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Adam Pivák 1 and Zbyšek Pavlík 1,*

1 Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical
University in Prague, 166 36 Prague, Czech Republic; martina.zaleska@fsv.cvut.cz (M.Z.);
milena.pavlikova@fsv.cvut.cz (M.P.); adam.pivak@fsv.cvut.cz (A.P.)

2 Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and
Technology, 166 28 Prague, Czech Republic; ondrej.jankovsky@vscht.cz (O.J.); michal.lojka@vscht.cz (M.L.);
Filip.Antoncik@vscht.cz (F.A.)

* Correspondence: pavlikz@fsv.cvut.cz; Tel.: +420-22044-2002

Received: 2 December 2019; Accepted: 10 December 2019; Published: 12 December 2019 ����������
�������

Featured Application: The results obtained in the paper can find use in the design and development
of low-energy and low-carbon construction composites with the incorporation of waste expanded
polypropylene. The developed “green materials” possess good thermal insulation function,
minimum water absorption, sufficient permeability for water vapor, and resistance against the
harmful water action. The mechanical strength of the lightened composites is acceptable for
non-bearing purposes but if required, it can be further improved to meet the technical requirements
of construction practice.

Abstract: The aim of the present study is to improve the thermal and hygric performance of magnesium
oxychloride (MOC) cement composites by the incorporation of waste plastic-based aggregate and the
use of the inner and surface hydrophobic agents. The crushed waste expanded polypropylene particles
were used as a full replacement of natural silica sand. The aggregate properties were evaluated
in terms of their physical and thermal parameters. The caustic calcined magnesite was studied by
SEM, XRF, and XRD spectroscopy. The MOC cement composites were characterized by SEM/EDS,
XRD, and FT-IR spectroscopy and measurement of their structural properties, strength parameters,
thermal conductivity, and volumetric heat capacity. Assessment of water- and water vapor transport
properties was also conducted. The results show significantly improved thermal parameters of
MOC cement composite containing expanded polypropylene (EPP) as aggregate and indicate high
efficiency of surface hydrophobic agent (impregnation) as a barrier against the transport of liquid and
gaseous moisture. The resulting lightweight EPP-MOC cement composite with improved thermal
insulation function and suitable mechanical properties can be used to produce thermal insulation
floors, ceilings, or wall panels reducing the operational energy demand of buildings.

Keywords: magnesium oxychloride cement; waste expanded polystyrene; mechanical properties;
thermo-physical parameters; hygric properties; hydrophobic additives; water resistance

1. Introduction

Increasing concentrations of global greenhouse gas (GHG) emissions (especially CO2), worldwide
energy use, and amount of waste constitute currently the largest environmental problems. A large
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volume of CO2 emissions can be attributed to building industry, whether related to construction
materials production or energy needed for heating and cooling of insufficiently insulated buildings [1,2].
For example production of Portland cement (PC) contributes to circa 5–7% of the global CO2

emissions [3,4].
At present, there are efforts to find an alternative to PC that would have a low carbon footprint.

One of the candidates may be cements based on the magnesium oxide (MgO). Magnesium oxychloride
cement (also known as Sorel cement) is formed by the reaction of a light-burnt MgO powder with
a solution of magnesium chloride (MgCl2) [5], where the light-burnt (also called caustic c) MgO
is produced by calcination of magnesite (MgCO3) at a temperature of circa 750 ◦C [6]. This lower
temperature, compared to ~1450 ◦C used in the production of Portland clinker, allows the use of
alternative fuels [3]. MOC cement-based composites are able to absorb high amount of CO2 from
the atmosphere during their service life to form carbonates and hydroxycarbonates, which leads to
their denser microstructure and to higher strength of resulting material [4,7]. The production of MgO
from magnesite releases more CO2 per ton than in the production of Portland cement (1.7 t of CO2/t
of MgO vs. 1 t CO2/t of PC) [3]. However, taking into account the carbonation of the MOC cement
composites, when MOC is able to sequestrate more than half of the CO2 produced during MgCO3

calcination (the resulting CO2 emissions decreased therefore to around 0.5–0.6 t of CO2/t), and given
the total environmental impact during the life cycle of MgO ascertained by LCA, the MOC cement can
be considered as environmentally friendly material [3].

Among superior properties of MOC cement composites are: early compressive strength, excellent fire
resistance, low alkalinity (pH of 8–10), short setting time, and anti-abrasion performance [8,9]. MOC cements
are also known by their ability to incorporate a higher amount of various fillers compared to PC, namely
granite waste [10], fly ash [10,11], cenospheres derived from the fly ash [12], biomass ash [13], wood [6],
recycled tire rubber [14], and waste plastics [15]. Currently, MOC cement is used for the production of
industrial floors, for ornamental applications, stucco, grinding wheels, and for different types of panels
used for fire protection, as decoration or for sound and thermal insulation [7,16]. As an air-dried cementing
material, MOC cement composites lose their compressive strength after immersion in water because of the
decomposition of hydration products. This limits their wider use in construction sector [9,17]. In literature,
there are studies that report on improving the poor water resistance of MOC cement. Authors investigated
the use of additives as soluble phosphates [18], fly ash [11,17,19,20], rice husk ash with addition of
phosphoric acid, calcium lignosulfonate, and acrylic emulsion [21], the phosphoric acid [22,23], silica
fudehume [19], and glass powder [21]. The evaluation of the MOC cement composites water-resistance
is to date done only by the compressive strength measurement before and after the immersion in water.
However, in the building practice it is also necessary to know other important and for specific applications
even crucial parameters of construction materials, such as the water- and water vapor transport properties,
heat transport, and storage properties, etc.

As a result of plastics versatility, durability, light-weight, and other intrinsic properties, the plastics
demand is still increasing worldwide. The world plastic production was 359 million tons in 2018 and
the European production constituted of approx. 17% of this amount [24]. As regards the demand for
plastics in terms of the type of resin in Europe in 2017, on the first place was polypropylene (PP) with
the 19.3%, followed by the low-density polyethylene (LD-PE) with 17.5% [25]. Among the foamed
polymers, expanded polypropylene (EPP) has one of the largest worldwide productions. It is known
particularly for its impact absorption, thermal insulation parameters, and a high strength to weight
ratio. EPP has homogenous, closed cell structure and it is characterized by the good chemical and heat
resistance. Unlike the foam polystyrene, it does not emit toxic gases when burned. The most common
applications of EPP include packaging, automotive and industrial segments and safety components.
The thermal insulation or acoustic properties of EPP are used in the construction of flooring parts in
the building industry [26,27].

Lahtela et al. [28] reported on PE and PP polymers as the most common plastics in waste streams
coming from construction and demolition waste and from mechanically separated plastic waste from a
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sorting plant respectively. As the low biodegradability is also one of the properties of plastics, it is
necessary to devise suitable end-of-life options for large quantities of plastics waste. Among the
extensively studied recycling pathways are the incorporation of plastics waste particles as aggregate
into Portland cement-based construction materials, which generally led to decrease of the unit weight
and to improvement of the thermal insulation performance of the resulting material, but it is also
associated with the reduction of the strength parameters [29–32]. The research on the replacement
of natural silica aggregate in MOC cement composites with plastics waste aggregate reported, e.g.,
by Záleská et al. [15] is rather rare.

To date, only few studies about the thermal performance of MOC cement composites were
published. Xu et al. (2016) reported on the decrease of the thermal conductivity of MOC mortars with
the addition of cenospheres. Zgueb et al. [33] observed the low thermal conductivity of MOC cement
blended with the polyvinyl acetate polymer (PVAc).

With respect to the lack of knowledge about the application of waste plastics as aggregate in MOC
cement concrete, this study is focused on the assessment of MOC cement composites containing waste
expanded polypropylene (EPP) particles as a full replacement of silica sand. For the improvement
of water-resistance parameters, the inner (calcium stearate and sodium oleate) and surface (boiled
linseed oil) hydrophobic agents were used. The produced materials were investigated in terms of
their mineralogical composition, structural, mechanical, thermal, water-, and water vapor transport
properties. The main aim was to develop lightweight environmentally friendly material with a reduced
CO2 emission footprint, characterized by the enhanced thermal insulation parameters and resistance
to water penetration, which could be potentially used as a part of floors, ceilings or wall panels.

2. Experimental Section

2.1. Materials

The raw materials used in this paper were light-burned MgO powder, MgCl2·6H2O, silica sand,
and waste EPP particles. Crushed waste expanded polypropylene came from the aircraft models
production. EPP was chosen for the investigation particularly with respect to its thermal and physical
properties. In order to reduce the thermal conductivity of MOC cement composites as much as possible
and with the knowledge of the high MOC cement binding capacity, it was decided to replace all natural
aggregate. Based on the preliminary workability tests of the fresh mixtures [16], for further study the
amount of the EPP particles of 150% by volume of natural silica sand was chosen. Magnesium oxide
used in this paper was obtained from Styromagnesit Steirische Magnesitindustrie Ltd., Oberdorf,
Austria and its chemical composition determined by X-ray fluorescence (EDXRF Spectrometer, ARL
QUANT’X, Thermo Fisher Scientific, Waltham, MA, USA) is given in Table 1.

Table 1. Chemical composition of light-burned MgO powder obtained by XRF.

Substance Mass%

MgO 78.6
CaO 5.7

Fe2O3 4.1
SiO2 4.4

Al2O3 6.8

The main physical parameters of MgO powder such as specific density, powder density, and Blain
specific surface are summarized in Table 2. The specific density was measured on a helium pycnometry
principle using a Pycnomatic ATC (Porotec, Hofheim, Germany). This device is equipped with the real
multi volume density analyzer and with the fully integrated temperature control with a precision of
± 0.01 ◦C. The powder density was calculated from the dry mass of the sample and its volume and the
Blain specific surface was accessed in accordance with the standard EN 196-6 [34].
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Table 2. Physical properties of light-burned MgO powder.

Specific Density (kg·m−3) 3339

Powder Density (kg·m−3) 838

Blain Specific Surface (m2
·kg−1) 698

The X-ray diffraction analysis of MgO powder was examined at room temperature using Bruker
D8 Discoverer (Bruker, Germany) powder diffractometer with parafocusing Bragg–Brentano geometry
using CuKα radiation (λ = 0.15418 nm, U = 40 kV, I = 40 mA). Data were scanned over the angular
range 5–80◦ (2θ) with a step size of 0.019◦ (2θ). Results are shown in Figure 1. In addition to the main
phase (magnesia), also some impurities were identified such as calcite, dolomite, and talc. This was in
good agreement to XRF data.

Figure 1. X-ray diffraction pattern of MgO powder.

An average particle size (d50) of used MgO powder measured on a laser diffraction principle using
an Annalysette 22 Micro Tec plus (FRITSCH, Idar-Oberstein, Germany) was approximately 45 µm.
The cumulative and frequency distributions of particle size distribution are for the studied MgO powder
introduced in Figure 2. The displayed data were acquired based on three independent measurements.

Figure 2. Particle size distribution of MgO powder—curative and frequency curves.
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To prepare the magnesium chloride solution, MgCl2·6H2O of p.a. purity (Lach-Ner Ltd.,
Neratovice, Czech Republic) was dissolved in the tap water. For our solution we used 120.4 g
of MgCl2·6H2O and 100 g of water.

The natural aggregate used for preparation of reference MOC cement composites was silica sand
of particle size fraction 0–2 mm and specific density 2649 kg·m−3. It was provided by Filtrační písky
Ltd., Chlum u Doks, Czech Republic.

2.2. Sample Preparation

The mix preparation was carried out according to the standard EN 14016-2 [35]. The reference
MOC cement composites (R-MOC) were prepared from MgO powder, MgCl2 solution, and silica sand.
MgO powder, MgCl2 solution, and EPP aggregate were used for the production of composite-labelled
EPP-MOC. Mixture with EPP aggregate and inner hydrophobic admixtures was named EPP-MOC-IH,
as inner hydrophobic agents were used Ligastar CA 800 (calcium stearate) and Ligaphob N 90 (sodium
oleate). These additives were provided by Excel Mix Cz, Ltd., Velim, Czech Republic. The hydrophobic
admixtures were applied in the amount of 1 g of stearate and 2 g of oleate to 100 g of MgO powder.
Stearate in the material reacts with water to form a gel that seals the structure and prevents moisture
penetration. The interaction between the MgO powder and sodium oleate molecules can be expressed
as van der Waals forces and hydrophobic forces [36].

The mixture proportions of MOC cement composites are summarized in Table 3. The fresh
mixtures were casted in 40 mm × 40 mm × 160 mm prism molds, 70 mm × 70 mm × 70 mm cubic
molds and in a circular mold having a diameter of 100 mm and a height of 20 mm. Samples were
immediately after casting covered with polyethylene sheets, after 24 h demolded and then air-cured
for next 27 days at a temperature of 23 ± 2 ◦C and relative humidity of 45 ± 5%. Examples of prepared
cubic samples are displayed in Figure 3.

Table 3. Composition of MOC cement composite mixtures.

Mass (g)

Mixture Caustic Magnesite MgCl2 Solution Sand EPP Calcium Stearate Sodium Oleate

R-MOC 450 500 1350 − − −

EPP-MOC 450 500 − 21.8 − −

EPP-MOC-IH 450 500 − 21.8 4.5 9

Figure 3. Tested samples: R-MOC (a); EPP-MOC-IH (b); EPP-MOC (c).

The R-MOC and EPP-MOC specimens intended for the measurement of water- and water vapor
transport properties were coated with boiled linseed oil, which might affect the resulting diffusion
and sorption properties of the material. The boiled linseed oil is used in the construction industry
as a protective layer for wood and concrete elements, plasters, etc. It forms a thin layer on the
concrete surface and clogs its pores, avoiding the penetration of water and chemical solutions into the
pore structure [37]. Samples with boiled linseed oil surface treatment were labelled as R-MOC-LO
and EPP-MOC-LO.
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2.3. Experimental Methods

2.3.1. Aggregate Testing Methods

For the basic characterization of both used aggregates, silica sand, and crushed waste EPP
(Figure 4), their specific density and grain-size distribution were measured. The thermal storage and
transport parameters, as well as the powder density were also determined and these measurements
were performed in the dependence on the compacting time, in order to approximate the conditions
prevailing during sample preparation.

Figure 4. Used aggregate: silica sand (a); crushed waste expanded polypropylene (EPP) (b). Scale bar
is in centimeters.

The specific density of aggregate was examined by helium pycnometry (see above). The standard
sieve method using the sieves of mesh dimensions 0.063, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 31.5,
and 63.0 mm was used for the grain-size analysis of both aggregates. For the measurement of their
thermal conductivity λ (W·m−1

·K−1) and volumetric heat capacity Cv (J·m−3
·K−1), the device ISOMET

2114 (Applied Precision, Ltd., Bratislava, Slovakia) equipped with a needle probe for testing granular
and powder materials was applied. For experimental evaluation of the thermal parameters and
powder density, the studied aggregates were inserted into the graduated cylinder. The compaction
was conducted by a vibration exciter (VSB 15, Brio Hranice Ltd., Hranice, Czech Republic). From the
known mass of the aggregate and its volume in a graduated cylinder, powder density was calculated.

2.3.2. MOC Cement Composites Testing Methods

The workability of the fresh composites was investigated immediately after the production of
individual mixtures according to the standard EN 12350-5 [38]. For the measurement of the flow
diameter, three samples of each mixture were used.

For the hardened lightweight MOC composites, basic structural characteristics, mechanical
parameters, thermal properties, water- and water vapor transport parameters were investigated.
SEM/EDS and XRD analyses were also conducted. The testing was carried out on a minimum of five
samples of the particular studied material.

The reaction products in the MOC composites were identified by X-ray diffraction (the same
parameters and device as described above). Scanning electron microscopy (SEM) with a FEG electron
source (Tescan Lyra dual beam microscope) was used for the characterization of the morphology and
microstructure of MOC composites. Elemental composition and mapping were performed using
an energy dispersive spectroscopy (EDS) analyzer (X-MaxN) with a 20 mm2 SDD detector (Oxford
instruments) and AZtecEnergy software. To conduct the measurements, the samples were placed
on a carbon conductive tape. SEM and SEM-EDS measurements were carried out using a 10 kV
electron beam.

The measurements of compressive and flexural strength as well as the assessment of the dynamic
Young’s modulus of elasticity were conducted on 28 days cured samples. For measurement of the
flexural strength, prisms with dimension of 40 mm × 40 mm × 160 mm were used. On the remains of
samples from flexural strength measurement, the compressive strength was evaluated; the loading
area was 40 × 40 mm.
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Both strength tests were performed in accordance with the standard EN 14016-2 [35] and their
relative expanded uncertainty was 1.4%. The measurement of the dynamic Young’s modulus of
elasticity was conducted on a pulse ultrasonic principle using an ultrasonic pulse velocity tester
58-E4800 UPV (Controls, Milan, Italy). Based on the measured wave velocity v (m·s−1) and bulk density
ρb (kg·m−3), the dynamic Young’s modulus was calculated using Equation (1):

Ed = ρbv2 (1)

The expanded combined uncertainty of this measurement method was 3.1%.
In order to evaluate the bulk and specific density of the hardened composites, the specimens

were first dried in a vacuum drier until the changes in their mass were <0.1%. For the bulk density
measurement, the test was based on a gravimetric principle according to the standard EN 12390-7 [39]
and the cubic samples were employed. The expanded combined uncertainty of bulk density test was
2.4%. The specific density was accessed on the fragments from the strength tests using the helium
pycnometry (see above). The expanded combined uncertainty of the specific density test was 1%.
The porosity of MOC composites was then calculated using the bulk and specific density values.
The relative expanded combined uncertainty of the porosity determination was 3.5%.

For the assessment of thermo-physical parameters of MOC cement composites, i.e., the thermal
conductivity λ (W·m−1

·K−1) and the volumetric heat capacity Cv (J·m−3
·K−1), apparatus thermal

constant analyzer hot disk TPS 1500 (Hot Disk AB, Gothenburg, Sweden) was applied. The apparatus
works on a transient plane source method based on the use of a transiently heated plane sensor
consisting of double spiral shape nickel-metal wire with diameter 10 µm embedded between two thin
special foils keeping it electrically insulated. The measuring range of the thermal conductivity of TPS
1500 device was from 0.03 to 500 W·m−1

·K−1 with the measuring accuracy ±5% and reproducibility
±2%. In case of the volumetric heat capacity, reproducibility corresponded to ±7% respectively.
The measurement was made for 28 days air-cured cubic specimens with a side of 70 mm, which were
first dried in a vacuum drier at 60 ◦C. The tests were conducted under laboratory conditions at a
temperature of 23 ± 2 ◦C.

In order to evaluate the resistance of MOC cement composites coated with linseed oil and/or
enriched with inner hydrophobic agents against water penetration, the measurement of water transport
parameters was done. For the water sorptivity tests, the 28 days air-cured cubic samples with a side of
70 mm, dried in a vacuum drier at 60 ◦C, were used. The assessment of water absorption coefficient
A (kg·m−2

·s−1/2) and water sorptivity S (m·s−1/2) was conducted using the free water intake test [40].
All lateral sides of the samples were first water- and vapor-proof insulated by epoxy resin. Their face
sides, 70 mm × 70 mm, were then immersed in the distilled water and the weight gain at the chosen
time intervals was registered. From the slope of the initial stage of the cumulative mass of water plotted
vs. square root of time, the water absorption coefficient A was determined. The water sorptivity S was
then calculated from the equation:

A = S·ρw (2)

where ρw (kg·m−3) is the density of water. The expanded combined uncertainty in the determination
of the water absorption coefficient and sorptivity was 2.3%.

The characterization of MOC cement composites with and without inner and surface hydrophobic
treatments in terms of water vapor transmission parameters was done using the dry-cup method
following the standard EN ISO 12572 [41]. The measurement was based on 1-D water vapor diffusion,
where the gradient of water vapor pressure in the air above and under specific surface of sample
caused the water vapor flow through the sample. The test was done in steady state under isothermal
conditions (temperature of 23 ± 0.5 ◦C and relative humidity of 50 ± 5%). The lateral sides of cylindrical
samples (diameter of 100 mm and thickness of 20 mm) were water and vapor-proof insulated using the
epoxy resin so that only one-dimensional water vapor was realized. Samples were placed and sealed
on the top of the cup, in which the presence of silica gel ensured the equilibrium relative humidity
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of ~2% below the sample. The experiment was conducted in a controlled climatic chamber and the
cups were periodically weighed to achieve constant mass gain. On the basis of the measured mass
gains in time, water vapor diffusion coefficient D (m2

·s−1) and vapor diffusion resistance factor µ (−)
were calculated.

3. Results and Discussion

The results of the grain-size analysis of silica sand and EPP aggregate are illustrated in Figure 5.
According to the grain size curves, the EPP grains were found smaller than 8 mm and diameter of silica
sand particles ranged from 0.063 µm to 2 µm. As further processing of EPP to obtain finer particles was
refused in order to ensure low cost and low energy embedded in raw materials, the granulometry of EPP
was considered as good in general for substitution of sand in composition of MOC cement composites.

Figure 5. Granulometric curves of used silica sand and EPP particles. Sieve size is given in
logarithmic scale.

For the reduction of the thermal conductivity values of the tested MOC cement composites it was
desirable to select the filler having a low thermal conductivity compared to silica sand commonly
used in the construction industry. Thermal and physical properties of both investigated aggregates are
summarized in Table 4.

Table 4. Thermo-physical parameters of used aggregates (influence of time of compaction).

Aggregate Specific Density
(kg·m−3)

Time of
Compaction (s)

Powder Density
(kg·m−3)

λ
(W·m−1·K−1)

Cv (× 106

J·m−3·K−1)

EPP 105 0 18.9 0.042 0.049
10 22.4 0.043 0.055
30 23.3 0.044 0.058
60 23.9 0.044 0.061
180 24.3 0.047 0.062

Silica sand 2652 0 1657 0.410 1.569
10 1910 0.562 1.681
20 1916 0.575 1.683
30 1922 0.576 1.684
60 1927 0.577 1.689

The longer the time of compaction, the higher thermal conductivity and volumetric heat capacity
values were measured. It was due to the increasing packing density with compaction and reduction of
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air volume between the aggregate particles. As expected, the EPP particles in comparison with those
of silica sand exhibited significantly lower heat transport and heat storage. It corresponded with their
low specific density, chemical origin, and structure. Nevertheless, for the practical purposes, the low
thermal conductivity of EPP is beneficial for the production of lightweight MOC cement composites
with an improved thermal insulation function. In Table 5, the workability of fresh mixtures expressed
in terms of flow diameter is given.

Table 5. Diameter of fresh mixtures.

Material R-MOC EPP-MOC EPP-MOC-IH

Flow diameter (mm) 229 145 142

Generally, the workability of fresh mixtures affects particularly the amount and size of used filler.
The shape of the particles also plays a role [32,42]. Results showed that mixtures containing EPP with
the higher particle size and expected higher specific surface compared to those of silica sand exhibited
considerably reduced workability than the control mixture with silica filler. However, for the intended
application of MOC cement composites in thermal insulation floor layers or prefabricated panels and
slab with EPP was the achieved workability quite sufficient. The workability of mixtures EPP-MOC
and EPP-MOC-IH was almost the same, hydrophobic agents had no clear effect on the flow.

In Table 6, the structural parameters of the developed MOC cement composites are summarized.
The observed R-MOC bulk density value of 2130 kg·m−3 was similar as the dry density of 2142 kg·m−3

reported for reference MOC composite by Xu et al. [12]. With the addition of the EPP aggregate, the bulk
density of composites significantly decreased to 42.6% and 43.5% for EPP-MOC and EPP-MOC-IH
respectively, compared to R-MOC. It can be explained by the lower specific density of EPP particles
(see Table 4). According to EN 206-1 [43], the developed EPP-MOC and EPP-MOC-IH may be
classified based on their bulk densities as lightweight concretes in class LC 1.0. The porosity of MOC
cement composites containing EPP aggregate increased compared to R-MOC. Similar behavior can
be found in literature regarding the incorporation of different kind of plastics into a matrix based on
Portland cement [32,44]. The lightening of high-density structure by the use of the EPP aggregate
resulted in lightweight composites with high porosity which extended their application potential in the
construction sector. The used hydrophobic admixtures had almost no effect on structural characteristics
of composites with EPP.

Table 6. Basic structural characteristics of lightweight MOC cement composites.

Material Specific Density (kg·m−3) Bulk Density (kg·m−3) Porosity (%)

R-MOC 2460 ± 25 2130 ± 51 13.4 ± 0.5
EPP-MOC 1420 ± 14 908 ± 22 36.1 ± 1.2

EPP-MOC-IH 1413 ± 14 926 ± 22 34.5 ± 1.2

The comparison of strength characteristics of examined composites is given in Table 7.

Table 7. Mechanical resistance of MOC composites.

Material Compressive Strength (MPa) Flexural Strength (MPa) Young´s Modulus (GPa)

R-MOC 63.2 ± 0.9 19.3 ± 0.3 36.6 ± 1.1
EPP-MOC 6.3 ± 0.1 4.8 ± 0.1 4.0 ± 0.1

EPP-MOC-IH 7.6 ± 0.1 3.0 ± 0.0 5.0 ± 0.2

Mechanical parameters of MOC composites are mainly dependent on used molar ratios of
MgO/MgCl2 and H2O/MgCl2, which governs the formation of binding phases and amount of unreacted
raw materials [45]. For mortars, the parameters of filler and ratio of filler/binder should be moreover
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considered. The replacement of sand with EPP aggregate led to the significant reduction in all strength
parameters. The compressive strength reductions of EPP-MOC and EPP-MOC-IH were 90% and 88%,
respectively, as compared to control material R-MOC. This strength decrease is in accordance with
the density and porosity data (Table 6). Similarly as in our case, many researchers stated that the
incorporation of plastics aggregate of varying shape, kind, and amount causes the loss of mechanical
resistance in the composites based on the Portland cement [30,32,45]. Accordingly, the decrease of
compressive strength of MOC cements containing different additives was reported by Zgueb [33].

The typically higher flexural/compressive strength ratio of MOC composites compared to that
based on the Portland cement was observed for all developed MOC samples. It can be anticipated
that the use of smaller EPP particles would increase the mechanical resistance of the final composites.
The improvement in strength parameters might by possible also by vibrating the fresh casted specimens.

The decrease in the thermal transport and storage parameters of MOC composites with EPP
aggregate content is obvious from Table 8.

Table 8. Thermal performance of lightweight MOC composites.

Material λ (W·m−1·K−1) SD Cv (× 106 J·m−3·K−1) SD

R-MOC 2.09 0.007 1.75 0.03
EPP-MOC 0.34 0.009 1.53 0.03

EPP-MOC-IH 0.35 0.001 1.55 0.03

SD—standard deviation.

The great drop in the thermal conductivity values noticed for materials EPP-MOC and
EPP-MOC-IH were 83.7% and 83.3%, respectively, compared to R-MOC. In the case of the volumetric
heat capacity, a decrease of ~12% was observed for MOC composites containing EPP. Xu et al. [12]
reported on the reduction of thermal conductivity of MOC-based composites with addition of
cenospheres derived from fly ash. For cenospheres, addition in the amount of 5, 15, and 25% by weight
of the magnesia powder, they observed the thermal conductivity values reduced by 16, 21 and 32%,
respectively, as compared to the reference sample without cenospheres. In our case, the deceleration
of heat transport by the use of the substitution of silica sand with crushed EPP was much higher.
In summary, the main parameters that affect the resulted thermal properties of developed MOC
composites were the amount and type of used aggregates, thermal parameters of the aggregates
themselves, and the porosity of the composites which significantly increased because of the use of
EPP particles. One should take into account the fact that the obtained thermo-physical parameters
were measured on dried samples only and the exposure of the studied materials to the real operations
conditions of buildings will partially reduce their thermal insulation capability because of the presence
of adsorbed water vapor molecules.

The resulting values of water transport properties are shown in Table 9. In the water
sorptivity test, samples with inner (IH) and surface (LO) hydrophobic treatment were examined.
Unfortunately, the water suction experiment was not conducted for control R-MOC composite without
any hydrophobic treatment because the samples in contact with water deteriorated by the excessive
moisture presence. As the specimens exhibited volume changes and cracking, it was not possible to
evaluate the measured data.

Table 9. Water transport properties of MOC composites with inner and surface hydrophobic treatment.

Material A (kg·m−2·s−1/2) S (m2
·s−1/2)

R-MOC-LO 0.0002 ± 5 × 10−6 2.00 × 10−7
± 5 × 10−9

EPP-MOC-LO 0.0007 ± 2 × 10−5 6.51 × 10−7
± 2 × 10−8

EPP-MOC-IH 0.0014 ± 3 × 10−5 1.35 × 10−6
± 3 × 10−8
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The values of liquid water transport properties for all tested materials were very low. The reference
MOC composite had the lowest water absorption among the samples tested. The increased porosity
of the MOC composites with EPP (Table 6) resulted in a higher water absorption coefficient and
water sorptivity. Comparing EPP-MOC samples having inner and surface hydrophobic treatment,
the water absorption coefficient was lower for samples treated with boiled linseed oil. However, inner
hydrophobic agent provided water-repellent effect both on the surface and in the entire material treated.

No data on hygric properties of MOC cement composites for comparison of our results were
found in common literature sources. Generally, hydrophobic treatment significantly affects the water
transport properties. For the Portland cement-based composites having porosity of 14.0%, which is
similar to R-MOC sample (13.4%), Záleská et al. [32] reported on the water absorption coefficient of
0.0347 kg·m−2

·s−1/2 which was more than two orders of magnitude higher than measured for R-MOC-LO.
This comparison clearly validated high effectiveness of both inner and surface hydrophobization.
Based on that high resistance to moisture attack can be estimated for MOC cement composites treated
with the tested chemical additives.

Table 10 shows the water vapor transmission parameters of the investigated MOC cement
composites. The water vapor transmission experiments were done on samples without any hydrophobic
treatment and on samples with inner and surface hydrophobic treatment. Comparing the MOC
composites without hydrophobisation, the water vapor diffusion coefficient of EPP-MOC was about
10% higher than that of the R-MOC sample. The surface treatment with boiled linseed oil reduced
the water vapor diffusion coefficient by almost 43% and 12% for reference sample and sample with
EPP, respectively. In the case of the inner hydrophobic treatment, EPP-MOC and EPP-MOC-IH
exhibited very similar water vapor transmission parameters which pointed out the fact that the inner
hydrophobisation predominantly affected the transport of liquid water and not the water vapor
properties. This finding is crucial for practical use of the developed lightweight composites as the
permeability for water vapor eliminates the possible condensation problems and health risks of the
indoor environment, such as respiratory diseases, allergies, etc.

Table 10. Water vapor transport properties of MOC composites.

Material D (m2
·s−1) µ (−)

R-MOC 5.46 × 10−7 46.0
R-MOC-LO 3.14 × 10−7 78.9
EPP-MOC 6.47 × 10−7 38.3

EPP-MOC-LO 5.72 × 10−7 43.3
EPP-MOC-IH 6.40 × 10−7 38.7

The phase composition of prepared composites was measured using XRD (see Figure 6). Presence of
MOC phase (ICDD 00-007-0420) was confirmed in all three samples. The reaction between MgCl2 and
MgO followed the equation below:

5 MgO + MgCl2·6H2O + 3 H2O→ 2 [Mg3(OH)5Cl·4H2O] (3)

All samples contained over-stoichiometry of MgO (ICDD 01-075-1525), hence MgO was present
in all samples after the complete depletion of magnesium chloride in the reaction mixture. This was
expected as MgO was used partially as filler. Sample R-MOC contained mainly quartz (ICDD
01-083-2471) and MOC phase and some residual MgO. Sample R-MOC contained mainly quartz and
MOC phase. Also some residues of MgO were present. Sample EPP-MOC-IH contained two major
phases: MOC and MgO. The last sample EPP-MOC contained mainly MOC phase and only very low
amount of MgO.
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Figure 6. Diffractograms of R-MOC (a); EPP-MOC-IH (b); EPP-MOC (c).

The microstructure of prepared composites was measured using SEM and the results are shown in
Figure 7. In all samples, the needle-like structures typical for MOC phase were detected. The boundaries
between the matrix and EPP (samples EPP-MOC-IH and EPP-MOC) are highly compact without
cracks or other defects. Selected areas of composites were also analyzed using EDS. While the chemical
composition varies significantly from region to region, the elemental composition values are not shown
here. However, according to elemental maps the grain boundaries between EPP and MOC matrix are
clearly visible.

Figure 7. SEM micrographs and elemental maps of R-MOC (a); EPP-MOC-IH (b); EPP-MOC (c).
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4. Conclusions

In order to meet increasing energy efficiency standards for buildings and reduce CO2 footprint of
construction industry, researches are looking for alternatives to common building materials. Such types
of “green materials” were developed and tested in the presented study. The use of low-energy and
low-carbon MOC cement and application of waste EPP aggregate in composition of new types of
alternative construction composites met present criteria of sustainable development. The developed
lightweight MOC cement composites exhibited improved thermal insulation function, minimum
water absorption, and sufficient permeability for water vapor. The produced materials also showed
good water resistance, which is the biggest problem of common MOC cement-based materials.
The mechanical strength of the lightened composites was acceptable for non-bearing purposes, but it
can be further improved by the use of EPP aggregate with smaller particle size and by vibration of the
freshly casted specimens in molds. These experiments and tests will be conducted in our future studies
together with the testing of acoustic properties whose improvement by the use of EPP aggregate can
be also anticipated.

It can be concluded that the use of waste EPP in combination with MOC cement and hydrophobic
agents made it possible to develop advanced types of building composites with added value, such as
eco-efficiency, low cost, low embodied energy, and durability.
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