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Featured Application: This paper presents a solution of a TCP session handoff mechanism using
Software Defined Networking, which can be used as a transparent redirection mechanism in
Content Delivery Networks.

Abstract: In today’s age of digital media and social networks, delivering content to a massive scale of
recipients became one of the main challenges. Load Balancers and Content Delivery Networks are
used to distribute content to multiple locations, which increase the scalability of services and decrease
the load on content origins. Both technologies rely on redirections. Redirections have not received a
significant amount of attention in the recent years; however, they do impose some limitations. In this
article, we propose a transparent redirection mechanism, which exploits the versatility of Software
Defined Networking. The redirection method is achieved by handing off existing TCP sessions
without any required modifications to the endpoints. This article demonstrates how the proposed
redirection mechanism can be adopted in Content Delivery Networks and Load Balancing scenarios.
The performance of the solution is thoroughly tested and compared to existing legacy solutions.

Keywords: Software Defined Networking; TCP session handoff; Content Delivery Networks; redirections

1. Introduction

Nowadays people are almost always online on their mobile devices, which enables them to share
to moment (content) via social networks just using a couple of taps of fingers. Data shared on social
media must be effectively delivered and distributed to the required users in a matter of seconds. Users
no longer keep their data on their portable devices, they are backing up photos, videos and other
content to cloud providers which are shared between multiple devices and locations. Portable data
storage is no longer used as they are not considered convenient anymore.

Content Delivery Servers (CDNs) allow content providers to effectively deliver their content to
consumers on a massive scale. CDNs are systems for the efficient delivery of digital objects (e.g., videos,
photos) and multimedia streams (e.g., live television streams). Typically, a CDN consists of several
(hundreds) servers that deliver the digital objects and a management/control system. The management/
control system takes care of the content distribution, request routing, reporting, metadata and other
aspects that make the system work [1]. It is needless to say that is not a new technology. It has been
around for over 20 years, but redirection mechanisms have not received a significant amount of attention
in recent years. Software Defined Networking (SDN) is a new approach towards networking, which
decouples the data plane from the control plane. This approach opens new possibilities to enhance
redirections used in CDNs. This article presents a transparent SDN based redirection mechanism,
which is an extended version of our paper [2] published in 2019 at the 42nd International Conference
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on Telecommunications and Signal Processing (TSP). This article additionally introduces a transparent
load balancing use case.

2. State of the Art

2.1. Protocols and Caching

In the early 90s 44% of Internet traffic originated from FTP (File Transfer Protocol) requests, which
later faded away and HTTP (Hypertext Transfer Protocol) communication took the leading position [3,4].
HTTP is encapsulated into the Transmission Control Protocol (TCP), which is a connection-oriented
protocol and provides reliable data transfer between the endpoints as the chunks sent are acknowledged
by the receiving side. TCP was first introduced in 1981 [5]. The protocol is responsible for breaking the
message into TCP segments and reassembling them at the receiving side, capable of data reordering in
case of out of order delivery. TCP assigns a sequence number to each byte transmitted and expects
a positive acknowledgement (ACK) from the receiving layer. If the ACK is not received within a
timeout interval, data is retransmitted. Sequence numbers ensure that the data stream is passed to the
application layer in the right order eliminating duplicate TCP segments. A fundamental notion in
the design is that every octet of data sent over a TCP connection has a sequence number. This space
ranges from 0 to 232

− 1. Since this space is finite, all arithmetic dealing with sequence numbers must
be performed modulo 232. This unsigned arithmetic preserves the relationship of sequence numbers as
the cycle from 232

− 1 to 0 again [5].
Over the years of evolution of HTTP (versions 0.9, 1.0, 1.1, 2 and 3 currently under development

and standardization), the protocol was extended to allow caching at various locations to eliminate the
need to reach out to the origin server or eliminate the need to send full responses to requests. This
mechanism saves resources on the network and on the origin server too. The list of cache control
mechanisms and various headers are found in RFC 7232 and RFC 7234 [6,7]. With several cache nodes
available, the content could be distributed to various geographical locations to lower the time required
to deliver the content to the endpoints. Effective content delivery can be achieved by redirecting user
requests to the closest cache server based on the user’s location. In the following section, the article
gives insight into various redirection mechanisms. Due to the popularity of content distribution via
HTTP, this article will focus on this application layer protocol in version 1.1 in an unencrypted form.

2.2. CDN Redirections

Redirection can be achieved in multiple ways. Barbir et al. in RFC3568 [8] list and compare the
known CDN request routing mechanism:

• DNS (Domain Name System) based request routing
• Application layer request routing
• Transport layer request routing

2.2.1. DNS Based Request Routing

DNS bases request routing is common in CDNs due to the ubiquity of the DNS system [9].
The DNS server is responsible for translating domain names to IP addresses. DNS maintains a large
distributed database, which means not all the domain names are stored on every DNS server. To deal
with this fact, the DNS server might recursively query the specific domain name by pursuing the query
for the client at other servers, starting at the root zone through Top Level Domain servers towards the
authoritative name server of the specific domain.

When DNS based request routing is used, a specialized DNS server is inserted in the DNS
resolution process acting as a request router. The server is capable of returning a different set of A,
AAAA or CNAME records based on the user’s location, defined policies or other metrics. The returned
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record points directly to a CDN cache node also referred to as a surrogate server. The redirection
procedure is depicted in Figure 1.Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 25 
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DNS is simple and does not scale well. RFC 1034 [9] states the following:

• “The sheer size of the database and frequency of updates suggest that it must be maintained in
a distributed manner, with local caching to improve performance. Approaches that attempt to
collect a consistent copy of the entire database will become more and more expensive and difficult,
and hence should be avoided.”

• “Tradeoffs between the cost of acquiring data, the speed of updates, and the accuracy of caches,
the source of data should control the tradeoff.”

Due to the large scale of the distributed database, it is slow to populate updates and changes in
cases of changes in the CDN or during downtimes and unexpected situations. This limitation of the
DNS is also reflected in the DNS based redirection. Barbir et al. summarize these reflected issues and
others in RFC3568 [8]:

• “DNS only allows resolution at the domain level. However, an ideal request resolution system
should service request per object level.”

• “In DNS based Request-Routing systems servers may be required to return DNS entries with a
short time-to-live (TTL) values. This may be needed in order to be able to react quickly in the face
of outages. This in return may increase the volume of requests to DNS servers.”

DNS based redirection is fast and simple; however, as only the domain name is taken into
consideration a non-optimal surrogate server might be returned to a client’s request. The adaptation
process might take a while in case of downtimes or changes in the CDN which might result in service
unavailability decreasing the QoE (Quality of Experience) for users.

2.2.2. Application Layer Request Routing

Application layer request routing redirects the requests based on application layer parameters,
e.g., in HTTP, additional headers such as User-Agent or Uniform Resource Locator (URL) might further
enhance the accuracy of redirection. For HTTP, the request router might act as an HTTP server which
redirects the requests to surrogate servers using 301/302 redirection messages. This procedure is
depicted in Figure 2. Such redirection is slower compared to a DNS based redirection but might be
more efficient as multiple parameters might be taken into consideration during redirection decision.
Another widely used application layer redirection for HTTP is URL rewriting when the rendered
website on the origin server replaces the URLs of the distributed content to the domain name or IP
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address of a specific surrogate server. This approach eliminates the need to process redirect messages
for the clients.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 25 
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2.2.3. Transport Layer Request Routing

Transport-layer request routing requires service awareness and support from the network.
Transport-layer request routers use information in the transport-layer headers (optionally application
layer details too) to determine to which CDN surrogate hand off the session, which proceeds to serve
the requested content [8]. Such handoff can be achieved by migrating the TCP session from the request
router to the surrogate server or by achieving triangular routing, where the requests go from the client
towards the request router, which forwards the requests to the surrogate server. The surrogate server
proceeds to serve the content directly, while the IP address and port numbers are re-written by the
network (depicted in Figure 3) [10]. This article focuses on these type of redirections. Some existing
solutions are presented in the next section.
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2.3. Existing Transparent Redirection Mechanisms

The vast majority of communication over CDN happens using HTTP protocol, which is carried in
TCP. To achieve a transparent redirection, TCP session handoff must be performed from the request
router (or another node) to the surrogate server. This is challenging, as the TCP is meant to be a
connection-oriented point-to-point protocol.

Guerney Hunt, Erich Nahum and John Tracey in IBM T.J. Watson Research Center already came
up with an idea of handing off an existing TCP session from a load balancer to a content server in
1997 [11]. Authors in this report introduce the handoff mechanism of TCP sessions from the load
balancer, where the initial TCP session from the client is established. After establishment, the clients
send the HTTP request, which is examined and inspected by the load balancer, and based on the
requested content, the TCP session is handed off to a content server, which has the requested content
cached. The initial TCP session parameters between the client and the load balancer are passed to
the cache server (windows sizes, various TCP options, sequence numbers) re-using the same TCP
session parameters between the load balancer and the cache server. Once the session is handed off,
the communication flows directly between the client and the cache server, while the IP address of
the cache server is rewritten, to mimic the load balancer. It is not clear from the report, whether
a working prototype was implemented or not. Authors also mention a different approach using
T/TCP (Transactional TCP) where the initial HTTP request can be sent already in the 3-way handshake
phase [12,13]. This protocol is faster than TCP and delivery reliability is comparable to that of TCP.
T/TCP suffers from several major security problems as described by Charles Hannum [14,15]. It has
not gained widespread popularity and the protocol was moved to historic status in May 2011 by
RFC 6247. Authors also mention in the report a commercial product by Resonate Inc., which adopts
the same mechanism, which they call ‘connection hop’; however, the product does not seem to exist
anymore [16].

Li Wang introduces an implementation of TCP handoff based on the FreeBSD kernel, which adopts
the same concept of triangular routing depicted in Figure 3 mentioned earlier. In this implementation,
the load balancer communicates with the content servers in the same way as in the previous prototype.
The implementation is limited to FreeBSD and requires modifications to the content servers to make it
work [17].

Arup Acharya and Anees Shaikh in their report [18] exploit the mobility support of IPv6. IPv6
mobility allows binding the TCP session to a different host during the TCP session establishment
procedure. In the initial phase, the client sends a TCP SYN packet to the request router, which chooses
an optimal surrogate server for the given session. The TCP SYN packet is sent over an IP-in-IP to
the surrogate server including an IPv6 binding update information indicating that the request router
is the home address for this session. This mobility header tells the IP layer to update the source
IP address with the home address field of the binding update (IP address of request router) in the
SYN, ACK response, which is sent directly to the client. The client’s TCP layer sees a packet with the
source IP of the request router, thus allowing it to complete the connection [19]. This approach works
only in the TCP session establishment phase, which means, the surrogate server cannot be chosen
based on application layer information; however, it eliminates the need to use DNS based redirection.
Furthermore, such a feature is allowed only in IPv6, while the vast majority of clients still use IPv4 [20].

Matthias Wichtlhuber, Robert Reinecke and David Hausheer in their paper [21] did extensive
measurements on live TCP socket migrations. In their experiments, they measured how the congestion
window (CWND) and the slow start threshold (SSThresh) is affected, when a live TCP socket is migrated
from one CDN surrogate to another one in various network conditions for long-lasting TCP sessions,
e.g., VoD streaming. They applied delays and packet loss to simulate real-life scenarios. The TCP
socket migration was achieved using the TCP_REPAIR flag [22], which puts the socket to maintenance
mode, so the TCP parameters can be dumped and transferred to another server, where the session can
be restored, thus allowing migration of negotiated parameters during the TCP handshake phase and
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current sequence and acknowledgement numbers. The paper does not provide measurements of the
delay required to perform the TCP migration itself.

Yutaro Hayakawa, Michio Honda, Lars Eggert and Douglas Santry in their paper [23] present
Prism proxy for fast load balancing technique, where the TCP sessions established with the load
balancer, upon reception of the request, are handed-off to a chosen backend server from the pool.
The solution is designed for data center scale load balancing; however, it could be used for CDNs as a
transparent redirection engine over greater areas. The Prism proxy uses the same TCP_REPAIR [22]
flag to pass the sessions between the servers. The solution uses HTTP/1.1 and is capable of reusing
existing TCP sessions for subsequent requests. The authors used mSwitch, which is a kernel software
switch that can forward packets at a rate of over 10 Mpps on a single CPU core [24].

To perform a transparent redirection the CDN must be able to perform a TCP session handoff;
otherwise, the redirection becomes visible to the end-user. All the related work mentioned above
points out the challenges associated with the handoff procedure.

2.4. TCP Session Handoff

To be able to perform a TCP session handoff to redirect an existing TCP session from the request
router to a surrogate server, we must be able to predict what initial sequence number the surrogate server
will choose during the TCP 3-way handshake phase, which is impossible without modifications to the
TCP/IP stack on the surrogates. Another approach which was mentioned earlier is the TCP_REPAIR
flag, which requires modifications on the endpoints, thus disallows the usage of commercial closed
source solutions. To mimic the request router after a handoff, the IP addresses and the port numbers are
re-written over the network. To keep the TCP session alive, such modifications must be applied to the
sequence and acknowledgement numbers in the TCP header too. This approach could be achieved by
creating a network element which can modify these values in the TCP segment. TCP session handoff

requires further support from the network which could be possible thanks to the versatile possibilities
of SDN (Software Defined Networking). Transparent redirection in CDN done by handing off the TCP
sessions from a point of view of the visibility increases the security too, as it hides the topology behind
a single IP address and does not exploit the addresses of surrogate servers to the public network.

3. SDN Based Transparent Redirection

The state-of-the-art chapter in this article introduced existing transparent redirection methods;
however, each redirection method requires certain modifications on the endpoints, which prevents ISPs
and content providers using legacy closed source CDN surrogate servers. The next section describes
our proposed solution which allows transparent redirection of requests. The solution does not require
any additional changes to the TCP/IP stack or the operating system kernel, which can be achieved
using SDN.

Software Defined Networking (SDN) is a new approach toward computer networking. SDN’s
main idea is to separate the control plane from the data plane to create a centralized controller.
This centralized controller controls multiple data plane network devices, called forwarders in SDN
terminology. Forwarders are fast packet forwarding devices that are not capable of making any
forwarding decisions until they are configured by the controller. The idea of this approach to eliminate
the problems with compatibility of different vendors. It supports BYOD (Bring Your Own Device)
and vendor independence. In today’s agile and elastic networks devices must respond quickly and
adapt to the changes. Implementing new services requires an enormous amount of effort with legacy
devices and often results in a need to replace the existing infrastructure to newer devices [25]. SDN
improves network automation by using a common API to abstract the underlying network details
from the orchestration and provisioning systems and applications. The centralized environment brings
a better network reliability and security, uniforms the policy enforcement and decreases the number of
configuration errors [26].
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3.1. System Architecture

As introduced in the state of the art, to be able to achieve TCP session handoff the underlying
network must be able to provide an action that is capable of incrementing the sequence and acknowledge
numbers on the fly over the network. For this purpose, it is crucial to use a software-controlled
network. In the domain of SDN, the data plane consists of a set of Forwarding Elements (further
referred to as forwarders in this document). The choice for the SDN architecture is based on
OpenFlow 1.3 [27], as the protocol since this version supports experimenter actions, which allows us
custom action implementation.

In our architecture we distinguish two types of forwarders:

• Access Forwarders: conventional OpenFlow 1.3 enabled forwarder aligned with the specification;
• Core Forwarder: conventional OpenFlow 1.3 enabled forwarder with support for experimenter

actions that can modify the TCP sequence and acknowledge numbers.

This design was chosen, to eliminate the need to put modified forwarders to the access layer.
Request router and the surrogate servers of the CDN are connected directly to the core forwarders.
The network topology must be connected to an extended SDN controller with the additional experimenter
actions defined.

This approach was chosen to eliminate the need to use modified SDN forwarders in the networks.
Modified forwarders are only required where a surrogate server or the request router is attached. Other
forwarders in the network can be any OpenFlow 1.3 compliant legacy forwarders.

To make the CDN work, a request router must be placed, which is capable of establishing the
initial TCP connections with the clients and which further establishes TCP connections to surrogate
servers. A DNS server is placed in the network too, which handles domain translation for the domain
name dizp.bt. The content is distributed over the CDN via the cdn.dizp.bt domain. Surrogate servers
are addressed by prepending se(ID), e.g., se1.cdn.dizp.bt. The domain name for the content origin
is www.dizp.bt, which is a static web server hosting various files of various sizes. To be able to make
redirection decisions the request router must be able to communicate with the SDN controller. The SDN
controller provides a WebSocket based communication channel over the Northbound API [26]. Figure 4
depicts the proposed high-level architecture. The presented network represents a single L2 domain,
where each component of the network resides on the same broadcast domain.
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3.2. SDN Based TCP Session Handoff

A TCP session is defined and uniquely identified by a 4 tuple, which is the source IP address,
destination IP address, source port, and destination port. These values cannot be changed once a TCP
session is established. The main idea of the proposed SDN-based transparent redirection is not to
handoff the client’s TCP session from the request router to the surrogate server but to synchronize two
separate TCP sessions with each other (depicted in Figure 5). The two separate TCP sessions must
be established before the synchronization—one from the client towards the request router and the
other from the request router towards the surrogate server (steps 1 and 2). Once the TCP sessions
are established, an HTTP request is expected from the client towards the request router (step 3).
This request is modified and sent over the other TCP session from the request router to the surrogate
server (step 4). At this point, the surrogate server starts sending a byte stream as a response to the
request. This byte stream is however directed from the surrogate server directly to the client bypassing
the request router, while the IP addresses and port numbers are rewritten to match the 4-tuple value of
the initial TCP session (step 5).
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To make this solution work we must synchronize the sequence and acknowledgement numbers
in the TCP headers too. Such modification could be implemented on a data plane as an experimenter
action. The action must be able to increment these numbers to map the other TCP session’s values.
Once the sequence/acknowledge number reaches the maximum value of a 32bit number, it overflows
and starts from 0. Upon successful installation of actions to the data plane, the client consumes the
response message from the surrogate server, which was originally generated for the request router
(1st TCP session), while the client “thinks” the response is coming directly from the request router (2nd
TCP session). In the end, to finish the handover procedure, the SDN controller must create reset (RST)
or FIN messages to mitigate both sessions which were established with the request router.

To be able to perform the handoff, we have to keep track of the existing TCP sessions in the
network. This can be achieved by intercepting the initial TCP handshakes with the request router and
the surrogate servers. The request router prepares a pool of established TCP sessions towards the
surrogate servers, which are reused for the handoff.

Once the client establishes a TCP session with the request router a valid HTTP request message is
expected. From this point, the handoff procedure begins. The whole handoff procedure is depicted in
divided into 4 parts. The solution is designed to work with the standardized HTTP 1.1 in unencrypted
form [28]. In the 1st part, the clients send an HTTP GET request including the URL and additional
request headers. This request is sent to the controller (CNT) and then forwarded to the request router.
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Once the full request is sent to the request router the controller blocks the communication from the
request router towards the client (Flow Mod:1). The request router parses the request and reports the
request size to the controller over the management WebSocket channel in a setrequestsize message. This
confirms the controller, that a full request was received (request might be fragmented into multiple
packets). Once confirmed, the controller chooses a surrogate server, where the TCP session will be
handed off (synchronized with).

The request router queries this information in a getmatchingsess message, which returns the TCP
session parameters. Based on the returned information the request router modifies the request by
updating the Host header in the HTTP request. The size of the new request is reported again to the
controller via the setrequestsize message.

In part 2 of Figure 6, the request router sends out the request towards the surrogate server via an
already pre-established TCP session (this session was chosen by the controller). The message is sent
out and sent to the controller in a Packet IN message. At this point, the controller has all the required
information to perform the handoff. The controller installs flow mods to the core forwarder, where the
surrogate is connected, and to the access forwarder, where the client is connected. The following flow
mods are installed:

• Flow mod 2: rewrites destination IP, port and MAC address for the communication from the
surrogate server towards the client, where the IP, port and MAC address are rewritten to mimic
the request router. Sequence number and Acknowledge number is incremented to synchronize
with the TCP session established between the client and request router.

• Flow mod 3: rewrites the source IP, port and MAC address to match the parameters of the client.
The packet sent out from the surrogate server is originally destined to the request router.

• Flow mod 4: rewrites source IP, port and MAC address to match the parameters of the request router
for the communication from the client towards the surrogate server. Sequence and acknowledgement
numbers are incremented to synchronize with the TCP session between the request router and the
surrogate server.

• Flow mod 5: rewrites the destination IP, port and MAC address to match the parameters of the
surrogate server as the outgoing packet from the client is destined to the request router.

• Flow mod 6 and 7 blocks any further communication from the request router towards the client or
surrogate server over the two established TCP sessions.

If there are several other forwarders between the core and the access switch, the intermediary
routers forward the packets based on the destination IP address. The destination IP address is correctly
updated on the core and access forwarders for the right routing direction. At this point, all the flow
mods are prepared for the synchronization and the corresponding communication continues between
the client and the surrogate server exclusively without sending the packets to the SDN controller.

In part 3 of Figure 6, the modified request is sent out from the controller to the surrogate
server, which parses the request and sends a response upon a valid request. The response and
acknowledgement packets are forwarded through the network and the parameters are rewritten on
the core and access forwarders based on the flow mods from part 2.

To correctly finish the handoff procedure, it is crucial to mitigate the initial TCP sessions established
with the request router. To mitigate the sessions the controller generates TCP packets with RST flags
set for both TCP sessions, which are sent out via PACKET OUT messages in part 4 of Figure 6. Once
the session is mitigated, the request router creates a new TCP session towards the surrogate server to
maintain the pool of available TCP sessions.
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To calculate the synchronization values of the sequence and acknowledgement numbers the
following formulas are used:

Sinc_cs = ((232) + (Srs − Scr) + (Rrs − Rcr)) mod (232) (1)

Ainc_sc = ((232) − Sinc_cs) mod (232) (2)

Sinc_sc = ((232) + (Src − Ssr)) mod (232) (3)

Ainc_cs = ((232) − Sinc_sc) mod (232) (4)
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where:

• Srs: Initial sequence number from request router to the surrogate server;
• Scr: Initial sequence number from client to the request router;
• Rrs: Request size from the request router to the surrogate server;
• Rcr: Request size from client to the request router;
• Src: Initial sequence number from the request router to the client;
• Ssr: Initial sequence number from the surrogate server to the request router.

As the sequence and acknowledge numbers are 4-byte numbers. Modulo 32 is applied to prevent
the overflow of these numbers. SeqCS (1) is applied in direction from the client to the surrogate server
as inc_seq(SeqCS) on the core forwarder (Flow mod 4). AckSC (2) is applied in direction from the
surrogate server towards the client as inc_ack(AckSC) on the core forwarder (Flow mod 2). SeqSC (3)
is applied in a direction from surrogate to the client as inc_seq(SeqSC) (Flow mod 2) and AckCS (4) is
applied in a direction from the client to the surrogate as inc_ack(AckCS) on the forwarder where the
surrogate server is attached (Flow mod 4). Action inc_seq and inc_ack are interpreted as datapath
actions on the forwarders, which increment sequence and acknowledge numbers, respectively.

Secure TLS based HTTPs connections could not be handed off with this design, as it is not possible
to share the negotiated parameters of the TLS context between the endpoints without modifications
to them. Successfully handing off such a TCP session via the network only would require a serious
vulnerability in the TLS standard, which would deprecate this protocol. Securing the content itself is
possible with other types of methods, e.g., DRM (Digital Rights Management). Alternatively, we could
deploy HTTPs proxies close to the access forwarders and terminate TLS based connections there and
proxy the requests towards the CDN in an unencrypted form. However, this is inefficient and limits
the scalability of the network.

4. Verification

This section will provide information about the implementation details starting with the data
plane extension, the SDN controller and the CDN request router which are the key components to
make the system work. Additional services such as DNS, origin server and the surrogate servers will
be described with the deployed topology and network design.

4.1. Forwarder Implementation

Open vSwitch was chosen as a forwarding element due to its popularity and performance [29].
The forwarder consists of two components. The userspace implementation of the forwarding datapath
called ovs-switchd and the datapath kernel module written specifically for the host operating system
to achieve high performance [29]. The performance of the Open vSwitch kernel datapath reaches up
to 800 Mbit/s [30] on a single UDP flow tested, which can be further enhanced by using a different
datapath, e.g., DPDK (Data Plane Development Kit) [31] or a hardware implementation. We modified
the Open vSwitch open source software implemented forwarder, which currently handles OpenFlow
up to version 1.5. As OpenFlow since version 1.3 provides experimenter headers, this version of the
protocol became our choice. We added a new action to the standard list of actions with IDs 32 and 33
(inc_seq and inc_ack) to increment the sequence number and the acknowledge number respectively.
Both actions take a single 4 Byte parameter, which represents the value, by which the original value in
the header will be incremented. The action was both implemented in user-space and kernel-space to
achieve high forwarding performance.

The full patch is available at the URL (https://github.com/fr6nco/ovs/compare/v2.8.1...fr6nco:
seq_ack_experimenter).

The applied patch extends the OpenFlow interface with new actions:

• inc_seq(increment): increments sequence number by the supplied increment argument.
The argument is a 4 Byte unsigned integer

https://github.com/fr6nco/ovs/compare/v2.8.1...fr6nco
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• inc_ack(increment): increments the acknowledge number by the supplied increment argument.
The argument is a 4 Byte unsigned integer

We created a testbed, where we attached hosts A and B and manually added flow entries, where we
incremented the sequence number of the TCP header in the direction from A to B, and we decremented
the acknowledge number in the opposite direction. Decrement is not implemented, however, if we
increment the number by 232

− 1, we will achieve a decrement by 1 as the acknowledge number
overflows. We achieved a goodput of around 600 Mbit/s on a single-core CPU with a 2.7 GHz frequency
in a virtualized environment using iperf [32], which is similar to the forwarding performance achieved
in [30]. The measured goodput is shown in Figure 7. The data plane is emulated using the Mininet
emulator [33].
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4.2. SND Controller Implementation

RYU [34] controller was chosen as the SDN controller. The SDN controller is responsible for topology
discovery, handover procedure management, and TCP session connection tracking. It provides an API
interface for control purposes. The framework is implemented in Python, and it was extended by
the new actions defined on the Open vSwitch forwarder to be able to execute these actions on the
data plane.

The patch to the RYU framework is available at the URL (https://github.com/fr6nco/ryu/compare/

master...fr6nco:dizp):
The implemented controller is using the RYU framework and consists of 4 different modules;

these are the following:

• ForwardingModule: responsible for simple L2 forwarding, and provides shortest path lookup for
other modules

• CDNModule: responsible for controlling the CDN, implements connection tracking of TCP
sessions and controls the handoff procedure

• DatabaseModule: provides an in memory single source of truth data storage for the SDN controller
• WsEndpointModule: provides a Websocket API using JSON-RPC over the Northbound API

As the TCP session establishment must traverse through the SDN controller some additional
initial delay is imposed. By capturing the TCP handshake, we can get the imposed initial RTT (round
trip time). After a few tests, we found out it is around ~13 milliseconds (approximately ~6 milliseconds
one-way delay). Session establishment in the network without having to reach out for the SDN
controller brings down the initial RTT to ~0.9 milliseconds (~0.45 milliseconds one-way delay). This
imposed delay is acceptable and will not affect the end user’s experience. We did a TCP Iperf test

https://github.com/fr6nco/ryu/compare/master...fr6nco:dizp
https://github.com/fr6nco/ryu/compare/master...fr6nco:dizp
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between a client and a server, while we pushed the whole communication through the SDN control
plane, not just the TCP handshake, and we were able to achieve a goodput of around ~15 Mbits/s. This
goodput was a one way TCP transfer test, while the sent and received goodput was reported by both
the client and server respectively (Figure 8).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 25 

 
Figure 8. Packet IN, Packet OUT performance of the SDN controller. 

The source code of the SDN controller is available on github (https://github.com/fr6nco/cdNgine.git). 

4.3. Request Router Implementation 

The request router is responsible for handling the redirections. Although we use a transparent 
redirection mechanism which is mostly handled by the SDN controller, we implemented a request router 
to be able to fully handle TCP connections and HTTP messages. The request router is implemented in 
NodeJS due to its robustness and performance [35]. 

The request router consists of 4 main modules: 

• Http endpoint module: this module opens a TCP socket, which listens for incoming HTTP requests. 
The endpoint is running on port 8082. If a request is received, it is parsed and then prepared for 
handoff. 

• Controller endpoint connector module: this module is responsible for communicating with the 
SDN controller’s Northbound API over the WebSocket based JSON-RPC endpoint. 

• Request router module: this module is responsible for handling the CDN logic. The module 
stores information about the assets and maintains the pool of established TCP connections 
toward the surrogate servers. On incoming requests, this module is responsible for modifying 
the request and sending it out to the surrogate server. The surrogate server selection is done by 
the SDN controller, which is queried by the controller endpoint connector module. 

• API endpoint: this module provides a REST API for the GUI. The REST API listens on port 3000. 

The request router implementation is available on github (https://github.com/fr6nco/reqNRouter.git). 

4.4. Topology and Additional Services 

The three main components of the CDN were described. To evaluate the system, we deployed 
the solution on a virtualized platform VMWare vSphere ESXi powered by a CPU of an Intel Xeon e5-
2450L. The deployed network is depicted in Figure 9. The network consists of 2 types of networks. 
The management network and list of private networks, which connect the VMs.  

Figure 8. Packet IN, Packet OUT performance of the SDN controller.

The source code of the SDN controller is available on github (https://github.com/fr6nco/cdNgine.git).

4.3. Request Router Implementation

The request router is responsible for handling the redirections. Although we use a transparent
redirection mechanism which is mostly handled by the SDN controller, we implemented a request router
to be able to fully handle TCP connections and HTTP messages. The request router is implemented in
NodeJS due to its robustness and performance [35].

The request router consists of 4 main modules:

• Http endpoint module: this module opens a TCP socket, which listens for incoming HTTP requests.
The endpoint is running on port 8082. If a request is received, it is parsed and then prepared
for handoff.

• Controller endpoint connector module: this module is responsible for communicating with the
SDN controller’s Northbound API over the WebSocket based JSON-RPC endpoint.

• Request router module: this module is responsible for handling the CDN logic. The module stores
information about the assets and maintains the pool of established TCP connections toward the
surrogate servers. On incoming requests, this module is responsible for modifying the request
and sending it out to the surrogate server. The surrogate server selection is done by the SDN
controller, which is queried by the controller endpoint connector module.

• API endpoint: this module provides a REST API for the GUI. The REST API listens on port 3000.

The request router implementation is available on github (https://github.com/fr6nco/reqNRouter.git).

4.4. Topology and Additional Services

The three main components of the CDN were described. To evaluate the system, we deployed
the solution on a virtualized platform VMWare vSphere ESXi powered by a CPU of an Intel Xeon
e5-2450L. The deployed network is depicted in Figure 9. The network consists of 2 types of networks.
The management network and list of private networks, which connect the VMs.

https://github.com/fr6nco/cdNgine.git
https://github.com/fr6nco/reqNRouter.git
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In the center of the topology a mininet (mn) node is deployed, where we can simulate various
network topologies. The Services node runs the SDN controller, a DNS server, a Graphical User
Interface and serves static content as content origin, while the content is distributed and cached by the
surrogate servers. The RR node runs the request router in the network. We attached two machines
named SE1 and SE2, which are the surrogate servers. We added two clients for evaluating purposes
named Client 1 and Client 2. The servers are connected via the mininet network. Servers are also
connected via the management interface to allow management access and which allows the services to
communicate with each other over the various APIs. The addressing plan for the network is shown
in Table 1.

Table 1. IP addressing plan.

Server MGMT Network Internal L2 NTW

mn 10.9.1.10/24 -
services 10.9.1.11/24 10.11.0.99/24

rr 10.9.1.12/24 10.11.0.100/24
se1 10.9.1.13/24 10.11.0.11/24
se2 10.9.1.14/24 10.11.0.12/24

client1 10.9.1.15/24 10.11.0.101/24
client2 10.9.1.16/24 10.11.0.102/24

Once the topology is created the various services can be easily installed using automated scripts via
ansible. The repository with the ansible playbooks is on github (https://github.com/fr6nco/ansible-dizp).

4.4.1. DNS Server

The DNS server is responsible for translating domain names to IP addresses. We have chosen bind9
as a DNS server. The DNS server is an authoritative DNS server for the domain dizp.bt. It translates
domain names to IP addresses in the 10.11.1.0/24 private network. The available domain names are
listed in Table 2.

https://github.com/fr6nco/ansible-dizp
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Table 2. Configured domain names.

Domain Name Record IP/Domain Node

dns.dizp.bt A 10.11.0.99 DNS server
rr.dizp.bt A 10.11.0.100 Request Router

se1.cdn.dizp.bt A 10.11.0.11 Surrogate 1
se2.cdn.dizp.bt A 10.11.0.12 Surrogate 2
origin.dizp.bt A 10.11.0.99 Origin
www.dizp.bt CNAME origin.dizp.bt Origin
cdn.dizp.bt CNAME rr.dizp.bt Request Router

4.4.2. Content Origin

The content origin is a static website for hosting content for the clients and the CDN surrogate
servers. The content is served using a popular web server Apache2 [36]. The web server serves
the content of various sizes over the internal private network. It severs a static HTML file, which
contains a gallery of images. The server accepts requests destined to host cdn.dizp.bt and www.dizp.bt.
The assets (images) are pointed to domain cdn.dizp.bt:8082, so they are retrieved via the CDN. The host
cdn.dizp.bt:8082 points to the request router in the network. Expires module in apache2 was enabled,
which sets the cache-control header for these images and validates them for 30 days (Cache-Control:
max-age = 2592000 header is appended to responses).

4.4.3. CDN Surrogate Servers

The surrogate servers are responsible for caching the content from the content origin and serve it to
the clients when requested. We decided to use Nginx web server in a proxy cache setup [37]. The server
is configured as a reverse proxy pointing to the origin server namely origin.dizp.bt. The surrogate
server serves content for host {name}.cdn.dizp.bt, while the name is the hostname of the surrogate
server. There are 2 surrogate servers installed with hostnames se1 and se2.

5. Evaluation

The evaluation of the performance was done on two setups. The proposed transparent redirection
was compared to the application layer redirection using 302-redirection. In both cases, the request
router redirected the requests to the closest surrogate server based on the client’s location.

The solution was evaluated in two different scenarios. The first scenario focuses on the overall
delay and performance of the proposed solution. The second scenario presents the solution as a load
balancer and compares the performance to an application-layer proxy.

5.1. TCP Option Prerequisites

The transparent redirection was not working in the beginning. Later we found out that some of
the TCP options caused the packets to be dropped by the Linux kernel.

Some of these headers had to be stripped off when they were sent through the SDN controller
during the initial 3-way handshake:

• TCP Timestamps: Timestamp Value (TSval) timestamps are carried in both data and <ACK>

segments and are echoed in Timestamp Echo Reply (TSecr) fields carried in returning <ACK> or
data segments, originally used primarily for timestamping individual segments, as the properties
of the timestamps option allow for taking time measurements. The Timestamps option is important
when large receive windows are used to allow the use of PAWS (Protection Against Wrapped
Sequence numbers) mechanism. This option further enhances security by eliminating TCP session
hijacking [38]. In the moment of the handoff, the TSecr field does not match the TSval of its
peer, as this packet was generated by a different node. Stripping off this TCP Option made the

www.dizp.bt
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handoff work. This option could be synchronized via the control plane too, as during the handoff

procedure the packets are traversing through the SDN controller.
• TCP Selective Acknowledgement Option (SACK): TCP may experience poor performance when

multiple segments are lost from one window of data. With the limited information available from
cumulative acknowledgments, a TCP sender can only learn about a single lost packet per round
trip time. An aggressive sender could choose to retransmit packets early, but such retransmitted
segments may have already been successfully received. A Selective Acknowledgment (SACK)
mechanism, combined with a selective repeat retransmission policy, can help to overcome these
limitations. The receiving TCP sends back SACK packets to the sender informing the sender of
data that has been received. The sender can then retransmit only the missing data segments [39].
After the handoff, endpoints would see ranges in incorrect values. This could be solved by
implementing the incrementing feature of this TCP option too. However, such a feature is
challenging, as the order and the position of the TCP options are not fixed in the TCP header.
Currently TCP SACK Option is stripped off during the 3-way handshake by the SDN controller.

• Window Scale Option: The three-byte Window Scale option MAY be sent in an SYN segment by a
TCP. It indicates that the TCP is prepared to send and receive window scaling and communicate
the exponent of a scale factor. The value of the Window Scale option cannot be changed on an
established connection [38]. Window scaling option might be problematic when synchronizing
different TCP sessions. When a handover is done via the TCP_REPAIR, initial TCP options are
synchronized too, which will not happen when two sessions are synchronized with each other.
We run several tests and found out when the actual WSCALE is different from the negotiated
value the connection control might have issues correctly setting the window sizes, which can
end up in a stalled connection. This might happen if the WSCALE TCP option is different on the
client and the request router. This issue could be fixed by pre-establishing a pool of TCP sessions
towards the surrogate servers using various WSCALE options and choosing the TCP session
when doing the handoff, which matches the WSCALE option of the client. This will ensure, that
the negotiated WSCALE value is going to be the same even after the handoff.

Keeping these TCP Options is possible; however, further control mechanism is required to achieve
precise synchronization of these options. Managing these TCP options is out of the scope of this work.

5.2. Redirection Delay

The redirection procedure on client requests imposes some delay. It is crucial to keep this delay as
low as possible. In the next set of measurements, we evaluated the imposed delay for both transparent
and 302 application layer redirection. In the first phase, we examined the delay in various networks.
We prepared a linear topology over the network, where we attached several forwarders in line, and we
attached a client to one and a surrogate server to the other side of the topology. We attached the content
origin and the DNS server halfway between the client and the surrogate server. We have to mention,
that in this case, the origin server is closer to the client; however, we wanted to measure the delay
over a various number of hops when dealing with the handoff procedure. The topology is shown in
Figure 10.

On each request 7 flow mods are installed, and 2 extra Packet OUTs are made to mitigate the
sessions on the core and the access forwarder together. On each forwarder over path, there are 2 flow
mods. S1 (access forwarder) gets 2 flow mods, S(n) (core forwarder) gets 5 flow mods and each
forwarder on the path get 2 flow mods installed.

This sums up to:
FM_SUM = 7 + 2(n − 2) (5)

This Formula (5) applies only for the transparent redirection as the 302 redirection method does
not go through the SDN controller, thus no path calculation and installation are needed. Flow mods
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are only installed if the client has not communicated with the surrogate before. This represents 2n
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We made several tests on various sizes of the linear network (3, 5, 10, 30, 50, 100), and we measured
the time required for the first bytes of data to arrive from the surrogate server to the client.

Figures 11 and 12 show how the transfer delay is affected by the number of forwarders in the path.
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The difference in the start transfer delay is significant. The 302 redirection is relatively constant;
only the network itself imposes some delay. The transparent redirection’s start transfer delay is
increasing linearly with the number of switches. Based on the graphs and the formula above we can
see, that the delay is imposed by flow mods that have to be installed to the network. If we put a
trendline over the graph, we can see the linearly increasing complexity, which linearly increases the
start transfer delay too.

Such delay using transparent redirection is unacceptable. We further modified the SDN controller,
where we enabled caching of the shortest paths from the surrogate servers to the clients. Once we
installed a path between the client and the surrogate, we do not install it again. In such case, the delay
affects only the first request if the client did not make any communication with the surrogate before.
This solution significantly decreases the delay. With this approach we have to listen to topology
changes, which are handled by the framework itself (Ryu) and trigger installed path recalculations.

The delay of the 302 redirection remains unchanged as the redirection does not require any flow
modifications. This redirection only communicates with the SDN controller’s Northbound API when
the closest surrogate server is chosen based on the client’s location.

Figures 13 and 14 show how the delay is affected when path caching is enabled.
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The delay is still increasing by the number of hops over the network, but the complexity of the
transparent redirection turns constant once the first request from the clients is received. The delay of the
first request is visible as a flying dot in the upper outlier for both transparent and 302 redirections. The delay
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is caused by the network and by the server, which has to fulfill the received request. The limited
performance of the testbed, which was shared with other services too during our measurements,
caused having large confidence intervals in transparent redirections. Transparent redirection requires
way more computational overhead compared to the 302 redirection. The controller on each redirection
has to install flow mods to the forwarders, while the 302 redirection requires no additional flow table
changes. With increasing resources, the confidence intervals would get narrower. We should allocate
more CPUs with the increasing number for forwarders in the network. In ideal conditions 1 CPU for a
single forwarder.

5.3. Overall Delay and Bandwidth Measurements

Next we made delay and bandwidth measurements on a network with 2 hops between the
client and the surrogate server and we compared the proposed transparent redirection with the 302
redirection side by side. The topology used is shown in Figure 15.
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As already mentioned, the transparent redirection requires to be sent over the SDN controller,
so the TCP session handshake traverses to the control node via the Packet IN and Packet OUT messages.
This adds some initial delay to the 3-way handshake. The time required to establish a TCP connection
with the request router is shown in Figure 16.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 25 

As already mentioned, the transparent redirection requires to be sent over the SDN controller, 
so the TCP session handshake traverses to the control node via the Packet IN and Packet OUT 
messages. This adds some initial delay to the 3-way handshake. The time required to establish a TCP 
connection with the request router is shown in Figure 16. 

 
Figure 16. 3-way handshake delay. 

Once the TCP session is established, the request router expects an HTTP GET message from the 
client. Upon a valid request, the client is redirected using a 302-redirection method toward the surrogate 
server, from where the content is served. Using the transparent redirection, a TCP session handover 
occurs to the surrogate server. Figure 17 shows the time required to process the redirection methods. 
The time between the sent HTTP GET message and receiving the first data bytes is measured. 

 
Figure 17. Time required to process redirection. 

To give some insight into the performance of the data plane, we did measurements on a large 
file (1 GB). This size of the file is enough to reach high performance on the data plane due to the 
increasing window size. Figure 18 shows the whole time required to download the 1 GB file from the 
surrogate server including TCP session establishment and redirection. 

Figure 16. 3-way handshake delay.



Appl. Sci. 2019, 9, 5418 20 of 24

Once the TCP session is established, the request router expects an HTTP GET message from
the client. Upon a valid request, the client is redirected using a 302-redirection method toward the
surrogate server, from where the content is served. Using the transparent redirection, a TCP session
handover occurs to the surrogate server. Figure 17 shows the time required to process the redirection
methods. The time between the sent HTTP GET message and receiving the first data bytes is measured.
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To give some insight into the performance of the data plane, we did measurements on a large file
(1 GB). This size of the file is enough to reach high performance on the data plane due to the increasing
window size. Figure 18 shows the whole time required to download the 1 GB file from the surrogate
server including TCP session establishment and redirection.
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After each test, we reported the mean bandwidth reached during the file transfer, which we put on
a boxplot to evaluate the performance of the data plane itself. Figure 19 shows the average bandwidth
reached during the file transfers. We have to note when 302 redirection is used the forwarding elements
only match the packets and forward them to the next hop based on output action in the flow table.
No other modifications are made to the packets. When transparent redirection is used, due to the TCP
session synchronization, source IP, destination IP, source port and destination port are rewritten and
sequence and acknowledge numbers are incremented. As we made our tests on an L2 network, source
and destination hardware (MAC) addresses were rewritten too. This comes to a fact, that transparent
redirection does 8 modifications on the packets, while the 302 redirection does not do any changes.
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Any change applied to a TCP or IPv4 Header also triggers a recalculation of the CRC checksum. Based
on the achieved bandwidth (~280 Mbit/s compared to ~320 Mbit/s), we can state that the modifications
made on the Open vSwitch forwarder did not degrade the overall performance.
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5.4. Use Case of a Transparent Proxy

The proposed solution could be used as a transparent proxy, which in a load-balancing fashion
distributes the incoming requests to multiple backend web services similarly, as presented in [23].
In the next set of tests, we compared the performance of the transparent redirection to a performance
of an L7 proxy on the same topology (Figure 15). We also compared how the performance is affected
when connections are kept alive for subsequent requests. The measurements are visible in Figures 20
and 21 with connection closed and kept alive after each request respectively.

As we can see, the L7 load balancing even outperforms 302-redirection in Figure 17 as the client
does not have to process the redirection messages, while the transparent load balancing shows the
same results as the transparent redirection as these procedures are the same.

When the connection is kept alive for subsequent requests, on average, the proposed transparent
load balancing (transparent redirection) outperforms even the L7 load balancing as the subsequent
requests do not have to pass the load balancer (request router) itself.
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6. Conclusions and Future Work

This article introduced the main concepts of Software Defined Networking, Content Delivery
Network and the concepts of content distribution on a large scale. It further described existing
redirection methods used in CDNs and devoted a section for existing transparent redirection methods.
Transparent redirection methods are not often used as they require changes and service awareness in
the network. Several transparent redirection methods were already implemented and tested; however,
there is no transparent redirection method existing right now, which would not require modifications
to the surrogate server. This limitation eliminates the use of legacy closed source solutions.

The article proposes a TCP session handoff mechanism as a transparent redirection which synchronizes
two existing TCP connections with each other. This approach does not require any modifications to the
endpoint. The only modification to the data plane is required on the core forwarders, where a surrogate
server or a request router is attached. The transparent redirection ensures that the TCP session is
handed off to a CDN surrogate from the request router, while the procedure stays unnoticeable to the
endpoints. The proposed solution can be used in Load Balancing scenarios too.

The redirection decision is based on the network topology and the location of the surrogates and
the users. The results acquired show that current redirection methods (302 Redirection) are faster
than the proposed solution; however, this performance could be enhanced by using a more mature
and faster controller. Currently, the controller represents a single point of failure, does not scale and
represents our performance bottleneck in the proposed solution. In the case of a transparent load
balancer, the solution achieved better results when the TCP connections were kept alive for subsequent
requests. The achieved performance is suitable for production use and compared to existing solutions
does not degrade the Quality of Experience for the end-users.

There were several issues found, which should be solved in the future. One of them is the issue of
pre-establishing TCP sessions form the request router to the surrogate servers with various WSCALE
options to be able to make exact matches when we synchronize the TCP sessions. The incrementation of
the acknowledgement numbers in the selective acknowledgement TCP Option should be implemented
on forwarding elements too. Currently, these TCP Options including TCP Timestamps are turned
off, which could degrade the performance in challenging environments. Furthermore, secure TLS
based TCP sessions currently are not supported by the proposed solution, so connections over HTTPs
are broken.
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