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Abstract: Resource utilization of iron tailings powder is an effective measure to reduce the dam-break
risk of an iron tailings reservoir. Adding polypropylene fiber to iron tailings powder can improve
its shear performance. Direct shear tests were carried out on reinforced iron tailings powder with
polypropylene fiber with dosages of 0%, 0.25%, 0.5%, 0.75%, and 1%, respectively. The normal stresses
during the tests were 100, 200, 300, and 400 kPa, respectively. The test results show that with the
increase of polypropylene fiber dosage, the cohesive force of iron tailings powder firstly increases and
then decreases gradually, and the internal friction angle firstly decreases and then increases. The back
propagation (BP)neural network was used to fit the shear force (F) and shear displacement (s) of the
test to obtain the F-s function relationship that satisfies the accuracy. Based on the energy dissipation
theory, the direct shear energy dissipation of polypropylene-fiber-reinforced iron tailings powder
was calculated. The mathematical model of energy dissipation of fiber interfacial failure was derived
by the fiber distribution model. The interfacial strength parameters of polypropylene fiber were
calculated based on the direct shear test data and the mathematical model of fiber interfacial energy
dissipation. The test results show that the addition of polypropylene fiber from the perspective of
energy dissipation can improve the shear properties of iron tailings powder.

Keywords: iron tailings powder; polypropylene fiber; shear characteristics; energy dissipation;
interfacial strength parameter

1. Introduction

Iron tailings are one of the products of iron ore sorting operations. The stacking of tailings not
only affects the surrounding environment, but also seriously threatens the lives and property security
of the people in the lower reaches of the reservoir area. Therefore, how to use those iron tailings to
turn waste into treasure is an effective means to reduce the dam-break risk of an iron tailings reservoir.
Much research has been carried out on the resource utilization of iron tailings powder, including
concrete fine aggregate [1], sewage treatment [2], filling material of composite material [3], recovered
iron ore [4], and as a road material [5]. Lizhu Iron Mine is located in Shaoxing city, Zhejiang province,
China. It produces about 200,000 tons of dewatered tailings every year and accumulates more than
20 million tons of tailings in the existing tailings dam yard. The iron tailings mainly contain tailings
with a particle diameter of less than 0.075 mm, which are cohesionless, non physicochemically active,
and difficult to utilize. Certain means shall be taken to improve its resource utilization.

Adding fiber to soil can improve the mechanical properties of soil through the tensile properties
of fiber and the interfacial strength between fiber and soil [6–9]. Consoli et al., Diambra et al., and Li
and Senetakis studied the mechanical properties and test methods of fiber-reinforced sand, such as
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interfacial characteristics, constitutive model, shear modulus, and damping ratio, through triaxial tests
and a resonance columns test [10–13]. Diambra proposed a constitutive model of fiber-reinforced clay
and concluded that fiber reinforcement can effectively improve the undrained shear strength of soil [14].
Diab conducted the comparative study on two kinds of fiber-reinforced clay sample production
methods of “impact” and “kneading” through an unconsolidated undrained triaxial test [15]. Soltani
et al. studied the effects of fiber width, fiber dosage, and fiber length on the swelling properties
of expansive soils [16]. Taking the effects of fiber dosage, fiber length, relative compactness, and
confining pressure into consideration, Chegenizadeh et al. carried out a series of cyclic triaxial tests
on unreinforced and reinforced specimens to study the effect of bulk continuous fibers (BCF) on the
liquefaction resistance of low plasticity silt [17]. It can be seen from the above research results that fiber
materials are widely used in sand, clay, expansive soil, and silt, which can improve the mechanical
properties of the soil to some extent. Therefore, fiber can be added to iron tailings powder in order to
improve the mechanical properties.

Energy dissipation is a theoretical method which is often used to analyze the material failure
characteristics, such as the calculation of slope safety factor, the constitutive relationship of geomaterials,
the interfacial analysis of soil and structure, and the mechanical properties of soil and cement soil [18–28].
Ibraim et al. explored the energy consumption of unreinforced and reinforced sand samples based on
experimental and discrete element modeling (DEM) procedures [29]. On the basis of energy, Amini and
Noorzad investigated the effect of fiber dosage, fiber length, confining pressure, and relative density
on the cyclic shear resistance of fiber-reinforced sand [30]. Since energy is scalar, the shear energy
dissipation of polypropylene-fiber-reinforced iron tailings powder can be regarded as the sum of the
fiber interfacial energy dissipation and the direct shear energy dissipation of iron tailings powder.

Shear performance is the most basic characteristic of geomaterials. Based on the energy
dissipation theory, and referring to the research results of fiber-reinforced soil, the shear properties
and interfacial strength parameters of fiber-reinforced iron tailings powder are studied. In this
study, the shear properties of polypropylene-fiber-reinforced iron tailings powder were investigated
by a direct shear test. The energy dissipation during the direct shearing process was analyzed
to further derive the fiber interfacial strength parameters. The shear performance mechanism of
polypropylene-fiber-reinforced iron tailings powder was analyzed to provide reference for the resource
utilization of iron tailings powder.

2. Experimental Material

The iron tailings powder used in this test comes from Lizhu Iron Mine in Zhejiang province, as
shown in Figure 1. The specific gravity and specific surface area of iron tailings powder were 3.06 and
379 m2/kg, respectively, through physical property tests.Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 18 
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Particle size analysis of iron tailings powder was conducted by a Mastersizer 2000 laser particle
size analyzer to obtain the particle content of less than 45, 45–75, 75–100, 100–150, and more than
150 µm. The test results are shown in Table 1.

Table 1. Particle size analysis results of iron tailings powder.

Particle Diameter (µm) <45 45–75 75–100 100–150 >150

Content (%) 69.57 8.76 5.18 6.98 9.51

The fiber material used in the test was polypropylene fiber as shown in Figure 2. The fiber form
is monofilament bunchiness, the tensile strength and elastic modulus were 260 and 3800 MPa, the
specific gravity was 0.91, and the length and diameter were 6 and 0.023 mm, respectively.
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3. Direct Shear Test

Since Lizhu iron tailings powder is mainly particles with a diameter of less than 45 µm, it can be
reinforced by polypropylene fibers. The shear properties of the material are the most basic mechanical
indexes. The shear properties of polypropylene-fiber-reinforced iron tailings powder were studied
through a direct shear test.

3.1. Sample Preparation and Testing

The dosage of polypropylene fiber used in the test was the percentage of fiber relative to the dry
mass of iron tailings powder. According to the research results of fiber-reinforced sand, clay, expansive
soil, and silt [10–17], the polypropylene fiber dosages selected here were 0%, 0.25%, 0.5%, 0.75%, and
1%, respectively. In the sample preparation process, 17% water was first added to iron tailings powder
and stirred for 3 min, and then let stand for 24 h. Then, the fibers were sprinkled into iron tailings
powder and stirred for 3 min. The mixture is shown in Figure 3. The mixture was placed into a ring
cutter of 61.8 mm in diameter and 20 mm in height, and a layer of Vaseline was applied inside the ring
cutter before loading [31]. The sample was formed by compaction, and the upper and lower surfaces of
the sample were flattened [32]. The formed sample is shown in Figure 4. The mold was released after
2 h, and the weight of each sample was weighed and controlled at 146 ± 2 g. The sample was packed
in cling film and placed in a natural environment for 24 h, and then subjected to a direct shear test.
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Figure 4. Direct shear test specimens of polypropylene-fiber-reinforced iron tailings powder with 1%
fiber dosage.

The full-automated quadruple direct shear apparatus produced by Nanjing TKA Technology Co.,
Ltd. was used in this test. It can perform direct shear tests under four normal stresses simultaneously,
thereby improving the test efficiency. The normal stresses used in this test were 100, 200, 300, and
400 kPa, respectively, and the shear rate was 1 mm/min. Six shear forces (F) and the corresponding
shear displacement (s) were recorded every second during the test, and the sample failure shear surface
is shown in Figure 5.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 18 
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3.2. Test Results and Analysis

According to the test data, the relationship between shear force (F) and shear displacement (s) of
polypropylene-fiber-reinforced iron tailings powder can be plotted, as shown in Figure 6. In Figure 6,
(a)–(e) correspond to the F-s curve of the sample under the normal stresses of 100, 200, 300, and 400 kPa
when the polypropylene fiber dosage is 0%–1%.
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According to the F-s curve, the shear force corresponding to the 4 mm shear displacement is the
peak force Fmax [34]. The peak shear strength τmax is calculated according to Equation (1). According
to the Mohr–Coulomb principle (Equation (2)), the cohesive force c and the internal friction angle ϕ of
the reinforced iron tailings powder with different polypropylene fiber dosages can be calculated and
plotted in Figure 7.

τmax =
Fmax

A
(1)

τ = c + σ tanϕ (2)

It can be seen from Figure 7 that with the addition of polypropylene fibers, the cohesive force
firstly increases and then gradually decreases. When the dosage was increased from 0% to 0.25%, the
cohesive force increased from 12.3 to 31.9 kPa. When the dosage was increased from 0.25% to 1%,
the cohesive force gradually decreased from 31.9 to 9 kPa, which was lower than that of iron tailings
powder with no fiber dosage. When the fiber dosage was increased from 0% to 0.25%, a small amount
of fiber filled the pores between the iron tailings powder, taking advantage of the spatial constraint
effect, so as to increase the cohesive force of fiber-reinforced iron tailings powder. When the fiber
dosage was increased from 0% to 0.25%, the agglomeration effect of fiber was increased due to the
increase of fiber. The cohesive force of fiber-reinforced iron tailings powder was decreased on account
of the spatial constraint effect finding it hard to proceed.

With the increase of fiber dosage, the internal friction angle of polypropylene-fiber-reinforced iron
tailings powder firstly decreases and then increases. When the fiber dosage was increased from 0% to
0.25%, the internal friction angle was reduced from 31.7 to 29.3◦. When the fiber dosage was increased
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from 0.25% to 1%, the internal friction angle increased from 29.3 to 35.3◦. When the fiber dosage was
increased from 0% to 0.25%, the fiber was dispersed among the iron tailings powder. A small amount
of fiber cannot produce an obvious friction effect, and the internal friction angle of iron tailings was
decreased due to the particle spacing of iron tailings being increased. When the fiber dosage was
increased from 0.25% to 1%, the combination form between fiber and iron tailings was diversified due
to the fiber density in the same volume being increased, and the angle of internal friction was large
due to the strengthening of the friction effect.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 18 
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It can be concluded from the direct shear test results that when the fiber dosage is between 0%
and 0.25%, the cohesive force increases, the internal friction angle decreases; when the fiber dosage is
between 0.25% and 1%, the cohesive force decreases, and the internal friction angle increases. Therefore,
it is difficult to analyze the reinforcement effect of polypropylene fiber on iron tailings powder using
the variation law of cohesive force and internal friction angle. Other parameters are needed to describe
the reinforcement effect of polypropylene fiber.

4. Shear Energy Dissipation of Fiber-Reinforced Iron Tailings Powder

The direct shear failure process is actually the energy dissipation process. According to the first
law of thermodynamics, the shear force can be used to characterize the energy dissipation. Since the
discrete data points of F and s were obtained during the test, it was difficult to calculate the energy
dissipation. Therefore, it is necessary to establish a continuous F-s function relationship and calculate
the direct shear energy dissipation of polypropylene-fiber-reinforced iron tailings powder by means of a
definite integral. A BP neural network algorithm is a commonly used calculation method for data fitting.
An appropriate neural network structure can simulate any nonlinear function relationship [35–38].
Therefore, a BP neural network algorithm was used to fit the F-s function relationship and calculate the
direct shear energy dissipation of polypropylene-fiber-reinforced iron tailings powder, thus analyzing
the fiber reinforcement effect.

4.1. F-s Curve Fitting Based on a BP Neural Network

In this paper, a BP neural network algorithm was used to fit the F-s curve. The network structure
contains one input layer node, two hidden layer nodes, and one output layer node. The transfer
functions of the hidden layer and output layer are shown in Equations (3) and (4), and the shear
displacement s obtained by the direct shear test represents the input variable, and the shear force F
represents the output variable [33,39].
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f (v) =
1

e−v + 1
(3)

f (v) = v (4)

In order to ensure the fitting accuracy, the input variables and output variables need to be
normalized [38,39]. The fitting function of F-s is obtained as

F(s) =
a1

e−a2s−a3 + 1
+

a4

e−a5s−a6 + 1
+ a7, (5)

where a1 = Fmaxω21
2 , a2 = 2ω11

smax
, a3 = b11 −ω11, a4 = Fmaxω22

2 , a5 = 2ω12
smax

, a6 = b12 −ω12, a7 = Fmax
2 (b2 + 1),

among them, ω11, ω12, b11, b12, ω21, ω22, and b2 are BP neural network calculation parameters, the
specific meaning of which can be found in reference [39]. Table 2 shows the calculation results of BP
neural network parameters and the average fitting error. Figure 8a,b shows the comparison of the
F-s fitting curve and the test curve of polypropylene-reinforced iron tailings powder under normal
stresses of 100, 200, 300, and 400 kPa with 0.5% and 1% fiber dosages.

Table 2. BP neural network fitting results.

Fiber
Dosage

(%)

Normal
Stress
(kPa)

a1 a2 a3 a4 a5 a6 a7
Average
Error (N)

0

100 −49.93 0.0023 −9.71 727,324 0.00077 7.87 −727,051 0.03
200 −19.77 0.0055 −29.97 −4,557,279 −0.00091 −9.36 399 0.06
300 −14.06 0.0033 −17.77 317,668 0.00037 6.33 −317,062 0.05
400 24.61 −0.0062 34.9 −38,062 −0.00067 −3.79 823 0.02

0.25

100 111.6 0.0022 −4.46 189,740 0.0017 6.99 −189,573 0.05
200 −8044 −0.00056 −3.26 668 0.0053 1.41 −248 0.02
300 1230 0.001 −0.03 −94 −0.02 6.82 −514 0.07
400 −1634 −0.00087 −0.37 −125 −0.016 2.3 775 0.02

0.5

100 −28,952 −0.0005 −4.92 39.95 0.021 −5.78 202 0.38
200 243,556 0.00052 6.54 −93.45 −0.0187 3.67 −243,126 0.08
300 112,578 0.0005 5.23 −116 −0.018 4.83 −111,876 0.13
400 −262 −0.0018 3.98 −17,714 −0.0011 −3.4 827 0.01

0.75

100 −270 −0.001 0.56 338,718 0.0068 8.73 −338,489 0.01
200 −169,731 −0.00056 −6.1 80.82 0.019 −3.74 375 0.13
300 903 0.001 −0.24 −101.5 −0.016 6.99 −294 0.01
400 −1737 −0.0006 −0.137 −111 −0.0117 3.08 903 0.04

1

100 425 0.0006 −0.09 295,144 0.006 8.4 −295,283 0.01
200 −81,430 −0.00038 −5.16 99.53 0.0125 −1.35 438 0.03
300 1014 0.0009 −0.18 −92.58 −0.0151 4.52 −365 0.01
400 −1500 −0.00076 −0.114 148 0.0146 −3.99 693 0.02

It can be seen from Table 2 and Figure 8 that the BP neural network can better fit the F-s function
relationship with a maximum fitting error of 0.4 N. Therefore, the BP neural network algorithm can be
used to fit the F-s function relationship in the direct shear test.
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4.2. Calculation of Shear Energy Dissipation of Fiber-Reinforced Iron Tailings Powder

According to the F-s fitting function, the direct shear energy dissipation of fiber-reinforced iron
tailings powder with different normal stresses can be obtained by a definite integral. The calculation
formula (Equation (6)) is [39]

W =

∫ smax

0
F(s)ds, (6)

where, according to Section 4.7 of the Highway Geotechnical Test Specification, smax can be taken as
4 mm [34]. According to Equation (6), the direct shear energy dissipation of fiber-reinforced iron tailings
powder under different normal stresses can be obtained. The calculation results are shown in Table 3.

Table 3. Shear energy dissipation of iron tailing powder with different fiber doses under different
normal stresses (J).

Normal Stress (kPa)

Fiber (%) 100 200 300 400
0 0.74 1.18 1.24 2.2

0.25 1.08 1.52 1.99 2.96
0.5 0.83 1.51 2.38 2.36

0.75 0.87 1.68 2.36 3.24
1 0.95 1.76 2.41 3.13
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The data in Table 3 is plotted as shown in Figure 9. The direct shear energy dissipation increases
linearly with the increase of normal stress. Under the same normal stress, the direct shear energy
dissipation of fiber-reinforced iron tailings powder is greater than that of iron tailings powder.
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Figure 9. Shear energy dissipation of fiber-reinforced iron tailing powder under different normal stresses.

According to Table 3 and Figure 9, there is a linear relationship between direct shear energy
dissipation, normal stress, and fiber content. The effect of fiber dosage on the direct shear energy
dissipation of iron tailings powder is different. When the normal stress is 100 kPa and the fiber dosage
is 0.25%, it has the maximum direct shear energy dissipation. When the normal stress is 200 and 300 kPa
and the fiber dosage is 1%, it has the maximum direct shear energy dissipation. When the normal
stress is 400 kPa and the fiber dosage is 0.75%, it has the maximum direct shear energy dissipation.
Therefore, it is necessary to comprehensively analyze the influence of normal stress and fiber dosage
on the direct shear energy dissipation of polypropylene-fiber-reinforced iron tailings powder.

5. Interfacial Strength Parameters of Fiber-Reinforced Iron Tailings Powder

It can be seen from the direct shear test results that polypropylene fiber has a certain effect on
the shear properties of iron tailings powder and can increase energy dissipation during the direct
shear process. The interfacial strength of polypropylene fiber and iron tailings powder is an important
reason for the increase of direct shear energy dissipation. Therefore, it is necessary to analyze the direct
shear interfacial strength parameters of polypropylene fiber and iron tailings based on the variation
characteristics of energy dissipation to reveal the shearing mechanism of polypropylene-fiber-reinforced
iron tailings powder.

5.1. Fiber Interfacial Energy Dissipation Calculation

The fiber interfacial strength can be expressed as [14]

σL
f = 2

l f

d f
(as f + p ∗ tan δs f ), (7)

where lf represents the fiber length, df represents the fiber diameter, and asf and δsf represent the fiber
interfacial strength parameters.

The volume density of fibers in iron tailings powder is [10]

ρ(θ) =
3
2

V f

V
cos2 θ, (8)

where θ represents the angle between fiber and the horizontal direction, Vf represents the volume of
fiber in the direct shear sample, and V represents the volume of the direct shear sample.
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Under the action of normal stress p, the fiber normal stress on the θ-direction is shown in
Figure 10 [40].
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In order to calculate the energy dissipation of fiber interface failure, the θ-direction micro unit of
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The volume of the θ-direction micro unit is

dV =

∫ l f
2

0
dSdl =

∫ l f
2

0

∫ 2π

0
l2 cosθdαdldθ =

πl3f cosθdθ

12
. (10)

The number of fibers in the micro unit is

m =
ρ(θ)dV

fv
. (11)

In Equation (11), fv represents the volume of a single fiber:

fv =
πd2

f l f

4
. (12)
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Substituting Equations (10) and (12) into Equation (11) can obtain the number of fibers in the
micro unit:

m =
V f l2f cos3 θdθ

2Vd2
f

. (13)

The energy dissipation of a single fiber interface failure is

W1
f =

π
4

d f l2fσ
L
f . (14)

The energy required to break the fiber interface in the micro unit is

dW f = mW1
f . (15)

Substituting Equations (7), (9), (13), and (14) into Equation (15) can obtain

dW f = C1(as f + (C2 + C3 sin(ϕ+ 2θ)) tan δs f ) cos3 θdθ, (16)

where C1 =
πV f l5f
4d2

f V
, C2 =

p
cos2 ϕ

, C3 =
p sinϕ
cos2 ϕ

. C1 is related to fiber dosage, fiber length lf and fiber diameter

df, and C2 and C3 are related to normal stress and internal friction angle ϕof iron tailings powder.
Since fiber can only withstand the tensile force but cannot withstand the pressure, the fiber

interfacial energy dissipation during the direct shear test can be expressed as

W f =

∫ π
2

0
dW f . (17)

Substituting Equation (16) into Equation (17) can obtain the fiber interfacial energy dissipation,

W f =
2
3

C1(as f + (C2 + C3C4) tan δs f ), (18)

where C4 = 11
10 sinϕ+ 3

5 cosϕ is related to the internal friction angle of iron tailings powder.
The calculation results of the reinforced iron tailings powders C1, C2, C3, and C4 with different

fiber dosages under different normal stresses are shown in Table 4.

Table 4. Calculation results of C1, C2, C3, and C4 under normal stress.

Fiber
Dosage (%)

Vf (cm3) Normal Stress p
(kPa) C1 (m3

× 10−3) C2 (kPa) C3 (kPa) C4

0.25 0.343

100 0.066 104.75 22.32 0.82
200 0.066 209.51 44.63 0.82
300 0.066 314.26 66.95 0.82
400 0.066 419.02 89.26 0.82

0.5 0.686

100 0.132 104.75 22.32 0.82
200 0.132 209.51 44.63 0.82
300 0.132 314.26 66.95 0.82
400 0.132 419.02 89.26 0.82

0.75 1.028

100 0.198 104.75 22.32 0.82
200 0.198 209.51 44.63 0.82
300 0.198 314.26 66.95 0.82
400 0.198 419.02 89.26 0.82

1 1.373

100 0.264 104.75 22.32 0.82
200 0.264 209.51 44.63 0.82
300 0.264 314.26 66.95 0.82
400 0.264 419.02 89.26 0.82
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5.2. Interfacial Strength Parameters of Fiber-Reinforced Iron Tailings Powder

The direct shear energy dissipation Wfs of fiber-reinforced iron tailings powder can be expressed
as the sum of the direct shear energy dissipation W of iron tailings powder and the interfacial energy
dissipation Wf of fiber, as shown in Equation (19).

Wfs = Ws + Wf (19)

According to Equations (6), (18), and (19), the fiber interfacial strength parameters asf and δsf can
be obtained by the programming solution, and the mathematical model is shown in Equation (20).

minz =
∑∣∣∣∣(Wi

f s −Wi
s) −Wi

f

∣∣∣∣
s.t.


Wi

f =
2
3 Ci

1(as f + (Ci
2 + Ci

3Ci
4) tan δs f )

Wi
f s =

∫ smax

0 Fi
f sds

Wi
s =

∫ smax

0 Fi
sds

as f ≥ 0, δs f ≥ 0

(20)

where i represents the test number, i = 1, 2, ..., 16. Substituting the data of Tables 2 and 3 into Equation
(20), using the programming solver to obtain when z is the minimum, asf = 0.29 kPa, δsf = 0.57◦.
Substituting the calculation results of asf and δsf into Equation (18) can obtain the fiber interfacial failure
energy dissipation as shown in Figure 12.
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It can be seen from Figure 12 that under the same normal stress, as the fiber dosage increases, Wf
increases linearly but not obviously. In the case of the same fiber dosage, Wf increases substantially
and linearly with increasing normal stress. When the fiber dosage is between 0% and 1%, and the
normal stress is in the range 100–400 kPa, the maximum value of Wf is 0.8 J.

It can be concluded from the above analysis that the interfacial energy dissipation of
polypropylene fiber and iron tailings powder increases the direct shear energy dissipation of
polypropylene-fiber-reinforced iron tailings powder to a certain extent, thereby improving the shearing
performance of polypropylene fiber.

6. Conclusions

In this paper, the shear properties and direct shear energy dissipation of polypropylene-fiber-
reinforced iron tailings powder were studied by a direct shear test. Conclusions can be deduced
as follows:
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1. Adding polypropylene fiber can improve the cohesion of iron tailings powder, but with the
increase of fiber dosage, the cohesive force gradually decreases, and the internal friction angle of iron
tailings powder firstly decrease and then gradually increase.

2. A BP neural network algorithm can be used to fit the function relationship between shear force
and shear displacement of polypropylene-fiber-reinforced iron tailings powder with an average error
of less than 0.4 N.

3. Based on the principle of energy dissipation, the direct shear energy dissipation of
polypropylene-fiber-reinforced iron tailings powder increases linearly with the increase of normal stress.
Combined with the fiber distribution model, the interfacial strength parameters of polypropylene
fibers and the mathematical model of fiber interfacial energy dissipation can be obtained based on the
direct shear test data. Taking energy dissipation as an indicator, the addition of polypropylene fiber
can improve the shear performance of iron tailings powder.
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