand the interdependencies
among different objects and concepts, which can be supported by a knowledge base. An example can
be found in [10], where authors established a knowledge base that allowed mapping of functional
blocks of different standards in the automation domain. Structured data can be efficiently represented
through ontologies; in turn, these structures can be represented as a graph [11]. The importance of
ontologies for automated web service composition and provision is underlined in [12]. The main
goal of an ontology is to provide structural representations of concepts, properties, and the relations
among them. However, this representation is largely dependent on the purpose of the ontology. For
instance, the “chair” and “lemon” concepts could be interrelated if they are sold in the same shopping
mall. Thus, for text analysis alone, it might be not enough to rely on the co-occurrence of words [9].
However, in this work, we mostly focus on semantic knowledge graphs, which are, according to [13],
“extensive networks of objects or concepts with properties and semantic types, and relationships
between objects/concepts providing information about a specific domain”. However, the proposed
approach is not limited to a specific domain; rather, it allows integration of various ontologies from
various application areas.

The issue of data interoperability, and more specifically semantic interoperability, is also in the
scope of this work. Key research challenges in the area of semantic interoperability have been pointed
out in [14] such as: (i) data modeling and exchange, (ii) ontology matching and merging, (iii) data/event
semantic annotation, (iv) knowledge representation, (v) knowledge sharing, (vi) knowledge revision,
(vii) semantic discovery of data and services, (viii) semantic routing and publishing/subscribing, (ix)
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reasoning, and so on. Furthermore, the issue of storage can be added to this list of challenges [15],
especially in the context of data-rich environments. Most of the efforts presented in this article focus
on semantic discovery, storage, and ontology matching and merging. In the context of this research,
semantic discovery is performed through linking the concepts from different ontological models, which,
by analogy with semantic routing, have higher preferences or reputation indexes [16].

As such, the main research questions addressed in this work are:

e  Which tools and approaches can contribute to the improvement of semantic interoperability of
heterogeneous data?

e How can the import and combination of various data models and ontologies help to enrich the
mapping process?

e  How does a collaborative approach contribute to forming the knowledge base and improving the
mapping process?

To underline the core ideas highlighted in this work, the following topics are addressed: limitations
of current semantic discovery architectures, definitions clarifying the difference between semantic
similarity and contextual representation, description of the graph-based approach and its advantages
over the vector-based approach, semantic distance as an identifier of concept closeness, application of
pathfinding algorithms to map data models of concepts, utilization of a weighted approach allowing
tracking of evolving semantic relations, and identification of the need to import and integrate ontologies
from different sources in order to enrich the knowledge base.

The remainder of this article is organized as follows. Section 2 is devoted to a brief discussion of
relevant literature, and then the connection of this work to vf-OS is drawn in Section 3. Section 4 is
devoted to the semantic management component of v{-OS and some relevant services that are delivered
by this component. The next section covers a test-case scenario of how the semantic management
component can be used, and related details are discussed. At the end of the article conclusions
are made.

2. Related Literature

Complex systems require support environments that can provide assistance in various aspects,
such as data and knowledge storage, process modeling and simulation, and so on. For instance, three
main support environments are identified in [17]: (i) e-infrastructure, covering computing, storage, and
network capabilities; (ii) research infrastructure, allowing handling of assets from various domains;
and (iii) virtual research environments, enabling user-centric support for data selection and discovery.
In this work we target some functional aspects from all three categories, namely storage, export of
ontologies from different areas, and data selection and discovery mechanisms.

Several limitations have been identified in current semantic discovery systems [18]. The involved
architectures are limited or weighted ontologies are not considered, and there is poor performance
with aggregated data from various knowledge bases. Adaptive techniques or collaborative knowledge
base formation could be key in overcoming the difficulty of possible lack of knowledge about a
specific concept. For instance, in one ontology concept, “BMW” is a “car”, whereas in another it is a
“vehicle”. If we aggregate these ontologies, the concept “vehicle” can be associated with the concept
“car” through the concept “BMW”. This might significantly affect the search results, depending on
the types of routing algorithms. Two main routing algorithms are identified: single-keyword and
multi-keyword [19]. The same authors proposed an approach for the IoT domain, where each IoT
device has its core functionality described using one keyword, while other related aspects are described
as “attributes”. Single-keyword algorithms might not be enough for some applications, not only in
terms of expressing the functionality, but also attributes of the object or concept. Sometimes, instead of
a requested concept, object, or service, another one, which is close enough, can be suggested. In order
to define “relatedness” between two concepts, the semantic in-between distance needs to be calculated.
According to [20], the semantic distance is used to capture the closeness between two pieces of text
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for the case of “concepts”. There are two main types of semantic distance: lexical-based measures
and distributional measures of word distance. The first one relies on the structure of the knowledge
source, whereas the second is based on the word occurrence rate. The distributional measure of the
word-distance approach does not require a lexical database, which makes it more flexible in the case of
higher data heterogeneity [21].

The problem acquiring semantic information to find interdependencies among sensors and
actuators is raised in [22], where the approach to detect sources of errors through path tracking is
proposed. However, these authors mostly focused on the narrow area of physical object dependencies
without considering interdependencies among concepts and virtual entities.

Another aspect is that, because of the increasing autonomy and intelligence of CPS components,
the need for supporting tools to facilitate the establishment of a collaborative environment has emerged,
where the entities need additional semantic information to choose the “best” options based on factors
such as, for instance, closest position, similar functionality, previous history, and so on. The issues of
self-organization for CPS components are raised in [23], where the authors also present an approach
for interoperability provision among resources and services in smart spaces. The basic idea is that each
resource contributes to semantic interoperability when it connects to the smart space by uploading
its ontology. Semantic interoperability is a key requirement for the development of agile design
methodologies for collaborative CPSs, such as the one proposed in [7] based on the design science
method. Another work [24] presents a study of the semantic enrichment of manufactured products,
with the main objective to enhance the generation and circulation of product-related knowledge
among all involved parties. This work departs from these ideas and goes deeper into the subject of
data harmonization, including clustering, when basic terms and concepts are combined based on the
similarities they possess and are organised based on their semantic and contextual relationships. The
use of ontologies to represent machine behavior through the interrelation of input signals and output
controls is also discussed in [25].

Itis important to distinguish between semantic similarity and contextual representation. According
to [26], semantic similarity is a broad term, which considers not only synonyms, but also meronymy
(PC and keyboard, keyboard is a part of the PC) and hyponyms (animal and dog, dog is a part of the
animal class). Whereas, contextual representation is described [27] as knowledge about how the word
is used (i.e., an association between concepts and some attributes common for a specific context). The
solution proposed in this work is intended to provide a broader basis for further reasoning, when two
concepts might be interrelated or associated not only based on belonging to the same class or one
concept being part of another, but also how these two concepts are used together. As an example, we
can consider a smart home, where a smart fridge is located in the “kitchen”, and a mobile vacuum
cleaner can move among different rooms, including the “kitchen”; thus, the smart fridge might be
associated with the vacuum cleaner based on a common location, even if temporarily. This aspect
raises another modeling challenge, as some of the concepts or entities might have strong or weak
associations indicating how close they are related to each other.

Regarding the issue of data representation, two main approaches are discussed in the literature [28]:
vector-based and graph-based approaches. The graph-based approach has been chosen for this work
based on the following reasons:

e it can be used to represent order and structural features of the considered topic;

e it allows decomposition of complex topics and representation of interdependencies
among subtopics;

e it allows hierarchical representation of topics, features, and so on; and

e it offers pattern detection capabilities.

Additionally, in Table 1 we include other literature sources devoted to other aspects that are covered
in this work, namely (i) ontology or data model integration, (ii) delivering concept “relatedness”,
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(iii) generation of queries for further discovery and visualization, (iv) collaborative knowledge base
formation, (v) mapping of data models and ontologies, and (vi) consideration of weighted edges.

Table 1. Topics covered in this work and related research works.
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Most of the works mentioned in Table 1 [29,30] are focused on mapping different data structures,
models, and ontologies in order to represent them as graphs in a graph database, but the core logic
is maintained [31]. The often-used format for ontology representation is the resource description
framework [32,33], sometimes extended by the web ontology language [27,29]. Articles devoted
to identifying “relatedness” of concepts to each other using the path between them do not cover
the weighted approach [29,30,34,35]. However, in [36] the authors raise the issue of using the
weighted approach for text categorization, whereas each document is considered as a graph to apply a
categorization algorithm. This allows identifying the importance of the term based on co-occurrence. In
our work, the weighted approach is used to provide a basis for reasoning systems by enabling detection
of the importance of the concepts inside the data models to each other. Most current work in the
literature is rather focused on contextual representation, considering “relatedness” identification rather
than semantic similarity [33], which allows interrelating the concepts without a need for predefined
knowledge about synonyms, hyponyms, or meronymy. For instance, in [35] the authors solely target
the issue of finding the hyponyms in a specific ontology, which limits the approach to a specific
ontology containing specific relation types. The issue of importing ontologies is raised in several works
(e.g., [29,31,37]), whereas in [38], the authors propose to use a graph database as a “hub” to aggregate
the data for further analysis.

Some specific application areas (e.g., utilization of graph database as advisor for academic
collaboration [34], mapping documents containing the smart city information into the graph nodes [37],
or how ontologies mapping can contribute to the cross standard interoperability in automation [39])
are further considered in the literature. Though, our aim is to utilize the framework presented in this
work for multiple domains. Furthermore, the aim is also to provide different functionalities, offer
a good level of modularity, and allow new features to be added or existing ones to be extended on
demand. Finally, the establishment of mechanisms for collaborative knowledge base formation is also
in the scope of this work.

Moreover, a challenging issue itself is the conversion of the so called nonsemantic data. For
instance, in [40] the authors propose a platform that can transform the data from a relational database
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(DB) into a semantic resource description framework (RDF) format. The usage of a graph DB can
help to avoid additional difficulties in the way of conversion, allowing data to be stored in an RDF
compatible way.

3. Relation to vf-OS

The component presented in this article is part of the v{-OS project [41], which aims to provide an
open platform for virtual factories (VFs) and a collaborative environment to support the manufacturing
processes at various stages. The project is closely related to the concepts of Industry 4.0, including CPS
and Internet of Things (IoT), whereas other relevant subjects are covered such as data processing, data
visualization, and cloud computing. The key v{-OS components are: system kernel, virtual factory
i/o, data and connect, open applications development kit, service provision framework, and platform
environment. The solution proposed in this work belongs to the data management component (DMC)
(Figure 1), which aims to manage data flows on a large scale. Another goal is to provide analytical
operators for data analysis. DMC is composed of four modules: data infrastructure middleware, data
harmonization, data storage, and data analytics [42].
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Figure 1. Data management component (DMC) overview.

More specifically, this work is focused on data harmonization and partially on the data storage
modules. The data harmonization module is responsible for implementing data mapping mechanisms
extended with ontology import interfaces and data visualization capabilities. It is divided into design
time and run time submodules. The design time submodule maps the data models, whereas run time
is responsible for data transformation. The data storage issue is addressed only partially, as v{-OS
requires different types of storage for different types of data, thus using the advantages of various
storage approaches in the best way [42]. For the storage part of this component, a Not only SQL
(NoSQL) type of database, namely a graph DB, has been chosen. The chosen NoSQL DB, which is
Neo4j, is able to cope with large amounts of data and provides agile querying mechanisms, allowing
its use in smart storage, which not only “keeps” or stores data but also provides tools to perform
reasoning operations on the stored data.

4. Semantic Management Component

The semantic management component contributes mainly to the design time part of the
harmonization module, and it consists of two main parts (Figure 2): (1) storage and (2) harmonization
components. It enables two-way communication processes, output formatting, and a set of services
related to the graph DB. It also transforms the data into a format that can be consumed by other
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components of the vf-OS, resorting to the mechanisms of the graph DB to perform reasoning actions right
after the data are inserted. Furthermore, semantic management supports ontologies and data model
import and integration. Some formats that are supported for import are RDF/XML (Extensible Markup
Language), web ontology language (OWL) syntax extension for RDF, Turtle, and comma-separated
value (CSV) data models.
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Figure 2. General view of the semantic management component.

The core of the storage component is a Neo4j graph DB. Neo4;j provides a number of tools not only
for storing the data in a graph format, but also for applying a wide variety of algorithms such as path
finding, similarity, link prediction, and so on. Neo4j uses the Cypher querying language, which enables
core operations of processing, reasoning, and retrieving the data. To be able to use these algorithms,
the APOC plugin is used, and for importing RDF ontologies, a semantics plugin is adopted. The
system also accepts data to be inserted in various formats such as JavaScript Object Notation (JSON) or
Comma-separated Values (CSV), which contributes to overall interoperability without much effort to
transform the data.

The harmonization module of the semantic management component includes messaging, data
cleaning, and composition modules.

e The messaging module is responsible for maintaining communication between the storage
and harmonization components. Moreover, it provides a Representational State Transfer
(REST)-based interface for outer applications. Between the harmonization and storage components,
communication is accomplished through bolt connectivity, which is the network protocol running
over a Transmission Control Protocol (TCP) connection. In other words, the messaging module
allows requests to be received from outer applications, following the REST architectural approach,
and retranslates them to storage in a bolt-compatible format.

e The data cleaning module is needed to cope with complex output objects returned after the
storage component processes a request. Neo4j-returned objects are parsed, and the required data
are extracted.

e  The composition module is used to align the data that was prepared by the data cleaning module
with the output format and to generate a Cypher query which can be visualized in the Neo4j
viewer environment to represent the output in a human-friendly format. However, this module,
as well as the data cleaning one, is only needed for some of the services, as not all of them are
assumed to return a JSON output.
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The semantic management component provides a set of services that are used by the data analyzer
responsible for further data mapping and visualization. Some of the services, such as importOntology
or importDataModel, are intended to provide an interface for uploading and integration of RDF/ XML
and Turtle ontologies and data models in CSV format.

In the following sections these modules are described in more detail, and a test case is used with
some chosen services (e.g., importOntology, importDataModel, and getMappingSuggestion). Detailed
descriptions of these services are given below.

4.1. Get MappingSuggestion Service

The “getMappingSuggestion” provides mechanisms to map two data models. The goal of the
service is to identify how close the concepts in one model are interrelated to concepts in another model.
The result of mapping, as mentioned above, can be reused for further reasoning or discovery. In Figure 3,
the models submitted for mapping are identified as input, which is a JSON document containing both
models. From now on, we use the terms “origin” and “target” to identify the two parts of the input
data model, as also shown in Figure 3. It is important to mention that the “getMappingSuggestion”
service is developed for use within the v{-OS framework; thus, it has a structure based on JSON
format. This is necessary to represent, if needed, the data models as a complex, structured tree of
concepts with appropriate relations. In order to better understand the involved models, we introduce
the metastructure of the input models (Figure 3). These models comprise several fields as follows:

e  “label”—which introduces the name of the capillary/single concept;

e “tag”’—thisfield canbe used to identify the attributes of the concept. The inspiration for introducing
the “tag” field came from the topic of folksonomy, described in [43], where a collaborative tagging
system is presented that is composed of three core entities: users, resources, and tags. Tags,
compared to, for instance, resources, are in no way limited by predefined vocabulary [44]. In this
work, tags are used to describe the concepts that, to some extent, can be compared with resources
in folksonomy;

e  “xpath”—is used to show the parent concepts of the capillary/single concept. This field allows
expressing the hierarchy of concepts from a specific concept to the root;

e “type”’—used to express the type of the concept, for instance: string.

"origin":[
{"label":"origin_Concept 1","tag":[*Property 17,
“Property_n”], "type": "type_of concept", "xpath":
[“Parent 17, “Parent n™]},

"o

{"label":"origin_Concept_m"."tag":[*Property 1,
“Property_n"], “type":"type_of concept",” xpath":
[“Parent_17,“Parent_n”]}

|

"target":[
{"label":"target Concept 1","tag":[*“Property_ 17,

“Property_n”], "type":"type_of concept","xpath":[]},

{"label":"target Concept _m","tag":[*Property 17,

“Property_n”], "type":"type_of concept","xpath":
[“Parent 17, “Parent n]}

!
s

Figure 3. General schema of the input data models for getMappingSuggestion.
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The input file containing the origin and target models is delivered to the harmonization component,
which is responsible for correct communication with the graph DB, proper parsing, and integration of
the input data model.

In order to clarify the process of delivering and mapping the data, we use definitions derived
from the set theory and graph theory. The payload, or, in other words, data within the origin and
target models, is represented as two sets:

Ms = (A, Ts, Xps, Type) and Mt = (B, Tt, Xpr, Type), )

where Mg stands for the origin or source data model, and Mt stands for the target. Subsets A and
B contain the capillary concepts derived from the “label” field. The related concepts from the “path”
and “tag” fields are expressed through the Ts and Tt terms and Xpg and Xpr subsets. And finally, the
“Type” subset represents the variety of types of concepts from A and B subsets.

As the graph DB deals with nodes and relationships, all data being part of the input are converted.
Thus, the concepts become nodes and relationships that are generated according to the data model
schema. The data model schema assumes that all concepts from the fields “tag” and “xpath” are directly
related to the concept presented in the “label” field (Figure 3). After the concepts provided in the origin
and target models are inserted and converted into nodes, and appropriate relationships are created,
the phase of data mapping starts. As mentioned in Section 2, the pathfinding approach for mapping
follows the Dijkstra algorithm implemented as the APOC.algo extension of Neo4j [45]. It supports
calculation of the “distance” considering the weights of the path segment. This is important in order to
cope with requirements for the weighted approach stated in Section 2. For the operations within the
mapping process, a graph theory apparatus is used, which allows handling nodes (called vertices)
and relationships (called edges). For further convenience, the term “concept” is used as equivalent to
“node” (a graph DB term) and “vertices” (a graph theory term), and “relationship” is used as equivalent
to “edges” (a graph theory term). Before applying Dijkstra’s algorithm, we need to formulate concept
pairs. In other words, ordered pairs of concepts are built from subsets A and B in order to set source
(subset A) and target (subset B) concepts for path finding. To perform mapping between the origin
data model and the target data model, a Cartesian product between the origin data model, defined as
set A containing elements {a1, ay, ..., am}, and the target data model, defined as set B with elements {b1,
by, ..., by}, is built. The Cartesian product for origin and target data models gives:

AxB={(a, b)lacA, beB}, @)

i.e., AXB= {(ﬂl, bl), (al,bz),...,(al,b”), (uz, bl), (az,bz),...,(az, bn),...,(um,bl), (ﬂm, bz), ...,(um,bn)}. (3)

However, because each element of the origin data model needs to be represented separately (in
order to provide the best output of Dijkstra’s algorithm for each concept in A) rather than for the
whole origin data model, the concepts from A are treated one by one. Thus, the goal is not to compare
the path from a; to b; with the path from a; to by, but rather a; to b; with a; to b, and a; to by,. This
also allows sparing the computational resources for excessive matching operations. This results in the
following:

a1 x B = {(a1,)|a1 € Aq,, b€ B}, where A, € 4, @)

ay X B = {(ay,b1), (a1,b2),..., (a1,bn)}. ®)
The origin model set is represented through a number of concepts:

A= (ay, az,...,am). (6)

Let the resulting nondirected weighted graph be G = (V, E, w), where V is a set of concepts and
E is a set of relationships with w: E — R as a weight assigned to edges. After applying Dijkstra’s
algorithm, we obtain a set of suggested paths P for each concept in the origin model. For instance,
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path p € P from a1 to by in G is a list of edges ((Vo, V1), (V1, V2),..., Vi1, Vi), where V = (a1) and Vi =
(b1), and k is the total number of concepts that are part of the path (see illustration in Figure 4).

w(Vo. V)

Figure 4. Example path with concepts, relationships, and weights.

The resulting weight of the path is the sum of the weights of all relationships and is calculated as
follows [46]:

-

-1
w(p) = ‘ w(vj, Viy1). 7)

Il
<}

The number of resulting paths can vary, but for the current implementation, we have chosen
four for each concept in the origin submodel. Each path built from origin to target concept is called
a suggestion. As only four suggestions are required, the resulting graph includes a maximum of
four subgraphs, based on the distance parameter. In the theory of semantics, this parameter can be
described as the semantic distance and defined as the shortest path connecting two concepts. For
instance, for a; and b; [47]:

d(ay,by) = minfw(p) : p = ((vo,v1), (v1,02) , -+, (Vk-1,0k)), Vi: (vi1,0;) € e,a1 = v, by = v}.  (8)

Thus, after the mapping process is accomplished, the result can be represented through a graph
that consists of a set of subgraphs representing the suggestions for each of the origin concepts

G=(Gus,Gay,-.-,Gap), )

where m is the number of origin concepts, and G,, Gy, , . . ., Gg, are the graphs containing suggested
paths for the corresponding origin concepts. The suggestions or suggested paths contain the set of
concepts, relationships, and weights

Glll == (VIZ]/ Eﬂ]/ wal)/ Gllz = (V{lz/ Euzl wtlz)/"-/ Gum = (Vumr Ellm/ wam)- (10)

(Note: if no path exists between the source and target concepts, the result is nil.)

If the service getMappingSuggestions is called again, and the input is the same as in the previous
time or contains some common connected vertices, the weight of the relationship between the inputs
decreases. This enables a dynamic approach to evaluate the semantic distance, compared to [11], for
instance, where the authors also consider a semantic distance, but the value of each relationship is
static and equal to 1. The static weight of a relationship means that the semantic distance cannot vary
regarding the number of cases in which the concept was used with the related counterpart. Instead,
we consider that the importance or “closeness” between interrelated concepts grows with each run of
the getMappingSuggestion service with repeated relationships inside the input. An example can be
coffee and cake. For instance, a person asking for a coffee also takes a cake, this means that these two
concepts are, from now, interrelated, and their “closeness” grows each time someone orders coffee and
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cake. As Dijkstra’s algorithm finds the weighted shortest path between two concepts, after each match,
the weight of the corresponding relationship decreases according to:

w]-_l

Wi = ——,
J 1—|—w]-_1

(11)
where w; is the current value of the weight between two concepts, and w;_; is the value of weight
before this iteration. In this way, the value of the weight will constantly decrease with each iteration;
on the contrary, the “closeness” grows. This can be applied for two standalone concepts, or, if it is a
model with a set of interconnected concepts, the weight of all segmental relationships decreases, and
the “closeness” of the connected concepts grows correspondingly.

Algorithm 1 builds the suggestions for each concept in the origin model and is shown below:

Algorithm 1 Suggestion building for each concept in the origin model

INPUT: origin and target labels A and B, nondirected graph G = (V, E, w), with relationships weights w, € R
for all w € E, source and target concepts a,;, by, € V
for eachain A do
define all possible paths from a to each b in B
if there is a path p form a to b in G then

apply Dijkstra’s algorithm to all a-b pairs

order resulting paths by distance (or semantic distance)

if the number of resulting paths < 4 then

collect number shortest paths

else
collect 4 shortest paths
end if
else
assign nil
end if

end for each
OUTPUT: number ordered paths with assigned distance

Based on the suggestions built for the concepts in origin model, an output document containing
the suggestions is generated, as shown in Figure 5:

e  “origin”—which contains the subfields “label” for the name of the concept and “XPath” containing
the parent nodes;

e “mapping”’—represents mapping the origin and target data models, containing all suggestions
for each specific concept. The subfields are:

e  “suggestion”, with “label” naming the target concept, “score” reflecting the importance or weight
of the path between “origin” and “target” concepts, “XPath” for the parent concepts, and “rank”,
which serves to identify which suggestion is the closest one;

e  “graph”—representing the full path from the “origin” to the “target” concept in a segmental way,
being composed of triples of the form “start” -> “weight” -> “end”; and

e “CYPHER query”—a field that contains the generated Cypher query, which can be used for
visualizing and checking the suggested path.
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[{*origin": {

"label": "Emergency Stop".

"xpath": ["Manufacturing”, "Conveyor"]},
"mapping": [
[{"suggestion": {

"label": "Assembly",

"score": 0.6000000000000001,
"xpath": [],

"rank": 1

"start": "Emergency Stop",
"weight": 0.2,
"end": "Conveyor"

"start": "Conveyor",
"weight": 0.2,
"end": "Manufacturing"

"start": "Manufacturing",

"weight": 0.2,

"end": "Assembly™

8

"CYPHER_query": " MATCH (Emergency_Stop:concept{name: 'Emergency Stop'}) MATCH
(Conveyor:concept{name: 'Conveyor'}) MATCH (Manufacturing:concept{name: 'Manufacturing'} ) MATCH
(Assembly:concept{name: 'Assembly'}) RETURN (Emergency_Stop)-[:link]-(Conveyor), (Conveyor)-[:link]-
(Manufacturing), (Manufacturing)-[:link]-(Assembly)™

Figure 5. The output of the getMappingSuggestion service.

The output provides a set of suggestions for each of the origin concepts, and the Cypher query
is used for visualizing and checking the suggestions. Once receiving the JSON input, the semantic
manager identifies the origin and target concepts. If these two models, after insertion into the graph
DB, are connected through some intermediary concepts (i.e., crossing points), a set of suggestions or
the shortest paths from each origin to a set of target concepts are returned. The number of returned
suggestions depends on the size, complexity, and depth of the graph; however, for this particular test
case, it cannot exceed four suggestions. Nevertheless, the number of returned suggestions can be
changed on demand.

The getMappingSuggestion service finds the interrelation between concepts placed in the origin
and the target data models. Data models are inserted into the graph DB and, thus, are converted
to a graph, enabling the use of the shortest path algorithms. The concept of interrelation is based
on the “closeness”, which is calculated as the shortest weighted path between each concept in the
origin and a set of concepts in the target data models. The difference between the approach used
in this work and previous solutions is that the weighted approach is used, which distinguishes the
weight, and thus “importance”, of relationships between concepts. Moreover, the weight is not static;
it changes with each repetition of the relationship that is based on the co-occurrence principle. This
principle assumes that if two related concepts are repeated, the “closeness” of them to each other
grows, so the result of the mapping can be different in different time stamps. Another novel point is
that getMappingSuggestion compares the “closeness” of a set of concepts to one chosen concept and
orders them accordingly. This has good potential for further reasoning, allowing patterns in the data
to be found and related concepts to be discovered.

4.2. Import Data Model Service

To enrich the output results of the getMappingSuggestion service, models built based on data
generated by machines and sensors can be imported for further processing and analysis. The format
for importing models is comma-separated values (CSV), which presumes data storage in a tabular
way. It offers a simple way for data exchange in a tabular form. From the name itself, the data
are represented in rows and columns, where the first row usually represents a set of headers that
determines the meaning of the data in each column. This format can be adopted to exchange the data
among the applications using the proprietary format. One of the main advantages of this format is its
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simplicity. The standard which specifies CSV is RFC 4180 [48], although separation can be made using,
for instance, semicolons instead of commas.

An example of a CSV file can be a document containing data on the functioning of a machine
or its parts. For instance, data about the functioning of cylinders of a tabber stringer machine may
contain headers such as the current time stamp, number of cylinders, movement types, and maximal
and minimal speeds. CSV files are imported into Neo4j by loading the headers first followed by all
other records regarding the corresponding header. If the value in the record is complex, in other words,
it consists of several parts, it can be separated and parts can be inserted independently. This service is
just an auxiliary or supporting service that can enable data in CSV format to be loaded, thus enriching
the knowledge base with the new data. In principle, this service treats the imported data as graph
entities to apply the getMappingSuggestion service or other services that can be added on demand.

4.3. Import Ontology Service

Another core service allows us to import RDF ontologies to the semantic management component.
One of the main purposes of the semantic management component is to provide an extensible
environment for ontology development, improvement, and evolution. The basic principles of ontology
development can be summarized as follows [49]:

e reusability, when the concepts introduced in existing reliable ontologies can be reused;

e semantic alignment, referring mainly to ontology interoperability, to integrate concepts from
imported ontologies, as well as newly created concepts into an existing structure;

e ontology design pattern usage, to ensure that the concept generation procedure can be applied
not only to a single concept but to a group of concepts; and

e community extensibility, assuming a collaborative perspective when one ontology, covering few
use-cases, can be extended by other users of a community and, thus, be applied to more use-cases.

The process of importing ontologies should correlate with these ontology development
principles. Thus, in the present work, the concepts imported within an ontology are reusable,
integrated in the existing structure, and extended using other services delivered within the semantic
management component.

To introduce the process of ontology import, some definitions from the graph theory are adopted.
For the ontology or data model, which is already inside the graph DB, the term “initial” is used, and
for ontology loaded from outside, the term “imported” is used. Both initial and imported ontologies
are represented as a graph with E edges and V vertices, G = (V, E). If the database is not empty, the
process of importing an ontology can be described through the logical disjunction or union. Let us
assume that the database is not empty; thus, the initial data model structure that is already inside the
database is Ginit = (Viuit, Einit), and the imported ontology is Giup = (Vimp, Eimp)-

Using this definition, edges are imported is as follows:

Einit U Eipp = (eilmt,eé”it, . .,effit) U (e;mp,e;mp, e ,e;Tp) , (12)
where 7 is the number of relationships connecting concepts in the initial ontology, and m is the number
of relationships connecting concepts in the imported ontology.

The importing of concepts can be represented through:

Vinit U Vigp = (vi”it, vé”it, ... ,vf"it) U (vllmp,v;'"p Lo ,v}mp ), (13)
where i is the number of concepts in the initial ontology, and j is the number of concepts in the
imported ontology.
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The resulting graph is represented by Gyes, which is the union of the initial ontology graph (already
inside the DB) and the imported ontology, and therefore contains the concepts Vi, and Vi, and
relationships Ejy; and Ejpyp:

Gres = Ginit U Gimp = ((Einit U Eimp)r( Vinit U Vimp))- (14)

Based on these definitions, the algorithm for importing an ontology to a nonempty graph DB is
developed (Algorithm 2). If empty, the imported model is inserted as is. However, the most interesting
is the first case, when the DB already contains some data models or ontologies with some common
concepts and/or relationships. For this case the algorithm is as follows:

Algorithm 2 Suggestion building for each concept in the origin model

INPUT: nondirected graph Gipit=(Vinit, Einit, W), with e € E;,;; edges and (Ué”"t, vé”it, e, v;:”"t) € Vinit,
vertices and edge weights w,u: € R for all w € E;;;, nondirected graph Gimp=(Vimp, Eimp), with e € E,
imp imp eV t

2 e ) imp vertices

for each ¢ in E;,;y do

if ¢"P € E;,;; then

imported edge exists in the initial model — skip

edges and (Ull'np ,0

else
Einit U Eimp
end if
end for each
for each (v;.'”f,v;””) in Vi do
if (v;(mp ,v;mP ) € Vi then
imported vertices exist in this initial model — skip
else
o Wenit

wemti - 1+w9init,]

end if

end for each
OUTPUT: Gyes

As mentioned before, if the database is not empty and the imported ontology contains some
concepts with the same names as in the database, in other words they equally labelled, they are ignored
by importOntology, but the relationships are created or updated. The importOntology can be used in
conjunction with the getMappingSuggestion service, which provides the necessary design patterns
to apply to groups of concepts. Finally, all users of v{-OS having the permit to create and update
the ontologies and can contribute to the evolution of the ontology development environment. The
procedure of requesting the importOntology service is presented in Figure 6.
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Processing DB Semantic

Client Unit Component Plugin

service_request_curl

driver_authentication

confirmation

start_session

import_ontology

create_nodes_and_links

(1) remove_duplicates

i(2) remove_repeated_relations !

(3) add_labels_to_nodes

(4) add_properties

return_Neo4j_Object

session_close

Figure 6. Procedure for requesting the importOntology service.

The importOntology service algorithm has a similar starting point compared to all implemented
services; when a request has been sent, an authentication procedure is passed, and the session is
launched. Then, the semantic plugin is required to parse and insert the ontology, with all concepts and
relations, into Neo4j. After this is accomplished, duplicate concepts are removed, and, if relationships
are identical between the imported ontology and the database, the weight of the relationship is updated.
In the next step, each concept is labelled within Neo4;j, and the name property is extracted.

Considering the treatment of replicas, as in the example given in [50], concepts with equal names
are removed. However, while importing two ontologies with similar concepts and applying unification
procedures, the resulting concept class possesses all properties from the initial ontologies. In this
work, all concepts with equal names are also removed, although we follow the approach that all
properties of the concepts are inserted as separate concepts. For instance, the concept of “cake” has the
property “sweet”, which, after insertion, appears as another concept having a relation to “cake”. This
allows concepts with similar properties to be interrelated and, thus, enriches the knowledge base and
avoids the creation of redundant entities. Moreover, a matching approach is made possible, which is
commonly and widely used. This approach is illustrated in [51], where two ontologies are merged
combining equal root concepts while differentiating between similar, but not equivalent, concepts. The
process of matching ontologies is also considered in [52]. However, the authors were mostly focused
on ontology matching or alignment from the same domain, and they did not consider importing
cross-domain ontologies.

The importOntology service enables RDF/OWL ontologies to be imported. One of the tasks of the
importOntology service, as well as of the importDataModel, is to enrich the knowledge base with data
structures aggregated from various sources, such as, for instance, professional communities. The key
feature of the proposed service is that it treats the properties of a concept as separate concepts, thus
enabling different concepts to be interrelated based on their similar properties, which is crucial when
using the graph-based approach. This might be used, for instance, as the basis for building service
discovery mechanisms for offering the appropriate service. It is important to mention that, to explore
the functionality of importOntology efficiently, it is used in conjunction with getMappingSuggestion.
Moreover, importOntology has no domain restrictions as long as an RDF specification is used.

Considering contribution of this service to enhance collaborative mechanisms, importOntology
allows aggregation of ontologies developed within various professional communities and supports
identification of closely related concept patterns, which is important for facilitating a common
understanding of the used terms and definitions. Another relevant feature is that importOntology,
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in conjunction with other developed services, allows the ontology to make and change necessary
additions. For instance, the concept “cake” is related to the concept “sweets”, but the definition can be
improved, whereas “cake” is also “food” and “consumable thing”. Thus, all members of a community
can contribute to the enrichment of the knowledge base.

5. Test Case Scenario and Discussion

The goal of this work is to enable a knowledge base that can accumulate various ontologies and
data models, whereas a solution to the main challenges of semantic discovery architectures can be
provided [18]. This can be accomplished by considering weighted ontologies and adaptive techniques
for collaborative knowledge base formation. Therefore, the aim is not to improve the timing of existing
methods and solutions, but rather to focus on functionality. Another goal is to show how the export of
ontologies in conjunction with collaborative knowledge base formation can contribute to improving
the discovery mechanisms.

As a proof-of-concept test case, we decided to import an ontology developed in the framework of
the Federated Interoperable Semantic IoT Testbeds and Applications (FIESTA)-IoT project, which aims
at covering the core notions of the IoT [53]. The ontology uses the resource description framework (RDF)
graph vocabulary and schema with some core constructs such as class, property, type, subClassOf,
subPropertyOf, domain, and range [54]. Moreover, web ontology language (OWL) syntax is integrated
into the RDF schema to extend its functionality and thus enrich it with new meanings of triples [55].
To implement the mapping, the semantic plugin for Neo4j was used [56], which ensures proper export
of the ontology into the database.

Besides the RDF graph extended with OWL syntax as the input for the semantic management
component, as described in previous sections, the input model in JSON format was used. For testing
purposes, importOntology and getMappingSuggestion services were chosen to demonstrate how the
importOntology service can contribute to knowledge base enrichment, improvement of the mapping
output, and introducing collaborative mechanisms for improving the knowledge base. Moreover,
a second purpose is to demonstrate the capabilities of the combined use of getMappingSuggestion
with importOntology. First, the importOntology service was executed, which loads the ontology to
the graph DB. In the next stage, getMappingSuggestionService was activated to produce a complex
mapping result with a set of suggestions for each concept in the origin submodel of the input document
(Figure 7).

Input.json

Semantic
Management
Component

Ontology.rdf

Figure 7. High-level view of the usage of the semantic management component and data integrator.
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The input model, as described above, contains two main parts, the origin submodel and the target
submodel, which are mapped. Following the definitions described in Section 4, the input model that
is used for the test case is illustrated in Figure 8. This origin model is represented through set A =
{Manufacturing, Conveyor, Emergency Stop, Company_X, Lisbon} and the target set as B = {CoffeeMachine,
Assembly, Company_Y, Porto, Speed Monitor}.

ORIGIN TARGET

Manufacturing

Conveyor

A
H . " Service
ASsemB Manufacturing

(| Transportation

Actuator
Device

Emergency Stop

City

Company_X

Sensor

B -

Figure 8. Schema of payload of the getMappingSuggestion service.

Lisbon location

Each origin concept is mapped to every target concept and produces a suggestion that is ranked
according to the weight of the path between the origin and target concepts:

A X B = {(Manufacturing,CoffeeMachine),(Manufacturing,Assembly),
(Manufacturing,Company_Y),(Manufacturing,Porto) (Manufacturing,
Speed Monitor), . .. ,(Lisbon,CoffeeMachine),(Lisbon,Assembly),
(Lisbon,Company_Y),(Lisbon,Porto),(Lisbon,Speed Monitor)}.

(15)

In the origin and target models, there are several IoT resources and services, but also location
names and company names. In an extended ontology (not in FIESTA ontology), companies can be
considered as users or service providers. Using the output from the semantic management component,
further knowledge extraction can be made, and “optimal” mapping patterns can be found. To better
describe and explain the process of ontology metamorphosis and generation of complex outputs, a
conceptual architecture for semantic lifting [57] was adopted (Figure 9). This architecture is intended to
provide the necessary basis for ensuring interoperability among model elements and ontology concepts.

Graphical DB

@N Semantic-Reasoner defined w

Synatax/
Semantic Type

RDF/XML ~ OWL  Turtle
Internal semantic

ORIGIN TARGET ONTOLOGY

Meta-Model Layer

Model Layer

Figure 9. Metamorphosis of ontologies and output building.



Appl. Sci. 2019, 9, 4936 18 of 23

The conceptual architecture contains three scales: the first reflects the syntax and semantic
annotations used. The input model for the getMappingSuggestion service, containing origin and
target data models, follows JSON formatting, with an internal semantic developed for the semantic
management component to be consumed by other v{-OS framework components, including the data
integrator. Ontologies that can be imported by the semantic management component are of two
main types: RDF/XML extended with OWL syntax and Turtle. The metamodel layer represents the
mapping of the imported ontology with origin and target data models. In the modeling layer, the
initial ontology is modified in consideration with the origin and target models. Moreover, the output
model is generated while combining both input models and modified ontology.

Resulting suggestions contain the first node acquired from origin model, the last node from the
target model, and the sequence of the in-between nodes. These nodes can be acquired both from the
input models and modified ontology, where all new concepts, if any, are already incorporated. The
whole process is represented in Figure 9.

The first column in Figure 10 identifies the origin and target concepts (i.e., labels between the
established mappings). For this specific case, one of the origin concepts has been chosen, namely the
“Emergency Stop” actuating device, with appropriate suggestions that are presented in the target model
of Figure 8. The second column is used to represent the Cypher queries generated to query the result.
The concepts in the graph are marked as follows: (i) blue concepts were extracted from origin data
model; (ii) green concepts were from the target data model; and (iii) grey concepts were extracted
from imported ontology. The records in Figure 10 represent suggestions after the mapping process.
Figure 10 also represents how the suggestions for the same origin and target concepts are changed
if the relations among intermediary concepts evolve. As it can be seen, the number of intermediary
nodes increased, though the distance or semantic distance between the nodes “Emergency Stop” and
“Assembly” decreased, making the new suggestion preferable.

Input Parameters Cypher Query Generated View of the Graph
MATCH —Stop-concept{name: ST P P po—
.. MATCH (Conveyor:concept{name: ‘Conveyor'}) MATCH s N ; \\ R
Origin: Emergency Stop (Manufacturing:concept{name: 'Manufacturing'}) MATCH Ain'lergency"@‘Conveyor \ /{ Manufa\ Assembly
Target: Assembly (Assembly:concept{name: 'Assembly'}) RETURN (Emergency_Stop)- \ \ 0 ) -
y [:link)-(Conveyor), (Conveyor)-[:link]-(Manufacturing), ‘\ Stop N | cturing ;
( -(:link]-(Assembly) ~ A ~— ~ -
MATCH ! i Stop'}) MATCH pr- ——
L. . (Device:concept{name: 'Device'}) MATCH LoTSN \
Origin: Emergency Stop (ActuatingD "ActuatingDevice'}) MATCH N Devic\g &
Target: CoffeeMachine (C ‘c '}) RETURN tmergency\‘ \ ; Actuating! e

Device
(ActuatingDevice)-[-link}-(CoffeeMachine)

(Emergency_Stop)-{:link]-(Device), (Device)-[:link]-(ActuatingDevice), 3
. Stop g7l
N -

MATCH A ' Stop')) MATCH -
N . (Device:conceptiname: ‘Device'}) MATCH \
Origin: Emergency Stop (sensingDevice:concept{name: ‘SensingDevice'}) MATCH TN Device\
Target: Speed Monitor (sensor:concept{name: 'Sensor'}) MATCH Emergency\ / Sensing Speed
1

(Speed_Monitor:concept{name: 'Speed Monitor'}) RETURN -
(Emergency_Stop)-[:link]-(Device), (Device)-[:link]-(SensingDevice), Stop ~
(SensingDevice)-[:link]-(Sensor), (Sensor)-[:link]-(Speed_Monitor) ~. 7
MATCH ! ! Stop'})) MATCH P
(Device:concept{name: 'Device'}) MATCH ’

of m

Origin: Emergency Stop (hasD D Oflnterest')) Devic\a Domain
Target: Company Y MATCH (DomainOfinterest:concept{name: ‘DomainOfinterest'}) /\\

- MATCH (T 2T ') MATCH A

(Company_Y:concept{name: 'Company_Y'}) RETURN - \

(Emergency_Stop)-[:link]-(Device), (Device)-[:link)- Emergenoy
(hasDomainOfinterest), (hasDomainOfinterest)-[:link]-
(DomainOfinterest), (DomainOfinterest)-(:link]-(Transportation),
(Transportation)-[:link]-(Company_Y) ~—-

Device Monitor

Company
Y

Origin: Emergency Stop MATCH X [ stop'}) ’
Target: Assembly MATCH (Device:concept{name: ‘Device'})) MATCH /l Devicé Service
(exposes:concept{name: 'exposes'}) MATCH =

N N (Service:concept{name: ‘Service'}) MATCH , N
(after repeating/reinforcing (Assembly:concept{name: 'Assembly}) RETURN lEmeruency‘ ~
pairs Device-exposes-Service) |(Emergency_Stop)-[:link]-(Device), (Device)-[:link]-(exposes), ! ST
(exposes)-[:link)-(Service), (Service)-[:link]-(Assembly) L Stop !

e =

exposes Assembly

Origin: Emergency Stop
Target: CoffeeMachine /
Assembly/ Company_Y/Porto
Speed Monitor

Note: without Ontology

Figure 10. Illustrative results.

As an example, the “Emergency Stop” concept from the input model is chosen. The resulting graph
containing all 5 concepts from the origin data model is

Gres = (Manu facturing, Conveyor, Emergency Stop, Company_X, Lisbon), (16)
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and the subgraph containing the suggestion for “Emergency Stop” is
“Emergency Stop” = (pr, Epw, wpw), (17)

where V), is a set containing all the vertices forming the resulting graph based on four suggestions
(Figure 10):
V_pw = {Emergency Stop,Conveyor,Manufacturing,Assembly,Device,
ActuatingDevice,CoffeeMachine,SensingDevice,Sensor,Speed Monitor, (18)
HasDomainOfInterest, DomainOfInterest, Transportation,Company_Y}.

Epw is a set containing all the edges between vertices in the path forming the suggestions:

E_pw = {{(Emergency Stop,Conveyor),(Conveyor,Manufacturing),
(Manufacturing,Assembly)} {(Emergency Stop,Device),
(Device,ActuatingDevice),(ActuatingDevice,CoffeeMachine)},
{(Emergency Stop,Device),(Device,SensingDevice),(SensingDevice,Sensor), (19)
(Sensor,Speed Monitor)},{(Emergency Stop,Device),
(Device,HasDomainOfInterest) (HasDomainOfInterest, DomainOfInterest),
(DomainOfInterest, Transportation),(Transportation, Company_Y1},

and wyy, stands for a set of weights of the path segments in the suggestions. Thus, for the “Emergency
Stop” concept, the set of segment weights for suggestions is as follows:

Wy = {{(02,0.2,0.2)}, {(0.2,1,1)},{(0.2,1,1,0.2)},{(0.2,1,1,1,0.2)}}, (20)

where four suggested paths are generated for each origin concept. For instance, the first element of the
set is (0.2,0.2,0.2) which is the weights for segments “Emergency Stop” -> “Conveyor”, “Conveyor” ->
“Manufacturing” and “Manufacturing” -> “Assembly” of the first suggestion.

The distance from origin concept “Emergency Stop” to target concept “Assembly” is

d(Emergency Stop, Assembly) = min{w(p) : p1 = (0.6)}. (21)

It is clear that some concepts overlap, as they are members of both the imported ontology and
origin data or target data model. However, without the imported ontology, no relation among the
concepts can be established, as the ontology extends the origin and target with missing relations to
other concepts, which makes the mapping process possible. Without the imported ontology, the output
result of getMappingSuggestion would be an empty object. This case is described in the last record in
Figure 10, with the note that no ontology is being imported.

6. Conclusions

The aims of Industry 4.0 set a wide range of challenges both technical and organizational in nature.
Many initiatives have been launched all around the world to enable the technological support for the
fourth industrial revolution. CPSs are one of the main constituents, covering both physical and virtual
components, that can generate and process rich ascending and descending data flows. Therefore, data
and knowledge assets are turning into a resource that needs to be exploited to enable higher intelligence
and autonomy of the systems and subsystems. In this work, we presented a part of the vf-OS initiative:
the semantic management component. Some of the most important services of this component, such
as importOntology, importDataModel, and getMappingSuggestion, were described and discussed.
The focus has been made on data mapping and collaborative enriching of the data-rich environment.
Further efforts were made to test the semantic management component through a combination of
services, showing how imported ontologies or data models can influence the suggestions produced by
the data mapping service. This is important since (i) relations among concepts are not static and can
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evolve over time, and (ii) import of new ontologies and data models leads to introducing new concepts
and relationships. These factors affect the outcome of the suggestions produced for a given concept.

As a part of further future work, some other services that add additional functionalities are to
be developed. For instance, a service that can enable creation of ontologies within the graph DB
as logical partitions is needed. Another service should enable reasoning over the knowledge base,
using services developed within this work. An interface for integrating external data services for
improving the mapping output is also in the scope of further research, as well as a service for integrating
and reasoning over data models containing concepts that are synonyms or are very contextually
interrelated. Furthermore, the developed services will also be tested with real-world data from
smart home components and applications. Smart homes are a promising area, as it is crucial to find
interdependencies among “things” represented as concepts and produce mappings between data
models for various purposes such as optimization, hierarchy detection, and so on. Another promising
task that is planned for the next stages is applying the semantic management component to support
establishing smart things coalitions for the CPS.
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