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Abstract: Based on the pedestrian lateral force hybrid Van der Pol/Rayleigh model, this study
investigates the interaction dynamic model of a pedestrian-flexible footbridge lateral coupling system.
A multi scale method is adopted to decouple the equation. The paper also studies the nonlinear
dynamic response of the pedestrian-footbridge coupling system as well as the relationship between
the lateral displacement of pedestrians and flexible footbridges, and the lateral interaction of the two
variables. The results show that with the same frequency tuning parameters, when the mass ratio of
pedestrians and footbridges is very small, the larger the mass ratio is, the larger the lateral response
amplitude of pedestrians becomes. Conversely, when the mass ratio of pedestrians and footbridges
is much larger, the larger the mass ratio is, the smaller the response amplitude becomes. When the
natural frequency of a footbridge is larger, its Phase Angle becomes larger. As the lateral amplitude
of pedestrians increases, the Phase Angle approaches zero. Moreover, regarding the variation of the
Phase Angle between the interaction force and footbridge lateral vibration speed based on the lateral
relative displacement of pedestrians, of which the variation range is (0, π), as the pedestrians’ lateral
amplitude increases, the Phase Angle approaches −π/2. The dynamic load coefficient varies linearly
with the lateral amplitude of pedestrian vibrations.

Keywords: footbridge; lateral pedestrian-footbridge interaction; hybrid Van der Pol/Rayleigh
model; mechanism

1. Introduction

The vertical vibrations of a pedestrian-footbridge coupling have attracted considerable and
increasing attention [1–5]. A new single DOF (degree of freedom) model of a bipedal pedestrian is
proposed to study the dynamic interaction between a footbridge and pedestrians [6]. Li Q et al. [7]
simulated crowd-footbridge interactions based on a multi free mass-damping coupling system. In line
with the work of Federica Tubino [8], the probability assessment method is applied to study the
interaction between the vertical vibrations of multiple pedestrians and a footbridge. In a study by Li
Shoutao [9], a three-degree-of-freedom human-structure interaction model was established to study
the system resonance frequency. Comparing the existing experimental results, it was found that the
tandem three-degree-of-freedom human model is closer to the experimental results. A new biodynamic
synchronized coupled model is based on a measured footbridge on a comparative basis [10]. In a
study by Zhang M et al. [11], pedestrian excitation was considered to model the structure-human body
model-damping of Phase Angle interactions based on biomechanics. Hamill J et al. [12] established a
model of pedestrians’ movements based on biomechanics. Zhou Chen et al. [13] studied the parameter
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vibration responses while considering the time-lag effect by taking the Millennium Bridge in London
as an example, which shows that the time-lag has no effect on the amplitude of the parameter vibration
response. Belykh, Igor et al. [14] discussed parameter variation trends that were used to obtain coupled
pedestrian-bridge oscillations, notably the influence of the mass ratio of pedestrians to the bridge mass
in the mode considered, and the phase variation with the amplitude.

However, there are few studies that have been conducted on lateral coupled pedestrian-footbridge
vibrations. Macdonald, SP Carrol, and M. Bocian considered pedestrians using a linear inverted
pendulum model and studied the changes in parameters such as mass, damping, and force in
the case of pedestrian-footbridge laterally coupled vibrations [15–17]. Among these studies, most
researchers did not highlight the importance of pedestrians’ vibration responses, but simply focused
on the vibration responses of the footbridge. Some scholars did not analyze the decoupling work of
pedestrian-footbridge coupling systems when studying pedestrian-footbridge coupling vibrations [18].
Instead, the vibration of the footbridge was regarded as a vibration table in their studies. Its vibration
amplitude and frequency were assumed to be a constant value [18]. In this case, this assumption is not
reasonable because the lateral vibration response of pedestrians and footbridges interacts mutually.
However, if the coupling is weak, it is reasonable to assume that the amplitude and frequency of the
footbridge are constant. When the lateral swaying frequency of pedestrians and lateral vibration of the
footbridge are the same or similar, the coupled vibration between pedestrians and the footbridge is
strongly coupled. Moreover, both have a major influence on each other. The pedestrian-footbridge
system resonance effect cannot be presented because the vibration amplitude and frequency of the
footbridge are simply considered as being constant. Silvano Erlicher et al. [19,20] adopted a modified
hybrid Van der Pol/Rayleigh model to simulate the lateral forces of pedestrians on periodic moving
floors and rigid floors, respectively.

Therefore, based on a lateral force model of the hybrid Van der Pol/Rayleigh model proposed in
their paper, the lateral interaction dynamic model of pedestrian-flexible footbridge coupling system
was established. By decoupling the coupling equation, it derives the amplitude-frequency curve of
pedestrians and pedestrian bridges. The paper also studies the lateral displacement and lateral force
between pedestrians and footbridges. Finally, the study obtains a dynamic response of interactions
between pedestrians and footbridges through an example.

2. A Dynamic Model of Lateral Pedestrian-Footbridge Interaction

A pedestrian is considered using an inverted pendulum model with the dynamic feature of
the hybrid Van der Pol/Rayleigh model, where the coupling pedestrian-footbridge vibration is
presented in Figure 1. When pedestrians walk on the footbridge, the footbridge is vibrated by
the pedestrians, generating vibrations. The footbridge responds correspondingly according to the
pedestrians’ vibrations. In addition, the pedestrians will make timely adjustments according to the
vibrations of the footbridge. Therefore, the movement of the pedestrian consists of two parts: one is
the lateral movement uyp(t) of the pedestrians relative to the footbridge, and the other is the lateral
movement uys(t) of the footbridge. The lateral movement of pedestrians is the sum of the two parts
uyp(t) + uys(t). Thus, when considering the pedestrian-footbridge interaction, its lateral dynamic
equation is as follows:

m
..
uyp(t) + Fy(uyp(t),

.
uyp(t)) + m

..
uys(t) = 0. (1)

The external force induced by walking pedestrians is loaded on the footbridge. As a result, the
lateral dynamic equation of the footbridge is:

..
uys(t) + 2ζsωs

.
uys(t) +ω2

s uys(t) =
Fy(uyp(t),

.
uyp(t))

M
(2)

Fy(t) = mω2
0uyp(t) −mη

.
uyp(t) + mρ

.
u3

yp(t) + ξm
.
uyp(t)u2

yp(t). (3)
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Figure 1. Lateral coupling of an individual pedestrian and a footbridge. 
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Figure 1. Lateral coupling of an individual pedestrian and a footbridge.

In the above equation, uyp(t) is the pedestrians’ center of gravity relative to the lateral vibration
displacement of the footbridge. uys(t) is the lateral vibration displacement of the footbridge. M is the
modal mass of the footbridge. m is the mass of a single pedestrian. Fy(t) is the force loading on the
footbridge structure when the pedestrians are walking. In general, Equations (1) and (2) are the dynamic
equations of the pedestrian-footbridge interaction. They are coupled by the pedestrian-footbridge
interaction force (related to the speed and displacement of pedestrians). It can be interpreted that
Equations (1) and (2) are the lateral coupling dynamic equations of the pedestrian-bridge interaction.
For the pedestrian system, the additional effect due to the movement of the footbridge is the external
force. For the footbridge system, the excitation force generated by the movement of pedestrians is the
external force.

3. Study on Dynamic Response of Pedestrian-Footbridge Interactions

3.1. Dynamic Coupling Equation Solution of the Lateral Interaction Pedestrian-Footbridge

The multiscale method is used to solve Equations (1)–(3). Assume that the nonlinear systems
(1)–(3) are weak nonlinear systems. Then, a small parameter is added to the damping term, external
excitation term, and nonlinear term in the system. Thus, Equations (1)–(3) can be written as:

..
uyp(t) +ω2

0uyp(t) − εη
.
uyp(t) + ερ

.
u3

yp(t) + εξ
.
uyp(t)u2

yp(t) + ε
..
uys(t) = 0 (4)

..
uys(t) + 2εζsωs

.
uys(t) +ω2

s uys(t) =
mεω2

0uyp(t)−mεη
.
uyp(t)+mερ

.
u3

yp(t)+mεξ
.
uyp(t)u2

yp(t)
M

. (5)

It is assumed that the first-order approximate solutions of Equations (4) and (5) are:

uyp(t) = u0(T0, T1) + εu1(T0, T1) + · · · (6)

uys(t) = U0(T0, T1) + εU1(T0, T1) + · · · (7)

of which T0 = τ and T1 = ετ.
Equations (6) and (7) are substituted into Equations (4) and (5) by adopting the multiscale method,

aiming to achieve a situation where the coefficients of the small parameters ε0 and ε1 on both sides are
equal. Then, the following partial differential equations can be defined as follows:

ε0:
{

D2
0u0 +ω2

pu0 = 0
D2

0U0 +ω2
s U0 = 0

(8)
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ε1:


D2

0u1 +ω2
pu1 = −2D0D1u0 + ηD0u0 − ρ(D0u0)

3
− ξD0u0·u2

0 −D2
0u0

D2
0U1 +ω2

s U1 = −2D0D1U0 − 2ζsωsD0U0 +
m
Mω

2
pu0 −

m
MηD0u0

+ m
Mρ(D0u0)

3 + m
MξD0u0·u2

0

. (9)

Assume that the solution of Equation (8) is obtained as follows:

u0 = Ap(T1)e jωpT0 + cc (10)

U0 = As(T1)e jωsT0 + cc. (11)

With regard to Equations (10) and (11), cc is the conjugate complex number of the preceding
expressions. Equations (10) and (11) are inserted into Equation (9) to derive:

D2
0u1 +ω2

pu1 = −2D1Ap(T1) jωpe jωpT0 + ηAp(T1) jωpe jωpT0 + 27ρA3
p(T1)

jω3
pe3 jωpT0 − 3ρA2

p(T1)Ap(T1) jω3
pe jωpT0 − ξA3

p(T1) jωpe3 jωpT0

−ξA2
p(T1)Ap(T1) jωpe jωpT0 + As(T1)ω2

s e jωsT0

(12)

D2
0U1 +ω2

s U1 = −2D1As(T1) jωse jωsT0 − 2ζsωsAs jωse jωsT0+
m
Mω

2
pAp(T1)e jωpT0 −

m
MηAp(T1) jωpe jωpT0 −

m
MρA3

p(T1) jω3
pe3 jωpT0

+3 m
MρA2

p(T1)Ap(T1) jω3
pe jωpT0 + m

MξA3
p(T1) jωpe3 jωpT0

+ m
MξA2

p(T1)Ap(T1) jωpe jωpT0

. (13)

It can be seen shown, according to the right-hand sides of Equations (12) and (13), that the terms
containing e jωpT0 and e jωpT0 cause secular terms to occur in the solutions of Equations (12) and (13),
respectively. Suppose that ωp = ωs; the solution of Equations (12) and (13) will generate secular terms,
indicating that the internal resonance phenomenon is presented in the pedestrian-bridge bridging
system in the case of ωp = ωs.

3.2. Internal Resonance Analysis of Pedestrian-Footbridge Lateral Coupling System

The pedestrians’ lateral walking frequency and the natural frequency of the footbridge are assumed
to satisfy:

ωs = ωp + εσ, σ = o(1). (14)

Regarding Equation (14), where σ refers to the frequency tuning parameter, supposing the
coefficient of the secular term is zero, associated with Equations (12) and (13), the following can be
derived:

−2D1Ap(T1) jωp + ηAp(T1) jωp − 3ρA2
p(T1)Ap(T1) jω3

p−

ξA2
p(T1)Ap(T1) jωp + As(T1)ω2

s e jσT1 = 0
(15)

−2D1As(T1) jωs − 2ζsAs(T1) jω2
s +

m
Mω

2
pApe− jσT1 − η m

M Ap jωpe− jσT1

+3 m
MρA2

p(T1)Ap(T1) jω3
pe− jσT1 + m

MξA2
p(T1)Ap(T1) jωpe− jσT1 = 0

. (16)

To facilitate the calculation, it is assumed that the phase of the footbridge is zero. Because the
main focus here is on the Phase Angle between pedestrians and the footbridge, A(T1) is written in qn
exponential form; hence, one can easily obtain:

Ap(T1) =
a(T1)

2
e jθp (17)

As(T1) =
a(T1)

2
e jθs =

a(T1)

2
. (18)
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Equations (17) and (18) are substituted into Equations (15) and (16); thus, Equations (15) and (16)
become:

− jωpD1ap(T1)e jθp +ωpap(T1)D1θp(T1)e jθp + 1
2 jηap(T1)ωpe jθp

−
3
8 jρa3

p(T1)ω
3
pe jθp −

1
8 jξa3

p(T1)ωpe jθp +
as(T1)

2 ω2
s e jθp cos(σT1

−θp) +
as(T1)

2 jω2
s e jθp sin(σT1 − θp) = 0

(19)

−2 jωsD1as − ζsas jω2
s +

m
2Mω

2
pap cos(θp − σT1) + j m

2Mω
2
pap sin(θp

−σT1) − η
m

2M ap jωp cos(θp − σT1) + η m
2M apωp sin(θp − σT1)+

3m
8Mρa3

p jω3
p cos(θp − σT1) −

3m
8Mρa3

pω
3
p sin(θp − σT1)+

m
8Mξa3

p jωp cos(θp − σT1) −
m

8Mξa3
pωp sin(θp − σT1) = 0

. (20)

If the coefficients of the real part and imaginary part of Equations (19) and (20) are zero, respectively,
then in this case, one obtains:

−ωpD1ap +
1
2
ηapωp −

3
8
ρω3

pa3
p −

1
8
ξωpa3

p +
as

2
ω2

s sin(σT1 − θ0) = 0 (21)

apωpD1θp +
as

2
ω2

s cos(σT1 − θ0) = 0 (22)

−2ωsD1as − ζsasω2
s +

m
2Mω

2
pap sin(θp − σT1) − η

m
2M apωp cos(θp − σT1)

+ 3m
8Mρa3

pω
3
p cos(θp − σT1) +

m
8Mαa3

pωp cos(θp − σT1) = 0
(23)

m
2Mω

2
pap cos(θp − σT1) + η m

2M apωp sin(θp − σT1) −
3m
8Mρa3

pω
3
p sin(θp

−σT1) −
m

8Mξa3
pωp sin(θp − σT1) = 0

. (24)

Hence, Equations (21)–(24) can be rewritten as follows in the assumption of ϕ = σT1 − θp:

ωpD1ap =
1
2
ηapωp −

3
8
ρω3

pa3
p −

1
8
ξωpa3

p +
as

2
ω2

s sinϕ (25)

apωpD1ϕ = apωpσ+
as

2
ω2

s cosϕ (26)

2ωsD1as = −ζsasω2
s −

m
2Mω

2
pap sinϕ− η m

2M apωp cosϕ+
3m
8Mρa3

pω
3
p cosϕ+ m

8Mξa3
pωp cosϕ

(27)

m
2Mω

2
pap cosϕ− η m

2M apωp sinϕ+ 3m
8Mρa3

pω
3
p sinϕ+

m
8Mξa3

pωp sinϕ = 0
. (28)

To obtain the amplitude frequency equation of pedestrians and the footbridge structure as well
as the Phase Angle of displacements for pedestrians and the footbridge, it is assumed that D1ap = 0,
D1ϕ = 0, and D1as = 0 are the equations for which the amplitude and Phase Angle are satisfied.
Subsequently, one obtains:

1
2
ηapωp −

3
8
ρω3

pa3
p −

1
8
ξωpa3

p = −
as

2
ω2

s sinϕ (29)

apωpσ = −
as

2
ω2

s cosϕ (30)

ζsasω2
s = − m

2Mω
2
pap sinϕ− η m

2M apωp cosϕ+ 3m
8Mρa3

pω
3
p cosϕ

+ m
8Mξa3

pωp cosϕ
(31)

m
2Mω

2
pap cosϕ− η m

2M apωp sinϕ+ 3m
8Mρa3

pω
3
p sinϕ

+ m
8Mξa3

pωp sinϕ = 0
. (32)
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Equations (29)–(32) can be rewritten as follows. If ς = ρω2
p + η, one obtains the following equations:

1
2
ηapωp −

1
8
ωpa3

pς = −
as

2
ω2

s sinϕ (33)

apωpσ = −
as

2
ω2

s cosϕ (34)

ζsasω
2
s = −

m
2M

ω2
pap sinϕ− η

m
2M

apωp cosϕ+
m

8M
a3

pωpς cosϕ (35)

m
2M

ω2
pap cosϕ− η

m
2M

apωp sinϕ+
m

8M
a3

pωpς sinϕ = 0. (36)

Multiplying Equations (33) and (34) and then adding them both together leads to:(1
2
ηapωp −

1
8
ωpa3

pς
)2
+ω2

pa2
pσ

2 =
a2

s
4
ω4

s . (37)

Similarly, Equations (35) and (36) are multiplied, and then both of them are added together.
The resulting equation can be defined as follows:

ζ2
sω

4
s a2

s =
m2

4M2ω
4
pa2

p +
m2

4M2 η
2ω2

pa2
p −

m2

8M2γςω
2
pa4

p +
m2

64M2ω
2
pa6

pς
2. (38)

Equations (37) and (38) are jointly connected to decouple the lateral amplitude of pedestrians
and footbridges, for which the amplitude frequency equation of pedestrians’ lateral vibration can be
derived as:

( 1
16 −

m2

64M2ζ2
s
)ς2a6

p + ( m2

8M2ζ2
s
−

1
2 )ηςa4

p + (η2 + 4σ2
−

m2

4M2ζ2
s
ω2

p −
m2

4M2ζ2
s
η2)a2

p = 0
. (39)

With respect to Equations (33) and (34), the Phase Angle between the lateral relative pedestrians’
displacement and lateral vibration displacement of the footbridge is derived as:

tanϕ =
4η− a2

pς

8σ
. (40)

It can be concluded from Equation (40) that when the pedestrians’ lateral walking frequency is
consistent with the vibration frequency of the footbridge, that is, when the resonance occurs, the Phase
Angle between the pedestrians’ relative displacement and the vibration displacement of the footbridge
tends to ±90◦.

In detail, the amplitude of a pedestrian’s lateral vibration is derived according to Equation (39),
and then the lateral vibration amplitude of the pedestrian bridge is determined based on Equation (38).
Assuming:

Ap = a2
p, k1 = ( 1

16 −
m2

64M2ζ2
s
)ς2, k2 = ( m2

8M2ζ2
s
−

1
2 )ης

k3 = η2 + 4σ2
−

m2

4M2ζ2
s
ω2

p −
m2

4M2ζ2
s
η2 . (41)

Equation (39) can be simplified as:

k1A3
p + k2A2

p + k3Ap = 0. (42)
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4. Amplitude Frequency Curve

4.1. Amplitude Frequency Curve of Pedestrians

Equation (42) is related to the unary cubic equation Ap, which has a zero solution Ap = 0 only, while
the rest are related to the unary quadratic equation Ap. Hence, its discriminate can be rewritten as:

∆p = k2
2 − 4k1k3= [( m2

8M2ζ2
s
−

1
2 )ης]

2
− 4( 1

16 −
m2

64M2ζ2
s
)ς2(η2 + 4σ2

−
m2ω2

p

4M2ζ2
s
−

m2η2

4M2ζ2
s
)= ( m2

4M2ζ2
s
− 1)ς2(σ2

−
m2ω2

p

16M2ζ2
s
)

(43)

For convenience of the following analysis, the modal mass ratio parameters of pedestrians and
the footbridge are defined as:

mr =
m
M

. (44)

If ∆p = 0, then mr = 2ζs, or if σ =
mrωp
4ζs

, Equation (42) has a zero solution and two equal real roots,

namely, Ap1 = 0 and Ap2,3 = −k2
2k1

. Therefore, the pedestrians’ amplitude frequency curve equation becomes:

ap1 = 0 (45)

ap2,3 =

√
−k2

2k1
= 2

√
η

ξ+ ρω2
p

. (46)

If ∆p > 0, then mr > 2ζs, and if σ >
mrωp
4ζs

, σ < −
mrωp
4ζs

or if 0 < mr < 2ζs or even −
mrωp
4ζs

<

σ <
mrωp
4ζs

, then Equation (42) has a zero solution and two equal real roots, namely, Ap1 = 0 and

Ap2,3 =
−k2±

√
k2

2−4k1k3

2k1
. Thus, the pedestrians’ amplitude frequency curve equation can be derived:

ap1 = 0 (47)

ap2,3 = 2

√√√√√
(4ζ2

S −m2
r )η±

√
(m2

r − 4ζ2
S)(16ζ2

Sσ
2 −m2

rω
2
p)

(ξ+ ρω2
p)(4ζ2

S −m2
r )

. (48)

Equations (45) and (47) are trivial solutions for the pedestrians’ lateral vibration, while Equations
(46) and (48) are nontrivial solutions for the pedestrians’ lateral vibration. Equation (46) implies that in
the case where mr = 2ζs or σ =

mrωp
4ζs

, the pedestrians’ lateral vibration is related only to the pedestrians’
parameters. Moreover, according to Equation (48), it is indicated that the pedestrians’ lateral amplitude
is related to the modal mass ratio, the pedestrians’ parameters, and the damping of the footbridge.

4.2. Amplitude Frequency Curve of Footbridge

According to Equation (38), if ap = 0, as = 0, then it can be illustrated that the lateral vibration
displacement of pedestrians and the lateral vibration displacement of the footbridge are both 0, which
is the trivial solution of the footbridge.

Equation Ap2,3 = −k2
2k1

is inserted into Equation (38) with the assumption that ∆p = 0; as a result,
one gets

as =

√√
−

64m2
rω

4
pk2

1k2 + 64m2
rη2ω2

pk2
1k2 + 16m2

rηςω
2
pk1k2

2 + m2
rς2ω2

pk3
2

512k3
1ζ

2
sω

4
s

. (49)



Appl. Sci. 2019, 9, 5257 8 of 17

When equation Ap2,3 =
−k2±

√
k2

2−4k1k3

2k1
is inserted into Equation (38) in the case of ∆p > 0, we can obtain:

as2 =

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√
−64m2

rω
4
pk2

1k2+64m2
rω

4
pk2

1

√
k2

2−4k1k3−64m2
rη

2ω2
pk2

1k2+64m2
rη

2ω2
pk2

1

√
k2

2−4k1k3

512k3
1ζ

2
sω

4
s

−
16m2

rηςω
2
pk1k2

2−32m2
rηςω

2
pk1k2

√
k2

2−4k1k3−16m2
rηςω

2
pk1(k2

2−4k1k3)+m2
r ς

2ω2
pk3

2

512k3
1ζ

2
sω

4
s

+
m2

r ς
2ω2

p(k2
2−4k1k3)

3
2 −3m2

r ς
2ω2

p(k2
2−4k1k3)k2+3m2

r ς
2ω2

pk2
2

√
k2

2−4k1k3

512k3
1ζ

2
sω

4
s

(50)

as3 =

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√
−

64m2
rω

4
pk2

1k2+64m2
rω

4
pk2

1

√
k2

2−4k1k3+64m2
rη

2ω2
pk2

1k2+64m2
rη

2ω2
pk2

1

√
k2

2−4k1k3

512k3
1ζ

2
sω

4
s

−
16m2

rηςω
2
pk1k2

2+32m2
rηςω

2
pk1k2

√
k2

2−4k1k3+16m2
rηςω

2
pk1(k2

2−4k1k3)+m2
r ς

2ω2
pk3

2

512k3
1ζ

2
sω

4
s

+
m2

r ς
2ω2

p(k2
2−4k1k3)

3
2 +3m2

r ς
2ω2

p(k2
2−4k1k3)k2+3m2

r ς
2ω2

pk2
2

√
k2

2−4k1k3

512M2k3
1ζ

2
sω

4
s

. (51)

Here, Equation (49) can be regarded as a trivial solution for the lateral vibration of the footbridge,
and Equations (50) and (51) are nontrivial solutions for the lateral vibration of the footbridge.

Therefore, the first approximate solution of the lateral steady-state response of the pedestrians
and footbridge is written as:

Us = as(T1) cos(ωst) (52)

up = ap(T1) cos[ωpt + θp(T1)]. (53)

5. Study on Pedestrian-Footbridge Lateral Displacement and Lateral Interaction

5.1. The Phase Angle between the Lateral Relative Displacement of Pedestrians and Lateral Displacement of
the Footbridge

In Equation (40), θp is the Phase Angle between the lateral relative displacement of pedestrians
and the lateral displacement of the footbridge. Assuming θp < 0, the lateral absolute displacement
of pedestrians lags behind the lateral displacement of the footbridge; if θp > 0, the lateral absolute
displacement of pedestrians is ahead of the lateral displacement of the footbridge; the amount of time
lagging behind or in advance of is shown in the equation τ =

∣∣∣ϕ∣∣∣/ωp. The relationship between Phase
Angle ϕ and frequency tuning parameters σ can be derived as follows based on Equation (34):

cosϕ = −
2apωpσ

asω2
s

. (54)

The phase angle is located at [−π,π]. Figure 2 presents the difference between pedestrians’ lateral
walking frequency and the footbridge fundamental frequency (frequency tuning parameters). It also
shows the impact of the difference on the Phase Angle between pedestrians and the footbridge in
the case of different amplitude ratios. According to Figure 3, when pedestrians’ lateral walking
frequency tends towards the fundamental frequency of the footbridge, the corresponding Phase Angle
approaches π/2. Taking Newland’s study into account, it can be concluded that the range of Phase
Angles between pedestrians and footbridge motion is limited to [0,π/2] degree. In addition, the phase
angle at resonance is π/2. The results deduced in the paper are in accordance with the results based on
the Newland model [18]. In Abrams’ study of the Millennium Bridge, it is concluded that the Phase
Angle of pedestrians with regard to the footbridge is [−π,π], which is similar to the results found in
this paper [21].
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First, in the case where pedestrians’ lateral walking frequency is consistent with the lateral
fundamental frequency of the footbridge, that is, in the case of σ = 0, while considering Equation (54),
it can be proven that σ = 0 and cosϕ = 0. Thus, cosϕ = 0 is inserted into Equation (35), after which
we can obtain:

sinϕ = −
2Mζsω2

s as

mω2
pap

. (55)

Taking Equation (54) into consideration, it can be derived that sinϕ = −1; thus, ϕ = −π2 + 2kπ,
k = 0, ±1, ±2, ±3, . . . , which is consistent with the above results based on the relationship between
the Phase Angle and frequency tuning parameters. Therefore, if σ = 0, then θp = −ϕ; if θp > 0, then
the pedestrians’ vibration response is ahead of the footbridge response, with the amount of time
in advance of the footbridge response shown as τ = θp/ωs. When the pedestrians walk along the
footbridge, the amount of time before the footbridge’s response is represented as τ = (π− 4kπ)/2ωs.
For θp < 0, the pedestrians’ vibration response lags behind the footbridge’s response, with the lag time
τ = −θp/ωs; when the pedestrians walk on the footbridge, the lag time becomes τ = (−π+ 4kπ)/2ωs.
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5.2. Phase Angle between the Lateral Absolute Displacement of Pedestrians and the Lateral Displacement of
the Footbridge

With regard to resonance, the vibration frequency caused by pedestrians is the same as that
of footbridges but differs in phase. The absolute displacement of pedestrians is the sum of the
pedestrians’ relative displacement and the footbridge structure displacement, which results in an
absolute displacement of pedestrians of:

upa = Us + up = as cos(ωst) + ap cos(ωpt + θp)

= as cos(ωst) + ap cos(ωst− εσt + θp)

=
√
(as + ap cosϕ)2 + (ap sinϕ)2 cos(ωst−φ)

. (56)

Therefore, the absolute displacement amplitude is defined as:

A =

√
(as + ap cosϕ)2 + (ap sinϕ)2 (57)

After considering cosϕ = −
2apωpσ

asω2
s

and then sinϕ = ±

√
a2

sω
4
s−4a2

pω
2
pσ

2

asω2
s

, we can differentiate the
Equation in (58):

A =
ap

√
(ηωp −

1
4ξωpa2

p −
1
4ρω

3
pa2

p)
2
+ 4ω2

pσ2 − 4ω2
sωpσ+ω2

s

ω2
s

. (58)

The Phase Angle between the absolute displacement of pedestrians and the footbridge
displacement is expressed in Equation (59):

tanψ =
ap sinϕ

as + ap cosϕ
. (59)

Equations (37), (54), and (55) are inserted into Equation (59). This leads to:

tanψ =
(η− 1

4ξa2
p −

1
4ρω

2
pa2

p)ω
2
s

ωp(η− 1
4ξa2

p −
1
4ρω

2
pa2

p)
2
+ 4ωpσ2 − 2ω2

sσ
. (60)

From Equation (58), it can be known that the absolute displacement amplitude of pedestrians is
related to the following parameters: lateral response amplitude of the footbridge, relative displacement
of pedestrians, Phase Angle, frequency difference, and the time of footbridge displacement, which in
turn has nothing to do with the mass of the footbridge and pedestrians. Consider that the parameters
are constant, including the lateral response amplitude of the footbridge, the relative displacement of
pedestrians and the Phase Angle, frequency difference, and time of footbridge displacement. In this case,
the absolute displacement amplitude of pedestrians is linear with respect to the response amplitude.
In addition, the larger the amplitude of the footbridge response is, the larger the absolute displacement
amplitude of pedestrians becomes.

When φ < 0, the absolute displacement of pedestrians lags behind the displacement of the
footbridge. Conversely, in the case of φ > 0, the absolute displacement of pedestrians is ahead of the
footbridge displacement.
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5.3. Phase Angle between Lateral Interaction Force and Lateral Excitation Speed

When the pedestrians’ lateral walking frequency is not equal to the fundamental frequency of the
footbridge, the interaction force can be presented as:

F = m(−
d2Uy

dt2 −
d2uy

dt2 ) = mω2
s as cos(ωst) + mω2

pap cos(ωpt + θp)

= m
√
(ω2

s as +ω2
pap cosϕ)2

+ (ω2
pap sinϕ)2 cos(ωst−φ)

. (61)

Because cosϕ = −
2apωpσ

asω2
s

, in this case sinϕ = ±

√
a2

sω
4
s−4a2

pω
2
pσ

2

asω2
s

; hence, Equation (61) can be written as:

F = m(−
d2Uy

dt2 −
d2uy

dt2 )

= m

√
[ω2

s as −ω2
pap

2apωpσ

asω2
s
]
2
+ [±ω2

pap

√
a2

sω
4
s−4a2

pω
2
pσ

2

asω2
s

]

2

cos(ωst−φ)

= m
√
ω4

s a2
s − 4ω3

pa2
pσ+ω4

pa2
p cos(ωst−φ)

. (62)

The lateral dynamic amplitude of pedestrians on the footbridge is defined as:

Fmax = m
√
ω4

s a2
s − 4ω3

pa2
pσ+ω4

pa2
p. (63)

Equation (37) is inserted in Equation (63) to easily obtain:

Fmax = mωpap

√
(η− 1

4 a2
pς)

2
+ 4σ2 − 4ωpσ+ω2

p

= mωpap

√
(η−− 1

4ξa2
p

1
4 a2

pρω
2
p)

2
+ 4σ2 − 4ωpσ+ω2

p

(64)

As a result, the lateral dynamic coefficient is presented as:

α =
ωpap

g

√
(η−

1
4
ξa2

p −
1
4
ρω2

pa2
p)

2
+ 4σ2 − 4ωpσ+ω2

p. (65)

The phase angle between the interaction force and vibration displacement of the footbridge can
be computed as:

tanφ =
mω2

pap sinϕ

mω2
s as + mω2

pap cosϕ
. (66)

Equations (37), (54), and (55) are substituted into Equation (66), and the following equation holds:

tanφ =
ωp(η− 1

4ξa2
p −

1
4ρω

2
pa2

p)

(η− 1
4ξa2

p −
1
4ρω

2
pa2

p)
2
+ 4σ2 − 2ωpσ

. (67)

Since the lateral vibration displacement of the footbridge is expressed as Us = as(T1) cos(ωst),
the lateral vibration speed of the footbridge becomes:

.
Us = −as(T1)ωs sin(ωst) = as(T1)ωs cos(ωst +

π
2
). (68)

Hence, the Phase Angle between the pedestrian-footbridge interaction force and the lateral
vibration speed of the footbridge is:

φ′ = φ−
π
2

. (69)
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Therefore, it can be proven that the lateral interaction force amplitude and the dynamic load
coefficient are related to the relative lateral response amplitude of pedestrians, pedestrians’ parameters,
walking frequency, and frequency differences but have nothing to do with the mass of the footbridge.
When these parameters are considered to be constant, in this case, the dynamic load coefficient is linear
with respect to the amplitude of the pedestrian lateral response. Based on this, the larger the response
amplitude is, the larger the dynamic load coefficient becomes, which is proven to be the main principle
of pedestrian-footbridge interactions.

It is assumed that when φ < 0, the lateral interaction force lags behind the response of the
footbridge; conversely, when φ > 0, the lateral interaction force is ahead of the pedestrians’ response.

6. Case Analysis

The amplitude-frequency curve and Phase Angle of pedestrians are calculated separately in
different situations. It is assumed that the damping ratio of the footbridge structure is 0.005. In the
reference [22], the parameters of the hybrid Van der Pol/Rayleigh model are obtained according to
the experimental values and the least squares method, and the parameters are verified. Therefore,
the parameters of pedestrians are taken as two groups: the first group includes ω0= 5.375, η= 0.101,
ξ= 0.144, and ρ= 27.899; the second group includesω0= 6.431, η= 0.519, ξ= 0.273, and ρ= 73.439 [22].

6.1. Amplitude Frequency Curve

Figure 3, Figure 4 show that the lateral response amplitude frequency curves of pedestrians and
footbridges will vary due to the different walking frequencies of pedestrians. In detail, assuming
mr < 0.01, with the same frequency tuning parameters, the larger the mass ratio is, the larger the
pedestrian lateral response amplitude becomes. Moreover, the closer the pedestrians’ frequency is to
the natural frequency of the footbridge, the larger the response amplitude. When mr > 0.01, under the
same frequency tuning parameters, the larger the mass ratio is, the smaller the response amplitude
is. In the case of mr = 0.01, its response amplitude is the smallest. In addition, the lateral response
amplitude frequency curve of the footbridge tends to shift to the left side, which presents features of a
soft spring. This is because the pedestrian-footbridge interaction is taken into consideration, which has
altered the dynamic features of the pedestrian-footbridge coupling system.
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6.2. Phase Frequency Curve

According to Figure 5, assuming that ωp = 3.373, when the frequency modulation parameter is
confined to the range of [1, 2.45], the Phase Angle between pedestrians’ absolute displacement and the
footbridge displacement is positive, while the rest are negative; the variation range of the Phase Angle
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is limited to [−π/2, π/2]. If mr < 0.01, the Phase Angle has two solutions: for mr > 0.01, the Phase
Angle has three solutions; while for mr = 0.01, the phase is zero. Assuming ωp = 6.431, the range
of the frequency modulation parameter is limited to [1.7, 2.9], resulting in a positive Phase Angle
of the pedestrians’ absolute displacement and footbridge displacement, while the rest are negative;
the variation range of the Phase Angle is confined to [−π/2, π/2]. If mr < 0.01, the Phase Angle has
two solutions, while for mr = 0.01, the phase is zero.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20 
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Figure 5. Phase frequency curve between pedestrians’ absolute displacement and footbridge displacement.

Based on Figure 6, in the case whereωp = 3.373 and the frequency modulation parameter is limited
to the range of [1, 1.5], the Phase Angle of the interaction force and excitation speed is positive, while
the rest are negative, and its variation range of the Phase Angle is confined to [−π/2, π/2]. For mr ,

0.01, correspondingly, its Phase Angle has two solutions; for mr = 0.01, the phase is zero. However,
it is assumed that ωp = 6.431 and that the range of the frequency modulation parameter is limited to
[1.7, 2.9]. The Phase Angle between the interaction force and excitation speed is positive, while the rest
are negative, and its variation of the Phase Angle is confined to the range of [−π/2, π/2]. For mr <

0.01, the Phase Angle has two solutions, while for mr = 0.01, the phase is zero.
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Taking Figure 7 into account, it is proven that, based on different pedestrian lateral walking
frequencies, the Phase Angle between pedestrians’ lateral absolute displacement and the footbridge
lateral vibration displacement varies according to the lateral relative displacement of pedestrians.
The larger the natural frequency of the footbridge is, the larger the Phase Angle becomes. In addition,
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the Phase Angle tends to be 0 with an increasing pedestrian lateral amplitude, which indicates that the
Phase Angle is a constant value in the case of a considerably large vibration amplitude.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 20 
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Figure 7. Variation of the Phase Angle between pedestrians’ lateral absolute displacement and
footbridge lateral vibration displacement according to the lateral relative displacement of pedestrians.

Figure 8 shows that, based on different pedestrian lateral walking frequencies, the Phase Angle
between the interaction force and footbridge lateral vibration speed differs according to the lateral
relative displacement of pedestrians. In addition, the Phase Angle tends to −90◦ as pedestrians’ lateral
amplitude increases. For this reason, it is concluded that the Phase Angle is a constant value due to the
considerable large vibration amplitude.
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Considering Figure 9, the pedestrian-footbridge interaction dynamic load factor α varies based on
the lateral walking frequency of pedestrians. In fact, the dynamic load coefficient varies linearly with
pedestrians’ lateral amplitude.
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lateral relative displacement.

Figure 10 indicates that the pedestrian-footbridge interaction dynamic load factor becomes
different as the pedestrian lateral walking frequency changes. To be more specific, the smaller the
natural frequency of the footbridge fs is, the larger the A/ap is; conversely, the larger the natural
frequency of the footbridge fs is, the smaller the A/ap is, and A/ap becomes larger due to the increasing
lateral relative displacement of pedestrians.
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7. Conclusions

This paper presents research on a pedestrians’ lateral force model of the hybrid Van der Pol/Rayleigh
to model the interaction dynamic pedestrian-flexible footbridge lateral coupling system. In addition,
the nonlinear dynamic response of the pedestrian-footbridge coupling system and the lateral interaction
of pedestrians and flexible footbridges are investigated by adopting a multiscale method to decouple
the equation.

(1) The lateral response amplitude frequency curves of pedestrians and footbridges vary for
different pedestrian walking frequencies. If mr < 0.01, under the same frequency tuning parameter,
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the larger the mass ratio is, the larger the pedestrian lateral response amplitude is. If mr > 0.01, the larger
the mass ratio is, the smaller the response amplitude. The response amplitude is the smallest in the
case of mr = 0.01. Moreover, the lateral response amplitude frequency curve of the footbridge tends to
shift to the left side, which shows features of a soft spring. The pedestrian-footbridge interaction is
taken into consideration because the dynamic features of the pedestrian-footbridge coupling system
are shifted.

(2) The range of the Phase Angle is confined to [−π/2, π/2] between pedestrians’ absolute
displacement and the displacement of the footbridge, as well as between the interaction force and
excitation speed.

(3) The Phase Angle between pedestrians’ lateral absolute displacement and the footbridge lateral
vibration displacement varies according to the lateral relative displacement of pedestrians. The range
of its variation is limited to [−π/2, π/2]. The larger the natural frequency of the footbridge is, the larger
the Phase Angle is. In addition, the Phase Angle approaches zero with an increasing pedestrian lateral
amplitude. The Phase Angle between the interaction force and the footbridge lateral vibration speed
changes according to the lateral relative displacement of pedestrians. Its variation range is (0, π).
As the lateral amplitude of pedestrians increases, the Phase Angle tends to −π/2.

(4) The dynamic load coefficient varies linearly in the case of different pedestrians’ lateral
amplitudes. The smaller the natural frequency of the footbridge is, the larger the ratio of A/ap is.
Furthermore, the larger the natural frequency of the footbridge is, the smaller the ratio of A/ap is. In
addition, A/ap increases according to the increase in the lateral relative displacement of pedestrians.
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