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Featured Application: Air pollution has become an unavoidable reality in today’s world. With the
rapid development of various industries and motorized transportation, large amounts of harmful
substances such as soot, sulfur dioxides, nitrogen oxides, carbon monoxides, and hydrocarbons
are released into the atmosphere, lasting a long time and in concentrations exceeding tolerable
environmental limits. In this study, we investigated an intelligent algorithm that had the functions
of parameter optimization and decision rules, which we applied to Beijing air quality data to
analyze and forecast urban air quality.

Abstract: Air pollution has an ongoing devastating impact on the planet, damaging ecosystems,
depleting natural resources, and endangering human health. This paper proposes a new intelligent
algorithm that includes parameter optimization and decision rules to forecast and analyze of urban air
quality. Through analysis of 24-h daily air quality data provided by the Beijing Air Quality Monitoring
Station, simulated annealing (SA) and a decision tree (DT) emerge as the key factors. We prove that
in the investigated algorithm, SA and DT can be used to make decision rules and achieve better
accuracy for classification. We find that SA can be used to adjust the best parameter settings for the
DT. Simulation results show that the accuracy of the proposed algorithm for classification is far better
than other existing approaches.

Keywords: air quality; new intelligent algorithm; simulated annealing

1. Introduction

With the global trend and people’s attention, how to monitor the air quality scientifically and
effectively and how to further prevent and control air pollution has become a hot topic. The problem
of air pollution is very complex, which is characterized by multi pollution coexistence, multi-scale
correlation, and multi process evolution. In order to solve this complex problem, it is particularly
important to strengthen the construction of air quality monitoring and air quality management
information. Only effective prediction, analysis, and research on air quality can effectively improve air
quality. How to effectively use the real-time monitoring data of each city’s automatic air monitoring
station, mine its internal information, use the monitoring data to build a bridge for analyzing the
pollution problem [1], effective improvement of air quality, improvement of people’s living environment
to maintain people’s health is an urgent problem to be solved.
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The air quality index (AQI) is calculated by monitoring the concentration of fine particulate matter
(PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3),
and carbon monoxide (CO). In recent years, due to the increasing consumption of various energy
resources and the increase of cumulative emissions, the problem of air pollution has seriously increased.
More and more attention has been paid to the study of air pollution. In order to better adapt to the
global trend and create a good air environment, using data mining technology to establish air quality
analysis, the forecast model has become an important topic [2–9].

Collecting AQI data is key for monitoring pollution problems. To solve the AQI problem, various
approaches have been used for data mining, including artificial neural network (ANN), genetic
algorithm (GA), decision tree (DT), random forest (RF), and support vector machine (SVM) [10–20].
Each method has a single basic point of view and provides a general performance analysis of air quality
indicators, but it is difficult to distinguish the best method. Recent studies have proposed various
intelligent systems, and the results seem applicable [21–26]. However, these investigated methods
have an important shortcoming: they cannot simultaneously provide parameter optimization for an
algorithm as well as decision rules. For AQI evaluation, decision rules can be updated according to
datasets in the evaluation process and can be used to predict new evaluation results. For that we would
aim to investigate an algorithm based on the characteristics of AQI decision rule establishment and
parameter optimization. Then the urban air quality forecast and analysis can be based on an intelligent
algorithm with parameter optimization and decision rules. We therefore propose an intelligent
algorithm that combines DT and simulated annealing (SA), in which DT generates decision rules and
SA converges to a global optimum, and the parameters of DT are determined by SA. The rules extracted
in this paper could be used to analyze collected information, then forecast a new AQI. In what follows,
we review the decision tree in Section 2, introduce the proposed algorithm in Section 3, and analyze
the simulation results and discussions in Section 4. Finally, we draw the conclusion.

2. A Brief Description of the Decision Tree Algorithm

In our previous work [27,28], we applied the DT algorithm in anomaly intrusion detection and
found it to have excellent classification performance. The DT has the advantages of intuitive expression
and convenient operation and is widely used in research [29–36]. It consists of a root node, a child
node, and a leaf node. After the structure is established, the required data are tested, starting from the
root node. Depending on the different data attributes, the sub-node selects a property and moves to
another sub-node recursively until the leaf is reached. Nodes and leaf nodes are the classifications
for data prediction. When a DT is constructed, the attribute with the highest information gain rate
is the split attribute of the current node. With recursive calculation, the information gain rate of the
calculated attributes becomes smaller and smaller, and in the latest stage, the attribute with relatively
large information gain rate will be selected as the splitting attribute, and the DT uses the Gini coefficient
minimization criterion to perform feature selection to generate a binary tree [29,30]. The Gini coefficient
minimization criterion is calculated as follows:

Gini(p) =
k∑

k=1

pk(1− pk) = 1−
k∑

k=1

p2
k (1)

pk indicates the probability that the selected sample belongs to the k class; the probability that the
sample is split is (1− pk). For a given sample set D, the Gini index is:

Gini(D) = 1−
k∑

k=1

∣∣∣{k
∣∣∣

| D |

2

(2)
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Here, {k is the sample belonging to the kth class in D, and k is the number of classes. If the sample
set D is divided into two parts D1 and D2 according to whether a feature A takes a certain value
a, namely:

D1 =
{
((x, y) ∈ D

∣∣∣A(x)) = a
}
, D2 = D−D1 (3)

then under the condition of feature A, the Gini index of set D is defined as:

Gini (D, A) =
|D1|

| D |
Gini (D1) +

|D2|

| D |
Gini (D2) (4)

The Gini index Gini (D) represents the uncertainty value of the set D, and the Gini index Gini (D,
A) represents the uncertainty value of the set D after A = a partitioning. The larger the Gini index value,
the greater the uncertainty result of the sample set. When using the DT algorithm, the two parameters
of minimum case (M) and the pruning confidence factor (CF) will have different combinations when
facing different problems or cases [29]. In this paper, the SA algorithm is used to adjust and determine
the best combination of these two parameters and the best solution of the problem.

3. The Proposed Algorithm

This paper proposes an algorithm for urban air quality forecast and analysis that is based on an
intelligent algorithm with parameter optimization and decision rules. In the study, in order to verify
the performance of the proposed algorithm, we use Beijing air quality data in CSV (Comma-Separated
Values) format [37]. A partial original data is shown in Table 1. The seven different features are listed
in Table 2 [38]. As shown in Table 2, these pollutants cause poor air quality, affect human living
environment and harm human health. The real-time historical data of AQI from 1 January 2017 to
6 October 2018 in the District of Dongcheng, Beijing, 11270 AQI instances with seven different features
were collected. Table 3 presents partial data for the resulting AQI.

Table 1. Partial original data for the the Beijing dataset.

Date Hour Type Dongcheng Tiantan Guanyuan Yungang

20180101 0 Fine particulate matter (PM2.5) 77 60 65 52
20180101 0 PM2.5_24h
20180101 0 Inhalable particulate matter (PM10) 139 86 139 97
20180101 0 PM10_24h
20180101 0 Air quality index (AQI) 103 81 95 74
20180101 1 PM2.5 71 60 56 66
20180101 1 PM2.5_24h
20180101 1 PM10 125 98 109 121
20180101 1 PM10_24h
20180101 1 AQI 95 81 80 89
20180101 2 PM2.5 42 63 37 37
20180101 2 PM2.5_24h
20180101 2 PM10 78 93 73 77
20180101 2 PM10_24h
20180101 2 AQI 64 85 62 64
20180101 3 PM2.5 38 39 35 34
20180101 3 PM2.5_24h
20180101 3 PM10 67 61 72 63
20180101 3 PM10_24h
20180101 3 AQI 59 56 61 57
20180101 4 PM2.5 33 27 38 36
20180101 4 PM2.5_24h
20180101 4 PM10 65 50 78 67
20180101 4 PM10_24h
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Table 2. The seven features of air quality applied to the Beijing dataset.

PM2.5
Particles in the atmosphere with a diameter less than or equal to 2.5 µm, also known as particulate
matter, have an important effect on air quality and human health.

PM10
Particulate matter in the atmosphere with a diameter of 10 µm or less is known as fly ash. This can
enter the lungs, and it has an important impact on air quality and human health.

SO2
Sulfur dioxide is one of the main atmospheric pollutants. When sulfur dioxide is dissolved in
water, sulfurous acid is formed, the main component of acid rain.

NO2

Nitrogen dioxide comes mainly from high-temperature combustion processes, such as vehicle
exhaust and boiler exhaust emissions. It’s another cause of acid rain, which reduces atmospheric
visibility and contributes to the acidification and eutrophication of surface water.

O3

The increasing concentration of ozone in the troposphere has a detrimental effect on human health
and plants. Ozone has a stimulating effect on the eyes and respiratory organs and at above-normal
levels negatively affects lung function.

CO
Carbon monoxide easily combines with hemoglobin to form carboxyhemoglobin, which prevents
hemoglobin from carrying oxygen and causes tissue suffocation and death. Carbon monoxide has
toxic effects on all body tissue cells, especially the cerebral cortex.

AQI As the AQI increases, air quality worsens and pollution becomes more serious.

Table 3. Partial AQI data for the District of Dongcheng.

PM2.5 PM10 SO2 NO2 O3 CO AQI

77 139 13 93 3 2 103
71 125 12 83 3 1.8 95
42 78 7 66 2 1.4 64
38 67 7 67 2 1.3 59
33 65 6 65 2 1.1 58
23 51 6 58 3 1 51
22 39 4 49 8 0.9 39
16 34 4 43 13 0.8 34
18 34 5 47 10 0.9 34
12 33 4 34 24 0.8 33
15 34 5 26 33 0.8 34
13 29 4 25 38 0.9 29
12 19 4 17 47 0.7 19
12 16 6 18 50 0.7 17
19 30 9 25 47 0.9 30
23 39 10 27 43 1 39
30 51 10 39 35 1.2 51
47 77 15 62 18 1.7 65
64 110 30 83 3 2.8 86
72 138 40 81 2 3.1 96
66 142 39 73 4 2.7 96
67 126 23 61 8 2 90
67 126 18 64 5 1.8 90
38 70 8 40 20 1 60

According to Environmental Air Quality Standards GB 3095-2012, discrete AQI data are classified
according to pollution levels one (excellent) through six (serious). The corresponding relationship
between AQI and air quality level is shown in Table 4. Table 5 presents partial data for air quality level.
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Table 4. Relationship between AQI and air quality level.

No. AQI Air Quality Level

1 0–50 Level 1: Excellent
2 51~100 Level 2: Good
3 101~50 Level 3: Light pollution
4 151~200 Level 4: Medium pollution
5 201~250 Level 5: Heavy pollution
6 251~300 Level 6: Serious pollution

Table 5. Partial data for air quality level.

PM2.5 PM10 SO2 NO2 O3 CO Level

77 139 13 93 3 2 3
71 125 12 83 3 1.8 2
42 78 7 66 2 1.4 2
38 67 7 67 2 1.3 2
33 65 6 65 2 1.1 2
23 51 6 58 3 1 2
22 39 4 49 8 0.9 1
16 34 4 43 13 0.8 1
18 34 5 47 10 0.9 1
12 33 4 34 24 0.8 1
15 34 5 26 33 0.8 1
13 29 4 25 38 0.9 1
12 19 4 17 47 0.7 1
12 16 6 18 50 0.7 1
19 30 9 25 47 0.9 1
23 39 10 27 43 1 1
30 51 10 39 35 1.2 2
47 77 15 62 18 1.7 2
64 110 30 83 3 2.8 2
72 138 40 81 2 3.1 2
66 142 39 73 4 2.7 2
67 126 23 61 8 2 2
67 126 18 64 5 1.8 2
38 70 8 40 20 1 2

Metropolis introduced SA and proposed an importance sampling method—i.e., accepting new
states with probability—called the Metropolis criterion [39]. This is the basic idea of SA algorithms.
Kirkpatrick et al. first proposed the simulated annealing algorithms in 1983 [40,41]. SA makes
the optimal solution asymptotically convergent and is widely used to solve optimization problems.
In recent years, with the rapid increase of information, there has been a huge amount of data (big data)
which is larger than the traditional data. Under such a large amount of AQI data, how to find useful
data from it has become an important issue. DT is based on the tree structure, presenting the data rules,
enabling analysts to understand the implicit knowledge of the data and interpret it, which is widely
used in various fields [30–32]. However, before establishing the decision tree model, it is necessary to
set its relevant parameters, which will affect the result. Under different parameter combinations, if the
parameter values are not adjusted properly, the classification result will be poor. Because parameters
minimum case (M) and the pruning confidence factor (CF) of the DT will be different due to different
problems, it is very time-consuming to manually adjust them.

Therefore, this paper proposes an intelligent algorithm combining DT and SA, and studies an
algorithm based on AQI decision rule establishment and parameter optimization. Then, based on the
intelligent algorithm of parameter optimization and decision rules, the urban air quality is predicted
and analyzed. This study combines the advantages of DT and SA. DT generates decision rules, SA
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converges to the global optimum, and the parameters minimum case (M) and the pruning confidence
factor (CF) of the DT determined by SA. The rules extracted in this paper can be used to analyze the
collected information and then forecast a new AQI.

Figure 1 shows a flow chart of the proposed algorithm; the AQI dataset is pre-processed as training
and testing data, then initial values for the parameters are proposed; after that, the initial solution can be
generated randomly. The proposed algorithm begins with four parameters, namely Igen, T0, T f , and λ,
where Igen denotes the number of generations, T0 represents the initial temperature, T f represents
the final temperature that stops the proposed algorithm if the current temperature is lower than T f ,
and λ is the coefficient controlling the cooling rate„ respectively. The current temperature T is set to be
the same as T0. The solution is represented as seven features followed with two variables M, and CF
as shown in Table 6. An initial solution α is randomly generated according to the representation of
solution in Table 6. For each generation, the next solution β is generated from α by randomly swapping
these seven features and randomly generating these values of four variables in the current solution. T is
decreased after running Igen generations, according to a formula T← λT , where 0 < λ < 1. Let obj(α)
denotes the testing accuracy of α, and ∆ denote the difference between obj(α) and obj(β); that is
∆ = obj(α) − obj(β). The probability of replacing α with β, where α is the current solution and β is
the next solution, given that ∆ > 0, is e−∆/T. This is accomplished by generating a random number
r ∈ [0,1] and replacing the solution with β if <e−∆/T. Meanwhile, if ∆ ≤ 0, the probability of replacing α
with β is one. In the proposed algorithm, SA and DT are performed to optimize parameters (M and
CF) to increase the testing accuracy for selected features and build the decision rules. The proposed
algorithm is repeated until T is lower than T f . Thereafter, the best testing accuracy, and decision rules
are reported.
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Table 6. A representation of the solution.

Feature#1 Feature#2 Feature#3 Feature#4 Feature#5 Feature#6 Feature#7 M CF

The proposed approach uses the accuracy based on the confusion matrix, which can test the
performance of the classification method. The confusion matrix is shown as Table 7.

Table 7. The confusion matrix.

Actual Predicted Actual Positive Active Negative

Predicted Positive TP (True Positive) FP (False Positive)
Predicted Negative FN (False Negative) TN (True Negative)

TP, FP, FN, and TN represent true positive class, false positive class, false negative class, and true
negative class, respectively. The predicted value is a positive example, which is recorded as P (positive).
The predicted value is a negative example, which is recorded as N (negative). When the predicted
value is the same as or opposite to the actual value, they are recorded as T (true) or F (false), respectively.
Four results of defining of examples in the dataset after model classification are: TP: predicted
positive class or actually positive class; FP: predicted positive class or actually negative class; TN:
predicted negative class or actually negative class; FN: predicted negative class or actually positive
class. The classification accuracy calculation formula is as follows:

Classification accuracy = (TP + TN)/(TP + FN + FP + TN) × 100% (5)

The receiver operating characteristic curve (ROC curve) and area under the curve (AUC) can
test the performance of classification results. Because ROC curve has a good characteristic, when
the distribution of positive and negative samples in the test set is changed, ROC curve can be still
unchanged. Class imbalance often occurs in the actual data set, that is, there are many more negative
samples than positive samples (or vice versa), and the distribution of positive and negative samples in
the test data may change with time. The area under ROC curve is calculated as the evaluation method
of imbalanced data. It can comprehensively describe the performance of classifier under different
decision thresholds. AUC calculation formula is as follows:

AUC =
1 +

(
TP

FP+FN

)
−

(
FP

TN+FP

)
2

(6)

4. Simulation Results and Discussions

This study adopts 10-fold cross-validation to evaluate results. The data was divided into
10 portions. Nine portions of data were retrieved as training data and the other one was used for testing
data. To verify its performance, the proposed algorithm was used with the RF and SVM approaches,
and the simulation results were compared. The SVM is a learning system that uses a hypothesis space
of linear function in a high-dimensional feature space. The RF is an ensemble learning method for
classification that constructs multiple decision trees at training time, and outputs the class that depends
on the majority of the classes. The SA parameters were set to the number of generations Igen = 5000,
the initial temperature T0 = 100, the final temperature T f = 0.01, and the cooling rate λ = 0.95 [42].
The search range of the DT parameter named M was changed from 2 to 100 and that of CF was changed
from 0.01 to 0.5.

4.1. Comparative Analysis of Classification Accuracy with Proposed Algorithm and Other Methods

The simulation results in Table 8 show the classification accuracy of the proposed algorithm and
other approaches using training data. From Table 8, it can be found that the proposed algorithm has a
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classification accuracy of 99.92%, which is better than other approaches such as decision tree (DT),
random forest (RF), and support vector machine (SVM). As can be seen from Table 8, the classification
accuracy of the only DT is 95.34%, and the classification accuracy of the proposed algorithm is 99.92%,
which means that the SA algorithm has an additive effect on DT, and the parameters can be adjusted to
improve its accuracy. Because SA has the advantage of jumping out of local optimum according to
probability, it can effectively prevent the search process from falling into a local optimum. This paper
proposes an intelligent algorithm SA added to DT. Using the advantages of SA, the M and CF in DT
can be effectively determined.

Table 8. Comparison of classification accuracy using different approaches.

Decision Tree
(DT)

Random Forest
(RF)

Support Vector
Machine (SVM)

The Proposed
Algorithm

Classification accuracy 95.34 98.81 99.14% 99.92%

4.2. Analysis of Decision Rules Obtained from the Proposed Algorithm

The obtained decision rules have a total of eight DT rules, which are shown in Table 9. PM2.5

and PM10 are the main factors that will affect air quality. The DT is divided by PM2.5 as the root node,
indicating that PM2.5 is the most important indicator that will affect air quality level.

Table 9. Decision rules obtained from the proposed algorithm.

No. Rules

1
When PM2.5 < 49.5 and PM10 < 35.5, the air quality rating is 1. It means, data required to start the test from
the root node PM2.5 < 49.5. According to different data attributes, it moves to the sub node PM10 < 35.5,
finally reaches the leaf node of the air quality level 1.

2
When PM2.5 < 49.5 and PM10 ≥ 35.5, the air quality rating is 2. It means, data required to start the test from
the root node PM2.5 < 49.5. According to different data attributes, it moves to the sub node PM10 ≥ 35.5,
finally reaches the leaf node of the air quality level 2.

3

When PM2.5 ≥ 49.5, PM10 < 74.5 and PM2.5 < 150.5, the air quality rating is 2. It means, data required to start
the test from the root node PM2.5 ≥ 49.5. According to different data attributes, it moves to the sub node
PM10 < 74.5, then recursively moves to another sub node PM2.5 < 150.5, finally reaches the leaf node of the
air quality level 2.

4

When PM2.5 ≥ 49.5, PM10 < 74.5 and PM10 ≥ 150.5, the air quality rating is 3. It means, data required to start
the test from the root node PM2.5 ≥ 49.5. According to different data attributes, it moves to the sub node
PM10 < 74.5, then recursively moves to another sub node PM2.5 ≥ 150.5, finally reaches the leaf node of the
air quality level 3.

5

When PM2.5 ≥ 49.5, PM10 ≥ 74.5 and PM10 < 114.5, the air quality evaluation level is 3. It means, data
required to start the test from the root node PM2.5 ≥ 49.5. According to different data attributes, it moves to
the sub node PM10 ≥ 74.5, then recursively moves to another sub node PM10 < 114.5, finally reaches the leaf
node of the air quality level 3.

6

When PM2.5 ≥ 49.5, PM10 ≥ 74.5 and PM10 ≥ 114.5, further judging that when PM10 < 149.5, the air quality
evaluation level is 4. It means, data required to start the test from the root node PM2.5 ≥ 49.5. According to
different data attributes, it moves to the sub node PM10 ≥ 74.5, then recursively moves to another sub node
PM10 ≥ 114.5, then recursively moves to another sub node PM10 < 149.5, finally reaches the leaf node of the
air quality level 4.

7

When PM2.5 ≥ 49.5, PM10 ≥ 74.5 and PM10 ≥ 114.5, it is further judged that when PM10 ≥ 149.5 and
PM10 < 249.5, the air quality rating is 5. It means, data required to start the test from the root node
PM2.5 ≥ 49.5. According to different data attributes, it moves to the sub node PM10 ≥ 74.5, then recursively
moves to another sub node PM10 ≥ 114.5, then recursively moves to another sub node PM10 ≥ 149.5, then
recursively moves to another sub node PM10 < 249.5, finally reaches the leaf node of the air quality 5.

8

When PM2.5 ≥ 49.5, PM10 ≥ 74.5 and PM10 ≥ 114.5, it is further judged that when PM10 ≥ 149.5 and
PM10 ≥ 249.5, the air quality rating is 6. It means, data required to start the test from the root node
PM2.5 ≥ 49.5. According to different data attributes, it moves to the sub node PM10 ≥ 74.5, then recursively
moves to another sub node PM10 ≥ 114.5, then recursively moves to another sub node PM10 ≥ 149.5, then
recursively moves to another sub node PM10 ≥ 249.5, finally reaches the leaf node of the air quality 6.
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4.3. Analysis of Factors Influencing Air Quality

To illustrate the extent of the air quality influence factor, Table 10 presents the results of using the
values of influence factors from IncNodePurity (increased node purity) for air quality. IncNodePurity is
an evaluation method that can use the non-negative sum of residuals to find a simulated value.
This value can elucidate the extent to which the various important factors affect air quality. An influence
factors diagram is shown in Figure 2. Table 10 and Figure 2 indicate the influence factors to be
PM2.5 > PM10 > SO2 > CO > NO2 > O3. It can also be seen that the value of the IncNodePurity of
PM2.5 is the largest, which suggests that PM2.5 has the greatest impact on air quality.

Table 10. Increased node purity (IncNodePurity) values for the air quality influence factor.

Influence Factor IncNodePurity

PM2.5 3041.97839
PM10 2734.23447
SO2 193.65775
NO2 142.87993
O3 60.44758
CO 159.37930
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4.4. Air Quality Data Set Analysis of ROC and AUC

In our implementation, the area under the receiver operating characteristic (ROC) curve is the
area under the curve (AUC), which is used to evaluate the performance of the proposed approach.
The value of AUC varies from 0 to 1, with larger values being better. In Figure 3, the value of AUC for
the air quality data set is 0.968, demonstrating that the proposed algorithm performs well.
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5. Conclusions

This paper has proposed urban air quality analysis and a forecast based on an intelligent algorithm
with parameter optimization and decision rules. The proposed algorithm was applied to test the AQI
using Beijing’s dataset. SA and DT were used to achieve the best classification accuracy and classify air
quality by the obtained decision rules, and they were shown to be efficient for generating decision
rules. In addition, parameters minimum case (M) and the pruning confidence factor (CF) of the DT
were calculated and applied automatically. This research provided a prediction model for improving
air quality and this model could effectively improve people’s living environment protect people’s
health. In our implementation, the training data accuracy classification was 99.92%, the air quality
impact factors were sorted as PM2.5 > PM10 > SO2 > CO > NO2 > O3, and the AUC value for the air
quality data set was 0.968. From the simulation results, we determined that the performance of the
proposed algorithm is better than that of other current approaches.

Further research will focus on the following aspects: (1) using a simulated annealing algorithm
for other data mining technologies (such as support vector machines, neural networks, etc.) to find the
best parameters and improve the accuracy of the method; (2) improving the algorithm or combining
the advantages of other algorithms to conduct data mining and compare the results.
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