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Abstract: It is critical for quality requirements, such as trust, privacy, and confidentiality, to be fulfilled
during the execution of smart city applications. In this study, smart city applications were modeled
as agent systems composed of many agents, each with its own privacy and confidentiality properties.
Violations of those properties may occur during execution due to the dynamic of agent behavior,
decision-making capabilities, and social activities. In this research, a framework called Agent Quality
Management was proposed and implemented to manage agent quality in agent systems. This paper
demonstrates the effectiveness of the approach by applying it toward a smart city application called
a crowdsourced navigation system to verify and assess agent data confidentiality. The AnyLogic
Agent-Based Modeling tool was used to model and conduct the experiments. The experiments
showed that the framework helped to improve the detection of agent quality violations in a dynamic
smart city application. The results can be further analyzed using advanced data analytic approach to
reduce future violations and improve data confidentiality in a smart city environment.
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1. Introduction

Cloud-based smart city technologies in the form of smart applications are currently used in
many cities around the world. The smart city technologies generate a large amount of real-time and
granular data that need to be protected. Fulfilling privacy and confidentiality requirements of smart
city applications has been a challenge due to this massive amount of data collected and processed
during execution. These data are collected from individual citizens via smart phones, smart cards,
smart vehicles, and other Internet of Things (IoT) and wearable devices applications with built-in
sensors and data capturing capabilities. These data, combined with data from other facilities in smart
cities, such as smart buildings and smart transportation services, are highly interconnected with third
party applications and city departments to improve the efficiency of smart city services. The correlation
between the large amounts of data increases the risk for privacy and data confidentiality violations,
such as the exposure of personal information, locations, and social activities [1].
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Crowdsourcing and crowdsensing are effective, scalable, and cost-efficient data collection and
processing systems. The capabilities of the smart devices and sensors to be interconnected in these
crowdsourcing and crowdsensing systems allow for the execution of many useful applications, such as
traffic monitoring and environment monitoring. Despite the benefits, many smart city applications,
together with social networking, have exposed users to threats, such as inference attack, identity theft,
and location tracking, that will lead to remote hijacking of the devices, as well as risking physical safety
of the users [2]. To maintain sustainable cities and communities, it is vital to ensure that people in the
ecosystem are happy and satisfied with the provided smart city services to enhance their quality of
life [3]. Therefore, the national and international security threats and instabilities that occur in smart
cities and megacities need to be continuously monitored in order to make better predictions, decisions,
and necessary improvements [4].

For this study, it is believed that run-time verification of quality properties could help to detect
violations that may occur during the execution of smart city applications. To perform the study,
smart city applications were modeled as agent systems composed of multiple agents. The concept
of agent systems, as either single-agent or multi-agent systems, has been used to actively model and
implement distributed systems in recent decades. The definitions and applications of the concept also
vary according to the purpose, i.e., how and where the concept is implemented. Multi-agent systems
have been used to model designs and to implement solutions for various kinds of distributed problems
in industries [5], social networking [6], and smart city applications [7]. Agents in smart city systems
represent users (citizens) or other smart elements and devices that have their own unique profile and
identity. Each agent in a smart city also has quality properties, such as privacy and confidentiality, that
need to be protected. Agent quality properties are important requirements for trusted and reliable
smart city applications [8]. Thus, despite the aim of the smart city applications to be effective and
efficient in improving quality of life, it is also important to ensure that agents’ quality properties
are established.

Privacy and data confidentiality are examples of agent quality properties in a typical agent system,
such as a smart city application. The violations of these quality properties occur most of the time during
execution due to the dynamics of agent behavior, decision-making capabilities, and social activities [9].
Hence, an agent quality management system that contains proper run-time verification and quality
assessment processes is needed to detect violations of the specified quality properties. In this research,
the issues of agent quality properties violations that occur during agent execution in a smart city
environment were tackled by proposing an Agent Quality Management (AQM) framework. To ensure
that the execution of smart city applications fulfill the specified non-functional or quality requirements,
this research worked toward improving the quality properties issues by detecting violations that may
occurred during run-time. The incorporation of run-time verification and quality assessment processes
at strategic system transitions and states was done to assess agent quality statuses at those states. The
assessed agent quality statuses were then classified into violation or non-violation groups. The number
of detected agent quality violations could be analyzed in order for necessary actions to be taken to
improve the agent quality status.

The rest of the paper is structured as follows. Section 2 reviews the background and related works,
while Section 3 describes the proposed AQM framework. Next, Sections 4 and 5 explain the case study
and experiment procedure, respectively. Finally, Section 6 presents the results and Section 7 concludes
the paper.

2. Related Research

This research belongs to the computer science domain that merges software engineering and
information management research areas. In this section, existing works on quality management in
agent systems, quality requirements in smart cities, and data quality management are presented.
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2.1. Quality Management in Agent Systems

The solutions to managing quality or non-functional requirements, such as trust, reputation, and
privacy, for agent systems were identified in a systematic literature review [10]. Trust and reputation
management models, such as REGRET [11], A Fuzzy Reputation Agent System (AFRAS) [12], FIRE+ [13],
Nusrat [14], and ScubAA [15], have previously been proposed. Table 1 presents the mapping of agent
quality management literature with the quality properties.

Table 1. The agent quality management literature with their associated quality properties.

No.
Agent Quality

Management Literature
Quality Properties

Trust Reputation Privacy Confidentiality Integrity

1 REGRET [11] - X - - -
2 AFRAS [12] X X - - -
3 i*framework [16] - - X - -
4 FIRE+ [13] X X - - -
5 Privacy Management [17] - - X - -
6 [14] X X - - -
7 PrivaCIAS [18] - - X - X
8 ScubAA [15] X X - - -
9 [19] X - - - -

10 FTE [20] X X - - -
11 TEIF [21] X X - - -
12 [22] X - - - -
13 [23] - - X - -

AFRAS—A Fuzzy Reputation Agent System; FTE—Fuzzy Logic Based Trust Establishment; TEIF—Trust
Establishment Model Using Indirect Feedback; PrivaCIAS—Privacy as Contextual Integrity in Decentralized
Multi-Agent Systems.

For managing trust and reputation, the FIRE+ model [13] incorporated information from multiple
sources to manage trust and reputation and to comprehensively assess agent performance in open
systems. Nusrat and Vassileva [14] proposed multi-faceted trust values to be implemented in
decentralized user modeling to manage trust and reputation. ScubAA [15] was presented as an
agent trust management framework for open systems. The framework considers multiple sources of
evidence to find the most trusted service agents in open agent systems. Husseini et al. [19] discussed
a rule-based fuzzy ranking model to evaluate trust between a seller and buyer. Fuzzy Logic Based
Trust Establishment (FTE) [20] and Trust Establishment Model Using Indirect Feedback (TEIF) [21]
manages trust in the situation where direct feedback is not available and uses an agent behavior model
to establish trust for agent interaction. Rishwaraj et al. [22] used temporal difference learning method
to evaluate trust based on agent interaction experience. Singh and Chin [23] proposed an enhanced
trust algorithm by implementing a hybrid multi-faceted computational trust model for an online
social network.

The previously proposed privacy management models for privacy properties include
i*framework [16], Privacy as Contextual Integrity in Decentralized Multi-Agent Systems
(PrivaCIAS) [18], and Privacy Management [17]. The privacy management using i*framework
defines the agent privacy requirements and reasoning of solutions via a systematic framework [16].
The PrivaCIAS privacy model considers requirements and solutions to detect and prevent privacy
violations [18]. Piolle et al. [17] proposed a user-centered privacy management that deals with the
privacy policy. Gharib et al. [24] presents an ontology for privacy requirements for systems that deal
with personal information.

The existing works mentioned above have proposed solutions for some agent quality issues
in general agent systems. Agent systems in smart city applications, however, have more complex
interconnected data from multiple data collection sources and dynamic contextual information. Other
quality requirements, such as confidentiality and integrity, also have not been extensively focused on.
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Furthermore, the issues of agent quality properties violations that occur during run-time have not
been extensively researched. This research identified the gap and complements the existing works by
proposing a solution to detect agent quality properties violations by concentrating on the agent data
and contextual information collected during run-time.

2.2. Quality Requirements in Smart Cities

A smart city is a concept that integrates information and communication technology in every
element in an urban area to improve the efficiency and quality of life. Interactions between citizens,
third parties, and city departments are getting more and more complex with the deployment of digital
and online applications in various types of systems in a smart city environment [1]. Mobile devices,
such smart phones, smart vehicles, and wearable devices, are equipped with features, applications,
and various types of sensors that allow for data collection and data-sharing capabilities. These devices
interact, communicate, and exchange messages in a smart city environment via social networking,
crowdsourcing, and crowdsensing [25].

Fulfilling non-functional or quality requirements, such as privacy and confidentiality, during the
execution of smart city applications is still an open issue [26]. The needs to overcome the challenges
have been discussed in the literature. The existing proposed solutions for agent quality requirements,
such as trust and privacy, of smart city applications are presented in Table 2. Khan et al. [27] proposed
a framework that provides features for the privacy-protected and trusted service provisioning in smart
cities. An encryption scheme was proposed by Moffat et al. [28] to provide confidentiality for wearable
devices that perform data collection in a smart city environment. The design and development
of anonymous and accountable access control was presented by Hernández-Ramos et al. [29] to be
deployed in a machine to machine enabled (M2M-enabled) IoT. It is an example of privacy-by-design
where privacy-aware access control is implemented. A privacy-preserving architecture called
Authorized Analytics performs differential privacy techniques to be implemented in a mobile IoT.
Shehada et al. [30] proposed Secure Mobile Agent Protocol (SMAP), which provides confidentiality and
integrity for a mobile agent to protect vehicular communication systems in smart cities from security
attacks. A privacy-preserving rating data publishing model was introduced by Zhang et al. [31] to
ensure privacy in recommender systems in smart cities. A trust strategy called data trustworthiness
enhanced crowdsourcing strategy (DTCS) proposed a method for trust relationship establishment to
enhance data trustworthiness in a mobile crowdsourcing system in smart cities [8].

Table 2. The mapping of the proposed solutions for smart city quality requirements with the focused
quality properties.

No. Proposed Solutions Quality Properties

Trust Privacy Confidentiality Integrity

1 Security and privacy framework [27] X X - -

2 Anonymous and Accountable Access
Control Design [29] - X - -

3 Authorized Analytics Architecture [32] - X X -
4 Secure Mobile Agent Protocol (SMAP) [30] - - X X

5 Ciphertext-Policy Attribute-based Encryption
(CP-ABE) [28] - - X -

6 Privacy-preserving collaborative filtering model [31] - X - -

7 Data trustworthiness enhanced crowdsourcing
strategy (DTCS) [8] X - - -

The proposed solutions to establish trust, privacy, confidentiality, and integrity have been
presented in the listed literature. Solutions including framework, encryption, design, architecture,
protocol, model, and strategy elements have been proposed. However, despite implementing the
above approaches, the dynamic agent profile status, social activities, and shared contents that keep
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changing during run-time may still cause unintended violations of quality properties. Thus, a gap was
identified and a solution was proposed to detect agent quality properties violations during run-time.

2.3. Data Quality Management

To perform the quality management of data or information, many researchers have been working
on merging quality management with information systems [33,34]. Total Data Quality Management
(TDQM) was proposed by Wang [35]. To date, TDQM is still a relevant concept and has been improved
from time to time. It has been implemented to manage different types of recent data and applications,
such as social media [36], manufacturing [37], financial [38], and medical [39] data. In this research,
TDQM was adapted to propose the Agent Quality Management (AQM) framework for managing
agent quality in smart city environment.

The TDQM cycle consists of four elements, which are define, measure, analyze, and improve.
The first process is the define process where output quality parameters are identified based on
characteristics of the collected input, identification of the resources to support the quality of the output,
and requirements of the produced outputs and the system infrastructure. The second quality process
in the cycle is the measuring process. In this phase, the scores for the defined quality parameters
are calculated. To calculate the scores, data quality metrics need to be developed. The data quality
requirements identified during the definition process are transformed into rules and measurable
indicators (quality statuses or scores) that reflect the real condition (contextual information) of the
data. In order for the parameter to receive a high-quality status or score (correct), certain conditions
must exist, and if a condition does not exist, the parameter will receive a low status (error) score.
Third, the analysis process investigates the data quality measurement results generated. The analysis
can be simple or complex to suite the verification needs. The simplest analysis method is done by
answering a list of assessment questions. Finally, the improvement process is the action taken after a
thorough analysis is performed. Here, the data quality parameters may be refined, removed, or added
to produce more accurate and reliable data quality statuses for the information product.

2.4. Agent Tools

There are tools that can be used to design, model, simulate, develop, and analyze agent systems.
One of the tools that can be used to model and simulate agent systems is AnyLogic. The AnyLogic tool
supports agent model architecture; agent synchronization; space, mobility, and spatial animation; agent
connections and communication; and dynamic creation and destruction of agents [40]. For developing
and executing agent systems, JADE (Java Agent Development Framework) can be used. JADE is a
JAVA-based software framework for multi-agent systems that has been in development since at least
2001. The JADE platform enables the implementation of multiple agents by following Foundation for
Intelligent Physical Agents (FIPA) standard architecture, agent management, and communication [41].
Another tool for constructing agent applications is the Cognitive Agent Architecture (Cougaar). Cougaar
is a framework in which the architecture includes components for agent communication via message
passing, naming, mobility, agent local memory, interfaces, and additional agent functionalities [42].
Finally, a tool that provides a platform for the development of agent systems is Jason. Jason infrastructure
provides agent communication and agent life cycle control (creation, execution, and destruction) [43].
ACLAnalyser is a powerful tool to monitor, debug, and analyze multi-agent systems. ACLAnalyser
monitors and analyses agents’ interactions and saves the exchanged messages into a database to be
retrieved later to identify useful information [44]. Similar to the JADE RMA (Remote Monitoring
Agent) GUI (Graphical User Interface), ACLAnalyser provides agent conversation monitoring with
additional advance features, such as data mining to monitor larger and more complex multi agent
systems. Table 3 shows the comparison matrix that maps agent tools with its features. From the
comparison matrix, AnyLogic [40] is the tool that provides design, modelling, simulation, development,
and analysis features.
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Table 3. Agent tools with their associated features.

No. Agent Tools Features

Design Modelling Simulation Development Analysis

1 AnyLogic [40]
√ √ √ √ √

2 Java Agent Development
Framework (JADE) [41]

√

3 Cougaar [42]
√

4 Jason [43]
√

5 ACLAnalyzer [44]
√

3. AQM Framework for Smart City Applications

By observing the trust, privacy, and confidentiality issues from a data quality point of view,
it is suggested that quality properties in smart city applications could be checked and assessed by
considering contextual data. In this research, smart city applications were modeled as agent systems.
During the run-time of the modeled smart city application or agent system, the effective way to
assess agent quality was by performing an analysis of agent interactions and social activities. The
richness of the agent data captured during those activities has opened the opportunity for granular
analysis using the data at critical points during the execution. The AQM framework is designed as an
extension of the generic three stages of the existing verification process, i.e., modeling, specification, and
verification [45]. The framework was proposed by adapting the TDQM model reviewed in Section 2.
The TDQM principle was adapted to manage agent quality within agent systems. The framework
coordinates the agent quality management processes into four stages, i.e., definition and specification,
modeling and execution, verification and assessment, and analysis and improvement phases that can
be implemented as a cycle. AQM checks and assesses the agent quality conditions in selected critical
states and transitions. The quality checking process includes continuous monitoring during run-time
in order for the quality specifications to be verified by considering contextual information, i.e., relating
the agents to their individual profile status, social preferences, and content sharing activities that may
affect agent quality properties.

The quality assessments for an individual agent in a smart city environment can be used to detect
agent quality properties violations during run-time. The integration of TDQM in order to check,
assess, and manage agent quality, and to finally detect agent quality violations, is the new contribution
that complements the existing proposed solutions for quality requirements in smart cities. Figure 1
illustrates the extension of the existing generic verification process and the integration of TDQM to
form the new AQM framework. Multiple processes are organized into the four elements of AQM,
which are:

1. definition and specification,
2. modeling and simulation,
3. verification and assessment,
4. analysis and improvement.

In the following subsections, each of the processes implemented in the proposed AQM
are explained.

3.1. Definition and Specification

The first part of the AQM is the definition and specification process, starting with the definition of
agent quality goals and criteria. Agent quality criteria are the factors that constitute high-quality agents.
The existing works suggested that data quality can be defined as quality assessments performed
toward several defined parameters [46,47]. In this research, the focus was toward the agent quality
(non-functional) requirements during run-time. The high-quality agents were the agents that fulfilled
the constraints or non-functional requirements to ensure reliability and trust between agents.
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Thus, the selected criteria should represent the quality of agents in various conditions and
activities during execution. The selected criteria were preferably measurable in order for the introduced
metrics for these criteria can be used to continuously quantify agent quality statuses during run-time.
The agent parameters and critical states were defined to be included in the agent quality metric
definition. An agent quality metric is a measure of agent quality properties. In order to measure the
agent quality, based on the abstraction of the agent requirements definition, the agent quality metrics
were constructed. Finally, at the end of the definition and specification phase, checking rules were
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The agent quality requirements, parameters, and critical states identified were transformed into
the checking rules that reflect the specifications and real condition of the agent quality status. The
main aim of the checking rules was to tie together the agent parameters that contribute to the checking
and assessment of the agent quality statuses. The implemented information quality works were
adapted [46,47], where the aggregation of multiple agent quality parameters is suggested. The rules
defined in this phase are will be used in the verification and assessment phase as the checking rules
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to perform run-time verification and quality assessment within the agent models. The rules for each
agent quality metric range from a simple if–else statement typical in many programming algorithms to
more complex formal specifications (e.g., written in temporal logic) for verification purposes. For each
metric, the rules require the execution of run-time verification to detect the reachability of critical states
where quality assessment is performed.

For this research, to define the checking rules mentioned above, the steps are listed below:

1. Defining the agent quality goal for an agent system: The agent quality goals during run-time are
used to ensure that agents are high in quality such that the non-functional agent requirements
are fulfilled. The examples of agent non-functional requirements are trust, reputation, privacy,
confidentiality, and integrity.

2. Defining agent quality requirements: To define the agent quality requirements, the selected
criteria should represent the quality of agents in various conditions and activities during execution.
The selected criteria are preferably measurable in order for the introduced metrics so that these
criteria can be used to continuously quantify agent quality statuses during run-time. For each
quality criterion, the contributing factors (contextual conditions) that can cause satisfaction and
possible violations of requirements are identified. The requirements that are defined are the most
important non-functional requirements or constraints of the agents as an individual or group. The
list is not exhaustive and it should rather be considered as the minimal agent quality requirements
to be verified and assessed. The list can be extended further during the definition process in the
next AQM process cycle.

3. Defining agent quality metrics: The abstraction of agent quality requirements and violations that
are defined is translated into a more concrete form of representation known as agent quality
metrics. The agent parameters and critical states are defined so they can be included in the agent
quality metric definition. An agent quality metric is a measure of agent quality properties.

4. Defining agent quality checking rules: Rules and indicators (in the form of quality statuses) are
associated with each metric based on the contextual conditions. The agent quality requirements,
parameters, and critical states identified are transformed into the checking rules for each metric,
which reflect the specifications and real condition of the agent quality status. The main aim of
the checking rules is to tie together the agent parameters that contribute to the checking and
assessment of the agent quality statuses. The rules defined in this phase will be used in the
verification and assessment phase as the checking rules to perform run-time verification and
quality assessment within the agent models. The rules for agent quality metrics range from
simple if–else statements to more complex formal specifications (e.g., written in temporal logic)
for verification purposes. For each metric, the rules require the execution of run-time verification
to detect the reachability of critical states where quality assessment will be performed.

5. The agent quality metrics and checking rules for each agent quality requirements are formally
specified. The specification in AQM refers to the specification of the reachability of certain
states that are defined as critical. Critical states occur when the agent states that determine
either agent quality requirements are violated. When these critical states are reached, the quality
assessment is performed by determining the quality statuses based on the conditions that are
defined as violations and non-violations for the agent. Finally, the checking rules containing
the preconditions and the assigned quality statuses are specified using temporal logic and are
presented as the output for this definition phase.

3.2. Modeling and Execution

The second process of the AQM is the modeling and execution phase. In this phase, the agent
systems are modeled, starting from the creation of the agent population and followed by the execution
of agent activities, such as creating relationship links and exchanging information between agents.
Every agents’ profile and default privacy preferences are also included in the model. In order to
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perform continuous assessment and verification during run-time, the quality checking rules defined in
the previous phase are incorporated and used to assess the quality status of agent states.

The agent systems to be verified are modeled using the AnyLogic system [40]. Each individual
agent’s behaviors, preferences, and activities are modeled using state charts [48]. The creation of
agents and the modeled agent activities and statuses can be executed at a specified rate and time
throughout the model execution. Depending on the modeled agent systems, each agent has its own
parameters and attributes. The typical agent attributes include: AgentId and AgentName. Agent
social activities involve the interaction between agents to request and confirm relationship links and to
share information related to profiles, relationships, online statuses, and contents. The modeled and
executed agent social activities are monitored and real time agent parameters and attributes (contextual
information) are tracked in order to be used during quality assessment. The agent quality depends
on its own preferences and the preferences of other agents that interact with the agent. Basically, for
agents that interact with each other and perform social activities, there are three layers of executions
that incorporate the verification and assessment process, which are the individual level, group level,
and content level. Figure 3 shows the modelling and execution phase of the AQM framework.
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The explanation of the sample implementation of each level is as follows:

1. Individual level: The verification and assessment of an individual agent’s quality parameter
includes the monitoring of agent activities by tracking the active states and verifying the
reachability of critical states. Next, the assessment of the exposure level for each parameter is
performed. The continuous assessment produces real-time exposure statuses that consider real
time and dynamic agent contextual information that are the privacy preference settings for each
agent parameter, such as the profile, the presence (online) status and the chatting availability, and
the confidentiality settings for each agent content.

2. Social level: The second layer verifies the agent relationship quality parameter in which the
privacy preference settings and social activities of other agents directly and indirectly affect the
agent’s privacy.

3. Content level. The third layer is to check the agent quality parameter as a content owner and
content sharing partner. As a content owner, the agent quality depends directly on the agent
preference settings, and as a content sharing partner, the agent quality depends indirectly on
other agent relationship privacy preference and sharing activities.
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In this modeling and execution phase, the constructed metrics and rules from the previous phase
for checking and measuring the agent confidentiality are modeled and the run-time verification and
assessment of AQM is implemented within the agent system model using AnyLogic [40].

3.3. Verification and Assessment

The third AQM component is the verification and assessment phase as shown in Figure 4. In this
phase, a process model called Run-Time Verification and Quality Assessment (RVQA) is developed to
perform the checking and assessment process. The modeled agent systems from the previous phase
incorporate rules to check the reachability of critical states where violations can occur. Next, whenever
the critical states are reached, quality assessments are performed to determine the quality statuses.
The assessment procedure identifies the state quality conditions and assesses the quality status based
on the specified checking rules. The agent quality statuses are used for classifying the agent quality
satisfaction and violations. For each agent quality property level, i.e., individual, social, or content
level, the total number of the detected quality violations is calculated.
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3.4. Analysis and Improvement

Following the verification and assessment part, the final process in the AQM framework is the
analysis and improvement phase as presented in Figure 5. This analysis process is performed as one of
the phases in the quality management cycle. After checking whether critical states have been reached
and assessing the agent quality statuses, in this phase, the statuses are classified and presented in a
time series to show the level of agent run-time quality statuses. The analysis of the verification and
assessment results can be used by the agent owner to minimize the quality violation levels by changing
the preference settings and increasing or reducing the interaction activities. For example, by changing
the privacy setting from public to private or friend only for a certain parameter, the exposure level can
be reduced. The improvement procedures are also performed here to increase the effectiveness of the
solution by identifying new quality metrics for the next verification cycle. From the analysis process,
improvements can be suggested to add, remove, refine, or redefine agent quality requirements, metrics,
and rules for checking and measuring the quality of agent systems from time to time.

3.5. Incorporating AQM within the Agent System Model

The earlier sections of this paper have presented the AQM framework as a solution for agent
quality issues during run-time. Sections 3.1–3.4 explained the components of the AQM framework.
This section elaborates on the incorporation of AQM components within the agent system model.
Figure 6 presents the AQM framework components and the input and output taken and produced
during the execution of the model.
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Figure 6. The components of the Agent Quality Management framework.

Depending on the type of agent systems and its features, to perform tasks and to achieve goals in
agent systems, agents that represent users interact with other agents (other users). The interactions
establish relationship links, involve conversations, and share information. However, these interaction
activities are susceptible to quality violations that can lead to malicious activities, such as identity theft
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and inference attacks, due to the possibilities of unintentional overexposing of profile information,
over-sharing of contents, and revealing of physical locations [49,50]. In many situations, users are
not aware that their online social activities and tasks, such as accepting relationship requests, sharing
information, and buying or selling online, risk their online and offline privacy, data confidentiality,
or integrity. Therefore, the AQM framework was proposed to manage agent quality and detect agent
quality violations.

4. Case Study: AQM Implementation

The Crowdsourced Navigation System (CNS) [51] is a mobile crowdsourcing system that has
been chosen as a case study to evaluate the effectiveness of the proposed solution. The proposed AQM
was implemented for managing the data confidentiality property in CNS. The four AQM phases were
incorporated in the CNS agent system. Figure 7 shows the CNS architecture that incorporates the
AQM framework.
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4.1. Definition and Specification for the CNS

Confidentiality is implemented as one of the agent quality goals in an open system to ensure agent
data is protected [52]. Violations of data confidentiality can be in the form of data disclosures, where
agent’s data are unintentionally disclosed to other agents during social activities and information
sharing [53]. Data confidentiality violations can put the safety of the agent’s data at risk by disclosing
both the agent identity and physical location at the same time. Therefore, the agent quality requirements
are implemented to fulfill the need to determine the agent data confidentiality status during execution.
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This can be achieved via verification and assessment by considering contextual information that
provides the contributing factors or conditions for the data confidentiality violations to occur. Agent
confidentiality criteria for this case study include the protection of an agent’s personal identity and
location, as well as social and shared content information, from potential disclosure during the
execution of agent activities. The conditions include the disclosure of agent’s personal identity, such
as first names or company name as part of the username during account activation, the preference
to allow the agent to become publicly visible, and the connection to online social network services
containing personal identity together with location information.

Every active agent discloses a certain level of data depending on agent conditions at (1) the
individual level, depending on the account anonymity and presence visibility; (2) the social level,
depending on the social networking connection; and (3) the content level, depending on the shared
content types. The definition of agent confidentiality requirements and the possible violations for
confidentiality criteria, the extracted metrics with attributes, and the constructed checking rules
for each of the confidentiality metrics have been specified and reported [51]. Figure 8 summarizes
the identified contributing factors or conditions of data confidentiality disclosures in the CNS. The
contributing factors can be divided into three levels, which are the disclosures at the individual, social
and content levels.
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4.2. Modeling and Execution of the CNS

The agent-based CNS has been modeled using the AnyLogic multi-method modeling tool [40].
State chart is used to model agent activities where the runtime verification and quality assessment are
implemented at strategic transitions [51]. To activate an account, a user needs to choose a username.
Agents can choose whether to use a username that contains personal identity information, such as their
first name or company name, or use an anonymous name. Whether the username is real or anonymous,
by default, other agents can see the location of active agents. Although an agent can choose to become
invisible so that its presence or online status is unknown to other agents, this choice is a constraint
that limits agent functionality to report and share information with other agents. These choices and
preferences are an example of conditions that determine whether the confidentiality of agent identity
and location is violated.

4.3. Verification and Assessment for the CNS

The RVQA is a process model developed for the verification and assessment phase of the AQM
framework to perform run-time data confidentiality checking and assessment processes. The processes
are carried out within the agent-based CNS model. The RVQA process in the CNS starts when the user
agents are created [51]. The run-time verification is implemented to identify when the defined critical
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states are reached. The critical states are the states where the violations can occur. At the critical states,
the quality assessment is performed. The assessment is performed to indicate the disclosure status of
the agent identity, location, social information, and contents by considering the contextual information.
The contextual information, i.e., agent activities and decisions, determine the agent data confidentiality
status as disclosed or protected. Finally, the identified data confidentiality disclosures are classified
and reported as detected data confidentiality violations.

The RVQA assesses the agent data confidentiality disclosure status based on the defined checking
rules for each confidentiality metric [51]. As the verification and assessment processes are part of the
AQM framework and the AQM phases are performed as a cycle, the RVQA can be performed at one
level at a time starting from the individual level, followed by the social and content levels, to improve the
effectiveness of violation detection. To perform the detection process, the confidentiality requirements
and specified checking rules are used to design the algorithms to detect the data confidentiality
disclosures. The detection includes the process of checking the reachability of critical states, assessing
disclosure status at the critical states, and finally, reporting the number of detected confidentiality
violations. The following subsections explain the RVQA process at the agent’s individual, social, and
content levels in detail.

4.3.1. The RVQA Process at the Agent Individual Level of the CNS

Figure 9 shows individual agent activities and the implementation of the RVQA to check an agent
data confidentiality disclosure status during an agent active period. The individual agent activities
include the stage when the agent account becomes active, the dynamic changes of agent decisions
toward profile anonymity and presence visibility throughout the agent active period, and the stage
when the agent account becomes inactive.
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Figure 9. The RVQA implementation at the agent individual level of the CNS.

Algorithm 1 shows the RVQA confidentiality violations detection for the agent individual level
of the CNS that checks agent identity and location confidentiality disclosures. As defined by the
checking rules for the individual level [51], the agent account active state is a critical state, while
the agent decisions for profile anonymity and presence visibility determine its identity and location
confidentiality disclosures statuses. An agent dynamic profile anonymity option can be chosen to be
either ”real” or ”anonymous” and determines whether the agent identity is ”disclosed” or ”protected,”
respectively. Similarly, the agent presence visibility option can be set to be ”visible” or ”invisible” and
determines whether the agent location is ”disclosed” or ”protected,” respectively.
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Algorithm 1. Identity and location confidentiality disclosures detection.

Input: Agent Index: x, Current Time: t

Output:
noDisclosedIdentity, noNotDisclosedIdentity, noDisclosedLocation,
noNotDisclosedLocation, noDisclosures

1 begin
2 if AccountActive(x,t) then
3 Critical(x,t)→ true
4 if ProfileReal(x,t) then
5 IdentityDisclosed(x,t)
6 increase(x,noDisclosedIdentity)
7 increase(x,noDisclosures)
8 end
9 if ProfileAnonymous(x,t) then

10 IdentityNotDisclosed(x,t)
11 increase(x,noNotDisclosedIdentity)
12 end
13 if PresenceVisible(x,t) then
14 LocationDisclosed(x,t)
15 increase(x,noDisclosedLocation)
16 increase(x,noDisclosures)
17 end
18 if PresenceInvisible(x,t) then
19 LocationNotDisclosed(x,t)
20 increase(x,noNotDisclosedLocation)
21 end
22 end
23 end

24
return noDisclosedIdentity, noNotDisclosedIdentity, noDisclosedLocation,
noNotDisclosedLocation, noDisclosures

4.3.2. The RVQA Process at the Agent Social Level of the CNS

Figure 10 shows the RVQA implementation to check the agent data confidentiality disclosure
status at the social level. The agent social activities include the stage when the agent account becomes
active, the agent establishes connection to the social network, and finally, when the agent account
becomes inactive.
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Algorithm 2 shows the RVQA data confidentiality violations detection for the agent social level
of the CNS that checks for social information disclosures. As defined by the checking rules for the
social level [51], the agent account active status determines the agent critical states, and the agent’s
connection to online social networking determines the agent’s social disclosure status. The agent’s
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dynamically established or not established connections to online social networking determine whether
the social information are “disclosed” or “protected,” respectively.

Algorithm 2. Identity and location confidentiality disclosures detection.

Input: Agent Index: x, Current Time: t

Output: noDisclosedSocialInformation, noNotDisclosedSocialInformation, noDisclosures
1 begin
2 if AccountActive(x,t) then
3 Critical(x,t)→ true
4 if SocialNetworkingConnected(x,t) then
5 SocialInformationDisclosed(x,t)
6 increase(noDisclosedSocialInformation)
7 increase(x,noDisclosures)
8 end
9 if SocialNetworkingNotConnected(x,t) then

10 SocialInformationNotDisclosed(x,t)
11 increase(noNotDisclosedSocialInformation)
12 end
13 end
14 end
15 return noDisclosedSocialInformation, noNotDisclosedSocialInformation, noDisclosures

4.3.3. The RVQA Process at the Agent Content Level of the CNS

Figure 11 shows the agent content-sharing activities and the RVQA implementation to check the
agent data confidentiality disclosure status during the execution. The agent content-sharing activities
include the stage when the agent’s account becomes active, contents are shared, and finally the stage
when agent’s account becomes inactive.
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Figure 11. The RVQA implementation at the agent content level of the CNS.

Algorithm 3 shows the RVQA data confidentiality violations detection for the agent content level
of the CNS. As defined by the checking rules for the content level [51], the agent account active state
is an agent critical state, while the shared content types determine the agent’s content-disclosure
status. Shared content types that are “public” or “private” determine whether the shared contents are
“disclosed” or “protected,” respectively.
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Algorithm 3. Content confidentiality disclosures detection.

Input: Agent Index: x, Current Time: t

Output: noDisclosedContent, noProtectedContent, noDisclosures
1 begin
2 if ContentShared(x,t) then
3 Critical(x,t)→ true
4 if ContentPublic(x,t) then
5 ContentDisclosed(x,t)
6 increase(noDisclosedContent)
7 increase(noDisclosures)
8 end
9 if ContentPrivate(x,t) then

10 ContentProtected(x,t)
11 increase(noProtectedContent)
12 end
13 end
14 end
15 return noDisclosedContent, noProtectedContent, noDisclosures

These verification and assessment processes are performed continuously for all levels whenever
the defined critical states are reached. The numbers of detected violations, i.e., noDisclosedIdentity,
noDisclosedLocation, noDisclosedSocialInformation and noDisclosedContent, are increased every time
the data disclosures are detected. It is followed by keeping track of the total number of confidentiality
disclosures detected to indicate the overall confidentiality disclosure level at that particular time.
The total number of detected violations, noDisclosures, is calculated and reported. An increased
number of detected disclosures means that the agent confidentiality violation level is high (low agent
quality) and fewer detected disclosures means that the agent confidentiality violation level is low (high
agent quality).

5. Experiment Procedure

The objective of this experiment was to detect agent data confidentiality violations in the CNS such
that its effectiveness can be evaluated. The confidentiality requirements and the possible violations
defined in a previous work [51] were utilized. Next, the RVQA implementation within the CNS agent
model was executed in order to monitor each agent’s activities. Upon execution, the monitoring
process to check the reachability of critical states at the individual, social, and content levels was
performed. When the critical states were reached, the confidentiality statuses were assessed based
on the defined agent confidentiality metrics and checking rules. The detected data confidentiality
violations were classified and the total number of detected data confidentiality violations was reported.
Finally, the effectiveness of the confidentiality violation detection was evaluated using the evaluation
metrics. The RVQA procedures in the CNS and CNS Searching were implemented within the executed
CNS for comparison. The RVQA data confidentiality violation detection results were compared to the
confidentiality violations that were found using CNS Searching. The following subsections explain the
RVQA and CNS Searching procedures in detail.

5.1. RVQA Procedures for Detecting Data Confidentiality Violations

The data confidentiality violation detections were performed for each executed single agent at the
individual, social, and content levels using the proposed RVQA. The RVQA procedures kept track
of the number of violations detected at each level and calculated the total number of all detected
violations as follows:



Appl. Sci. 2019, 9, 5111 18 of 27

1. For a single agent at the individual level, the RVQA obtained the number of individual data
confidentiality violations, RVQASingleAgentIndividualDCV, by keeping track of the number of
the agent accounts that disclosed its identity and location to the public, as shown in Equation (1):

RVQASingleAgentIndividualDCV = noDisclosedIdentity + noDisclosedLocation (1)

2. For a single agent at the social level, the RVQA calculated the number of social data confidentiality
violations, RVQASingleAgentSocialDCV, by including the number of established connections to
the online social network. Equation (2) was used for the calculation:

RVQASingleAgentSocialDCV = noDisclosedSocialInformation (2)

3. For a single agent at the content level, the RVQA calculated the number of content data
confidentiality violations, RVQASingleAgentContentDCV, by including the amount of contents
disclosed to the public. Equation (3) was used for the calculation:

RVQASingleAgentContentDCV = noDisclosedContent (3)

4. The total number of data confidentiality violations detected by the RVQA from individual, social,
and content levels for all agents in the executed CNS model, RVQATotalDetectedDCV, was
calculated using Equation (4). In this experiment, x is the agent identification and n is the number
of agents executed in CNS.

RVQATotalDetectedDCV =
n∑

x=1
(RVQASingleAgentIndividualDCVx +

RVQASingleAgentSocialDCVx + RVQASingleAgentContentDCVx)
(4)

5.2. CNS Searching Procedures

The data confidentiality violation detections were also performed for each executed single agent
and for all agents in the CNS using CNS Searching. The CNS Searching procedures kept track of the
number of data confidentiality violations detected and calculated the total number of all detected
violations as follows:

1. For a single agent at the individual level, CNS Searching obtained the number of individual data
confidentiality violations by keeping track of the agent identity and locations that are exposed to
the public, as shown in Equation (5):

SearchingSingleAgentIndividualDCV = noDisclosedIdentity + noDisclosedLocation (5)

2. For a single agent at the social level, CNS Searching did not obtain any social data confidentiality
violation as it did not consider the connection to a social network as a condition for data
confidentiality violations.

3. For a single agent at the content level, CNS Searching did not detect any social data
confidentiality violation as it did not consider publicly published contents as a condition
for data confidentiality violations.

4. The total number of data confidentiality violations detected by CNS Searching for all agents in
the executed CNS model, SearchingTotalDetectedDCV, was calculated using Equation (6). In this
experiment, x is the agent identification and n is the number of agents executed in CNS.

SearchingTotalDetectedDCV =
n∑

x=1

(SearchingSingleAgentIndividualDCVx) (6)
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6. Results and Discussion

During the experiment, each agent’s active account was checked to identify whether the agent’s
data were disclosed or protected throughout the execution period. The disclosed identity, location,
social connections, and published contents visible to the public were classified as detected agent data
confidentiality violations. The detection results were presented in the form of time graphs for the first
24 h of the CNS execution.

6.1. Data Confidentiality Violations Detection Results

Figure 12 shows the number of disclosed agent identities and locations as compared to the total
number of registered active accounts throughout the execution period. This time graph represents the
agent data confidentiality violation detection results at the individual level. For each agent account, the
agent anonymity could be either a real identity or anonymous. At the same time, the agent’s presence
visibility was either visible (location was disclosed) or invisible (location was protected). At the end of
the 24-h execution, out of all the registered agent accounts, about 20% of the agent identities and 20%
of agent locations had been disclosed to the public. According to the defined requirements, disclosing
the agent identity, location, or both to the public violates agent data confidentiality. These information
disclosures to the public were due to agent preferences that revealed the agent identity and made the
agent’s presence (location) visible to the public during the run-time.Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 28 
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Next, Figure 13 displays the amount of disclosed social information. This time graph represents
the result of the agent data confidentiality violations detected at the social level. For this second data
confidentiality level, more than 70% of agents’ social information were disclosed to the public via
connection to online social networking during the run-time. Disclosing social information to the public
is a data confidentiality violation since it risks the disclosure of personal information, such as a real
name, address, and relationship to the public [53].
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Finally, Figure 14 presents the amount of disclosed contents. This time graph represents the result
of agent data confidentiality violations detected at the content level. At this third data confidentiality
level, about 80% of shared contents were disclosed to the public. These content disclosures occurred
when agents shared public contents, such as traffic reports. These types of disclosures reveal an agent’s
account and risk other disclosures, such as their identity and location.
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6.2. Comparison of Data Confidentiality Violation Detection Results

This section compares the results of the agent data confidentiality violation detection and
classification using the RVQA against the detection using the CNS Searching process explained in
Sections 5.1 and 5.2, respectively. The total numbers of data confidentiality violations detected by
both methods throughout the CNS execution period are shown in Figure 15. At the end of the 24 h of
execution, the RVQA detected a 72.45% higher number of violations as compared to the CNS Searching
process. The total number of violations detected by RVQA was 137,373, while 37,851 violations
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were detected by the CNS Searching process. The result shows that the implementation of the AQM
framework and the RVQA process helped to detect about 70% more agent quality violations that
occur during the execution of CNS as compared to the detection performed using the CNS Searching
process. One of the main reasons is that more agent data confidentiality requirements and rules can be
defined and implemented via the AQM framework and RVQA process. As a result, more agent data
confidentiality violation conditions can be detected.
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6.3. Results Validation Using Evaluation Metrics

The total number of RVQA data confidentiality violation detections was evaluated using confidence
and sensitivity metrics [54–56]. Confidence (precision) is the percentage of the detected violations
from the overall detection result that are correct (when compared to the known data confidentiality
violations). Sensitivity (recall) is the percentage of the detections from the overall known violations
that are detected and correct (when compared to the known data confidentiality violations). To use the
metrics, the expected total number of the detected data confidentiality violations for the experiment
was calculated using Equation (7). In this experiment, x is the agent identification and n is the number
of agents executed in CNS.

ExpectedTotalDetectedDCV =
n∑

x=1
(noDisclosedContactx + noDisclosedIdentityx +

noDisclosedLocationAtRealx + noDisclosedSocialInformationx + noDisclosedContentx)
(7)

Figure 16 shows the confidence of the RVQA results throughout the 24 h of the CNS execution.
From the start, the graph shows a highly increased confidence percentage. The graph then gradually
increases and stays constant above 95% as more than 95% of the subsequent detected data confidentiality
violations were known violations that were expected to be detected. However, during the classification
of violations, RVQA managed to include violations that were not in the list of expected violations. For
example, RVQA classified all the disclosed locations as data confidentiality violations, while the list
of expected violations only considered location disclosures as data confidentiality violations when
the agent identity was also disclosed. The confidence percentage was expected to stay constant. This
result, however, can be improved upon if the data confidentiality requirements and checking rules at
the AQM definition phase are refined in order for all the data confidentiality detections to become the
correct or expected detections (when compared to the known data confidentiality violations).
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Figure 17 shows the sensitivity of the RVQA detection results throughout the 24 h of the CNS
execution. From the start, the graph shows very a high sensitivity percentage. The graph then stays
constant, very close to 90%. This means that almost 90% of the violations that were expected to be
detected had been correctly detected. The sensitivity or recall percentage was expected to stay constant.
However, improvement may be made in the future where new data confidentiality requirements and
checking rules at the AQM definition phase may be defined in order for other data confidentiality
conditions, such as the disclosure of an agent contact, can be checked and the violations that may occur
can be detected.
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The above experiment was repeated and the results at the end of the 24 h of each experiment are
presented in Table 4. The table displays the results of the detected data confidentiality violations for
the three repeated experiments at all levels of agent data confidentiality. The results show that the
RVQA process managed to detect the expected data confidentiality violations at an average confidence
between 84% to 90% and average sensitivity in the 79% to 83% range. It also shows that the RVQA
process managed to correctly detect data confidentiality violations at an average confidence (precision)
of 84% to 90% out of the total number of detections. In other words, the average confidence shows
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that from 100 detections, 84 to 90 of the detections were correct detections (when checked with known
violations that were expected to be detected). Therefore, the confidence of the RVQA was very high
(close to 90%). On the other hand, the average sensitivity (recall) of the RVQA process was 79% to 83%.
The average sensitivity shows that from 100 known violations that were expected to be detected, 79 to
83 detections managed to be detected. The number of detected confidentiality violations using the
RVQA represents the agent confidentiality level and can be used to alert agents when the confidentiality
violation level at a particular time is high.

Table 4. Total agent data confidentiality violations detection results.

Experiment # Expected Data
Confidentiality Violations

# Detected
Using RVQA

Average Confidence
of RVQA

Average Sensitivity
of RVQA

1 152,628 137,373 89.72% 80.74%
2 180,896 161,985 88.14% 79.30%
3 135,692 122,489 84.57% 82.78%

By analyzing the agent data confidentiality violations detection results presented, improvement of
the results can be performed. New data confidentiality requirements and checking rules to produce more
accurate violation detections can be defined. Next, more comprehensive agent-contextual information
for assessing the data confidentiality violation conditions could be gathered. The existing agent data
confidentiality metrics and checking rules that do not contribute toward achieving the objective of
detecting agent data confidentiality violations could be removed. Finally, the existing checking rules
could be refined based on new agent data confidentiality requirements and the availability of the
supporting contextual information for verifying and assessing agent data confidentiality.

The possible theoretical implications of this study include the introduction of a framework that
focuses on properties assessment and has the ability for improvement in each process cycle. Smart
city initiatives normally involve a significant budget, a wide range of resources, and a long-term
commitment. Thus, the framework could benefit smart city developers and decision-makers analyzing
their applications when trying to detect the violations of quality properties at an early stage, prior
to the real development. The AQM framework would be the suitable framework to be adapted to
manage various types of smart city initiatives and projects. Using the AQM framework, standardized
indicators for smart city properties, i.e., smartness, sustainability, and resiliency, can be assessed from
time to time.

From the analysis of previous works, verification of a system is a technique to prove the correctness
of a system and to check the functional requirements of a system. This present study, however, has
several findings. First, it shows that the assessment and verification stage can be used not only to
verify the correctness of specified requirements, but also to detect the violations of the requirements.
Second, the verification process can also be used to check not only the functional requirements, but
also the non-functional requirements, i.e., quality properties of systems and applications. Another new
development is the improvement component in the AQM framework that can be used to recommend a
new approach and solutions to continuously enhance the systems along the design and implementation
process. The limitation of the present study is that it should have used enhanced reasoning algorithms
and enriched rules to increase the confidence and sensitivity levels. Efforts to improve the present
study can be considered as potential future work.

7. Conclusions and Future Work

This paper studied the issues of agent quality properties in smart city applications and proposed
a solution to detect violations of the properties. Based on the identified problem, the presented
solution was the AQM framework that was proposed by adapting the TDQM principles to manage the
identified quality properties. The framework includes four phases that are: definition and specification,
modeling and execution, verification and assessment, and analysis and improvement. The main



Appl. Sci. 2019, 9, 5111 24 of 27

research contribution was the use of the AQM phases to manage and to perform run-time verification
and quality assessment of agent quality properties by considering dynamic contextual information
in smart city applications. The outcome of the solution was the detection and classification of agent
quality violations that occurred during the run-time. The AQM framework was implemented in an
agent-based CNS model as a case study. The reported results show that the AQM framework with
the run-time verification and quality assessment process managed to detect agent data confidentiality
violations that occurred.

Overall, this work complements the existing agent quality management works and smart city
quality properties solutions by focusing on management during run-time. The framework is also
general enough to be used for managing any quality properties, such as privacy or confidentiality.
The proposed solution presented in this paper intended to organize the management of agent quality
properties and how quality requirements in smart cities are to be fulfilled. The quality assessment
outputs are the number of classified agent quality statuses at certain time during an execution period.
In the future, the outputs are useful for processing by other applications from different research fields,
such as machine learning and big data analysis. The rules and algorithms can also be further upgraded
by implementing more sophisticated techniques, such as fuzzy logic. Theoretically, by adapting these
advanced techniques, the classification and violation detections’ effectiveness can be improved in
the future.
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