
applied
sciences

Article

FAST-FUSION: An Improved Accuracy
Omnidirectional Visual Odometry System with
Sensor Fusion and GPU Optimization for Embedded
Low Cost Hardware †

André Aguiar 1,* , Filipe Santos 1 , Armando Jorge Sousa 1,2 and Luís Santos 1

1 INESC TEC—INESC Technology and Science; 4200-465 Porto, Portugal; fbsantos@inesctec.pt (F.S.);
luis.c.santos@inesctec.pt (L.S.)

2 Faculty of Engineering, University of Porto; 4200-465 Porto, Portugal; asousa@fe.up.pt
* Correspondence: andre.s.aguiar@inesctec.pt
† This paper is an extended version of our paper published in ROBOT’2019.

Received: 27 November 2019; Accepted: 11 December 2019; Published: 15 December 2019 ����������
�������

Abstract: The main task while developing a mobile robot is to achieve accurate and robust navigation
in a given environment. To achieve such a goal, the ability of the robot to localize itself is crucial. In
outdoor, namely agricultural environments, this task becomes a real challenge because odometry is
not always usable and global navigation satellite systems (GNSS) signals are blocked or significantly
degraded. To answer this challenge, this work presents a solution for outdoor localization based on
an omnidirectional visual odometry technique fused with a gyroscope and a low cost planar light
detection and ranging (LIDAR), that is optimized to run in a low cost graphical processing unit (GPU).
This solution, named FAST-FUSION, proposes to the scientific community three core contributions.
The first contribution is an extension to the state-of-the-art monocular visual odometry (Libviso2) to
work with omnidirectional cameras and single axis gyro to increase the system accuracy. The second
contribution, it is an algorithm that considers low cost LIDAR data to estimate the motion scale and
solve the limitations of monocular visual odometer systems. Finally, we propose an heterogeneous
computing optimization that considers a Raspberry Pi GPU to improve the visual odometry runtime
performance in low cost platforms. To test and evaluate FAST-FUSION, we created three open-source
datasets in an outdoor environment. Results shows that FAST-FUSION is acceptable to run in
real-time in low cost hardware and that outperforms the original Libviso2 approach in terms of time
performance and motion estimation accuracy.

Keywords: mobile robots; visual odometry; sensor fusion; heterogeneous computing

1. Introduction

The main task while developing a mobile robot is to achieve secure and robust navigation in a
given environment. The environment defines the type of navigation, i.e., a mobile robot can perform
indoor, outdoor in a structured environment or outdoor in an unstructured environment navigation [1].
To achieve such a goal, the ability of the robot to localize itself is crucial. In outdoor environments,
this task becomes a real challenge. The higher density of moving objects, the terrain irregularities,
and the characteristics of illumination that are present in an outdoor environment make robot motion
estimation difficult and, consequently, the process of localizing it [2]. In such conditions, sensors like
inertial measurement units (IMU) or encoders tend to present considerable errors. One of the most
common solutions is to use satellite-based localization systems by using a receiver of global navigation
satellite systems (GNSS). However, in confined environments such as tunnels, urban canyons, or steep

Appl. Sci. 2019, 9, 5516; doi:10.3390/app9245516 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6909-0209
https://orcid.org/0000-0002-8486-6113
https://orcid.org/0000-0002-0317-4714
https://orcid.org/0000-0002-0255-5005
http://www.mdpi.com/2076-3417/9/24/5516?type=check_update&version=1
http://dx.doi.org/10.3390/app9245516
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 5516 2 of 18

slope hills, a signal blockage might occur, which makes the use of GNSS an unreliable solution [3].
Hereupon, the development and use of a satellite redundant localization system are essential. In this
context emerges visual odometry (VO). In 2004, Nister et al. [4] created this concept based on the
fundamentals of wheel odometry. VO in the monocular case uses a single camera to track the robot
motion between consecutive image frames [5]. On one hand, this consists of a hardware-inexpensive
solution. On the other hand, the use of a single camera has inherent issues. Estimating the relative
motion of the robot while it is performing pure rotations can lead to high errors due to the fast change
of the world view and consequent low overlap between images. Also, to perceive the motion scale of
a mobile robot using a single camera without any prior knowledge about the environment or other
sources of information is not possible due to the unavailability of depth information [6]. To improve
VO performance, the use of omnidirectional cameras in this context has increased since they allow
to capture more information about the scene and to track individual features over a more extensive
set of consecutive images [7]. Even so, monocular omnidirectional VO benefits from the use of other
sources of information such as inertial and/or range sensors. With a fusion of information from a
variety of sources, it is possible to extract the main features of each one and deal more robustly with
their limitations.

To obtain an acceptable motion estimation using a single camera and custom sensors can be
time intensive. To achieve real-time performance under these conditions, optimization techniques
should be used. In this context, the migration from homogeneous to heterogeneous computing is a
logical solution. Heterogeneous computing was defined as “the well-orchestrated and coordinated
effective use of a suite of diverse high-performance machines (including parallel machines) to provide
superspeed processing for computationally demanding tasks with diverse computing needs” [8]. One
of the standard topologies used in heterogeneous computing is a combination of core processing unit-
(CPU) and graphical processing unit- (GPU)-based resources. The collaboration between these two
processing units is a key approach to achieve high levels of performance in nowadays systems [9].
Usually, the CPU works as host where the main code is executed while the GPU runs the so-called
kernels. To facilitate the implementation of this topology, open computing language (OpenCL) [10] was
developed. This framework supports a variety of devices such as CPUs, GPUs, and others. It supports
C-based programming languages to work on these devices and offers application programming
interfaces (API) to facilitate the interface between the mentioned devices.

In this work, we propose a localization system suitable for ground robots with GPU-based
optimization techniques, which we call FAST-FUSION. The central module of our system is a version
of Libviso2 [11] for omnidirectional cameras that is publicly available at the original Libviso2 repository
(https://github.com/srv/viso2). To improve the VO method in rotational motions, we propose a
Kalman filter (KF) to fuse the orientation from VO with a gyroscope. Besides estimating the angular
velocity, we also estimate the gyroscope bias online. To estimate the motion scale, we use a planar light
detection and ranging (LIDAR) sensor. The system runs and is validated on a Raspberry Pi 3B where
we use both its CPU and GPU with OpenCL-based optimizations.

The rest of the paper is described as follows. In the next section the related work is presented.
Section 3 describes an overview of the system architecture. Section 4 contains the approach adopted
in this work. In particular, the omnidirectional VO method, the fusion of both the gyroscope and the
LIDAR with it, and the GPU-based optimizations. Section 5 exposes the test results of the system using
built in-house datasets. Section 6 presents the discussion of the obtained results. Finally, the work is
summarized in Section 7.

2. Related Works

This section describes the current state-of-art of the omnidirectional VO field, as well as the
approaches to solve its main vulnerabilities such as sensor fusion. Also, parallel computing approaches
in this field are briefly reviewed.

https://github.com/srv/viso2

Appl. Sci. 2019, 9, 5516 3 of 18

2.1. Omnidirectional Visual Odometry

To improve the motion estimation accuracy in the VO context, the extraction of reliable information
about the world scene is crucial. This way, the use of omnidirectional cameras in this field has become
more and more common. If a raw omnidirectional image stream is used, on one hand, a deeper
knowledge about the environment is obtained, but on the other hand, it is required to deal with the
distortion present in these images.

Many works that use omnidirectional cameras in VO have been proposed in the literature. Some
state-of-the-art original VO methods were extended to the use of these devices. For example, direct
sparse odometry (DSO) [12] was adapted in this way. The omnidirectional version [13] uses a full
image area even in the presence of strong distortion. It takes advantage of the high number of point
overlap between images due to the higher field of view. In the same way, LSD-SLAM [14] was extended.
The new version [15] uses raw omnidirectional images to extract more information about the world,
which results in a performance improvement even in pure rotations. They use a 185o fisheye lens to
test and evaluate their work. Zhang et al. propose a version of semi-direct visual odometry (SVO) [16]
that also uses wide field of view cameras. They implement a camera model suitable for these cameras
and use samples from the epipolar curves present in the omnidirectional VO configuration to estimate
the camera motion [7].

Some built from origin omnidirectional VO methods are also present in the literature. For
example, Corke et al. presented a catadioptric camera configuration for planetary rovers in GPS-denied
environments [17]. In this work, two approaches are proposed: the first is optical-flow-based; the
second is structure-for-motion-based. To evaluate their approach, a sequence with 2000 images is
used. Similarly, two different works present the same configuration [18,19]. The first is a monocular
VO system that uses an omnidirectional camera placed on top of a car to estimate motion in outdoor
environments. This system presents two different trackers—a feature-based that uses scale-invariant
feature transform (SIFT) features and an appearance-based that works as a visual compass. In the
second, they use four cameras with aligned optical centers to simulate an omnidirectional one. The
rotation and translation components were decoupled to estimate the robot pose. This approach
reaches one of the longest paths (2.5 km) reported in VO history with an high level of accuracy.
Valiente et al. present two different systems that use an omnidirectional camera [20,21]. The
first uses an omnidirectional camera in a VO method to generate a reliable input for a mapping
approach. The last presents several contributions, such as a strategy to deal with the scale uncertainty
present in the monocular scheme and an epipolar constraint adapted to the omnidirectional geometry.
Finally, Li et al. present a system that works with full-view omnidirectional images that are used
in a spherical-model-based simultaneous localization and mapping (SLAM) approach in an indoor
environment [22].

2.2. Visual Odometry Challenges

Developing a standalone monocular VO system is a challenging task due to some limitations
present in this approach. Using a single camera to track the motion of a robot has two main problems:

• Scale ambiguity due to the incapacity to perceive the scene depth without any prior information
about the environment or an additional source of information.

• Estimation degeneration on pure rotations due to the low overlap between consecutive images.

In this context, the use of sensors to support VO is important. Inertial sensors are widely used to
do so as they can resolve the ambiguities imposed by the monocular scheme [23]. They can be used to
refine the estimation of the rotational component [24], to improve the visual estimator performance
using short-term motion constraints [25] and/or to be used alongside VO to improve the general
motion estimation [26]. Besides this, inertial sensors can also be used to recover the motion scale [27].
However, to perform this task, two main approaches are usually adopted. The first is to use some prior
knowledge about the environment, such as the camera height and/or pitch [6,11], or the size of some

Appl. Sci. 2019, 9, 5516 4 of 18

known object present in the camera field of view [28]. The second is the use of range sensors [29–31],
which usually relates the distance measures with the camera perception to recover the depth of a set
of pixels.

Some VO approaches can also be computationally expensive. Many of them use iterative methods
that can difficult their use in real-time embedded systems. A solution to speed up these methods is
to use heterogeneous computing. There are a few approaches that use GPU-based optimizations to
do so. For example, Zhang et al. propose a CUDA acceleration for a robot localization and mapping
approach [32] where a NVIDIA GPU is considered to run a particle filter. Similarly, Delgado et al. [33]
propose a VO-optimized approach with GPU-OpenCV optimizations.

3. FAST-FUSION System Architecture

The proposed system aims to localize in real-time a ground robot in an agricultural environment.
To do so, we propose a fusion of sensors with a monocular omnidirectional VO algorithm. The entire
system runs on top of a low-cost microprocessor, a Raspberry Pi 3B. An OpenCL-based optimization
approach applied to the VO method is proposed recurring to the Raspberry Pi’s GPU to overcome the
limitations of this microprocessor. The system is summarized in Figure 1.

LIDAR

FAST-FUSION

Camera

Gyroscope

Omnidirectional
Visual	Odometry

Kalman	Filter

Scale
Calculation

[R|t]

GPU

Figure 1. High-level system architecture.

The central unity of the system is the VO method. This one is publicly available on the official
Libviso2 repository and can work standalone, giving a primary estimation of the robot motion.
A sensory system is also proposed to support and solve the main limitations of it. As can be observed,
the sensory system is constituted by a planar laser and a gyroscope. The first is used to calculate the
motion scale due to the unavailability of depth information resultant from a monocular VO system.
The last is used as a support to VO in rotations and it is fused with VO recurring to a KF. The system
output is a homogeneous transformation [R|t] between consecutive image frames.

4. FAST-FUSION Approach

4.1. Omnidirectional Visual Odometry

As referenced before, the central module of our system is an omnidirectional VO method that is
an extension of the state-of-the-art VO approach Libviso2 [11]. Figure 2 is a high-level representation
of our approach. As can be observed, it is divided into three main steps:

1. Application of a camera model that converts 2-D feature pixels in the omnidirectional image in
3-D unit vectors.

2. A Random sample consensus (RANSAC) approach to select the inliers from the entire set of 3-D
unit vectors.

Appl. Sci. 2019, 9, 5516 5 of 18

3. Motion estimation using the epipolar constraint and linear triangulation.

Figure 2. Omnidirectional visual odometry scheme.

To deal with the distortion imposed by an omnidirectional image, a suitable camera model
is required. We chose the unified camera model [34] proposed by Davide Scaramuzza et al. This
model uses the calibration parameters obtained from the Matlab toolbox [35] provided by the authors.
Figure 3 represents the two transformations provided by this model. It allows us to convert a 2-D pixel
in a 3-D unit vector but also to use the inverse model to transform a world point in a 2-D pixel.

Figure 3. Camera model overview.

The camera model is represented by a polynomial. The polynomial and the inverse polynomial
coefficients are obtained during the calibration procedure. This being said, the model is described
as follows.

Definition 1. Let X = [x y z]T be a scene point observed by the omnidirectional camera, x′′ = [u′′ v′′]T its
projection into the sensor plane, x′ = [u′ v′]T in the camera plane and υ be the unit vector that emanates from
the viewpoint to the scene point. The camera plane refers to the image plane and it is expressed in pixels. The
sensor plane is an hypothetical plane orthogonal to the mirror axis or fish-eye lens, with the origin located at the
camera optical center expressed in metric coordinates, i.e., pixels in relation with the image center. The projection
of a point in the camera plane into the unit sphere is given by:[

u′ v′ f (u′, v′)
]T

||
[
u′ v′ f (u′, v′)

]T
||

, f (u′, v′) = a0 + a1r′ + ... + aNr′N (1)

Appl. Sci. 2019, 9, 5516 6 of 18

where x′ = A−1(x′′ − t) is the affine transformation that converts points in the sensor plane into the camera
plane and f (u′, v′) is the polynomial function that represents the mirror/lens distortion and gives information
about the direction of the 3-D ray that emanates from the viewpoint to the 3-D scene point in function of the
euclidean distance r′ =

√
u′2 + v′2 of the image point to its respective center.

Definition 2. Let X = [x y z]T be a scene point observed by the omnidirectional camera where z represents its
depth and h(u′, v′) the inverse polynomial of f (u′, v′). To project this 3-D point into the image the following
transformation is performed

x′′ =

x θh1+θ2h2+...+θN hN√
x2+y2

y θh1+θ2h2+...+θN hN√
x2+y2

 A +

[
xc

yc

]
, θ = tan(

z√
x2 + y2

) (2)

where hi is the ith coefficient of the inverse polynomial h(u′, v′), A is the affine matrix of the camera model and
[xc yc]T is the image center.

After having a model M that converts the 2-D features in 3-D unit vectors dealing with the camera
distortion, we propose an adaptation of Libviso2 to estimate the camera motion. To do so, we reuse the
matching procedure from the original approach and recreate the epipolar geometry approach to work
with omnidirectional cameras. Starting with a set of 2-D feature matches (µc, µp) between the previous
p and current c images {µp} ←→ {µc}with µp = {x′′p1

, x′′p2
, ..., x′′pn} and µc = {x′′c1

, x′′c2
, ..., x′′cn}we apply

M to them obtaining a set of 3-D unit vector matches {ηp} ←→ {ηc} with ηp = {υp1 , υp2 , ..., υpn} and
ηc = {υc1 , υc2 , ..., υcn}. Since we use 3-D unit vectors, the conventional epipolar geometry configuration
is not suitable. This being said, we use the configuration present in Figure 4.

Figure 4. Epipolar geometry configuration.

In this, instead of projecting the line that contains the previous camera center and the scene
point into the current image plane—the so-called epipolar line— we project it into the current unit
sphere. With this configuration, we have now epipolar curves (represented in red in Figure 4) instead
of epipolar lines. This means that a point on the unit sphere correspondent to the current image that
matches a point on the unit sphere correspondent to the last image lies on an epipolar curve. With this,
we have the RANSAC input prepared—the entire set of 3-D unit vector matches—and we are able
to compute this method solving for the essential matrix E. So for each iteration, we select a random
sample of size eight from the total set of unit vectors and solve

υpi Eυci = 0 (3)

Appl. Sci. 2019, 9, 5516 7 of 18

for each one. So, for each match we have

[
xpi ypi zpi

]
E

xci

yci

zci

 = 0 (4)

which results in[
xp1 xc1 xp1 yc1 xp1 zc1 yp1 xc1 yp1 yc1 yp1 zc1 zp1 xc1 zp1 yc1 zp1 zc1

]
E′ = 0 (5)

where E′ =
[

E11 E12 E13 E21 E22 E23 E31 E32 E33

]T
. Using single value decomposition

(SVD), the solution of E′ and, consequently, of E are extracted. To calculate the set of inliers we follow
the original Libviso2 approach—iterate trough all the matches and use the Sampson Distance [36] to
filter the outliers. At the end of all the RANSAC iterations, the final set of matches is available and will
be used to compute the essential matrix E. Finally, the essential matrix E is computed using this set
of matches and imposing the rank-2 constraint to it. Then we extract the camera motion [R|t] from it.
However, for a given essential matrix E and considering the previous camera center as reference axis,
i.e., Pp = [I|0], there are four different solutions for the current camera matrix Pc = [R|t]. To extract
the correct solution, a linear triangulation approach is used. Each 3-D unit vector match is triangulated
in the following way: {

αυpi = PpXi

αυpc = PcXi
=⇒

{
υpi × PpXi = 0

υci × PcXi = 0
(6)

by extending is obtained:

xpi P
3
p − zpi P

1
p

xpi P
2
p − ypi P

1
p

ypi P
3
p − zpi P

2
p

xci P
3
c − zci P

1
c

xci P
2
c − yci P

1
c

yci P
3
c − zci P

2
c

Xi = 0 (7)

where Xi = [xti yti zti]
T and the superscript Pj denotes the j-th row of the projection matrix. Solving

the linear equation for all the matches considering the four possible [R|t] solutions and choosing the
one that presents the higher number of 3-D triangulated points with positive depth results in the final
solution for the camera motion. However, from the system of Equation (6) it is visible that the scale
factor α was not considered since we use a cross product technique. Thus, the solution for the camera
motion Pc = [R|t] is up to a scale factor.

4.2. Motion Scale Calculation

To complement the camera motion estimation from our omnidirectional VO approach, a
planar LIDAR sensor is considered to recover the scale factor. This approach is divided into four
essential steps:

1. Transformation of the range measurement of the LIDAR into the camera referential frame;
2. projection of the LIDAR measures in the camera referential frame into the omnidirectional image;
3. search for associations between image features and LIDAR measures in the omnidirectional

image; and
4. scale calculation using the associations found.

To perform the transformation of the range measures to the camera referential frame, we measured
the physical distance from the camera center to the LIDAR. We apply a transformation H = [R|t] to
the range measures to convert them to the desired referential. The transformation corresponds to

Appl. Sci. 2019, 9, 5516 8 of 18

the displacement between the two referentials. For each range measure, we perform the following
transformation:

ψi = H

κicos(θi)

κisin(θi)

0

 (8)

where ψi = [xli yli zli]
T , κi is the range measure and θi is its correspondent angle. After that, to obtain

the range measures as 2-D pixel points in the omnidirectional image, the inverse camera model M−1

described in Definition 2 is applied. The final set of 2-D range measures are the ones who are mapped
inside the omnidirectional image. In other words, the ones who are inside the camera field of view.

The next step consists in associating the LIDAR measures projected into the image with 2-D
feature points present in the current image frame. To do so, a search on the 2-D LIDAR measures
neighborhood is computed. As linear searching is computationally expensive, a simplification was
performed using the assumption that the vertical standard deviation of LIDAR measures on the image
is small. While projecting them into the image, their average y coordinate is computed. In this way, in
the first stage, we search for features that present vertical distance to the average smaller than 10 pixels.
This allowed us to highly reduce the number of features that are searched in the neighborhood of the
LIDAR measures. Then a search is performed in the selected set of features for the ones who present a
horizontal pixel distance smaller than five pixels from each LIDAR measure. A representative scheme
of this formulation can be found in Figure 5. In Figure 5a is represented the projection of the LIDAR
measures in the omnidirectional image viewed from the side. Figure 5b represents the neighborhoods
of each projection given by the interception of the yellow zone that represents the first search in y with
the blue delimiters that represent the x tolerance of search. The green dots represent image features.

y

z

(a)

y

x

(b)

Figure 5. (a) Side-view and (b) front-view of the projection of light detection and ranging (LIDAR)
measures in the omnidirectional image, definition of the neighborhoods and features association.

Figure 6 shows the real projection of LIDAR measures in the omnidirectional image in black and
the associated features in white.

A small error is visible associated with the projection due to calibration errors, camera model
imperfections, and errors in the projection H. This error does not have a high impact on the final
estimation of scale due to the filter effect of the performed average described bellow. In other words,
the matches between LIDAR measures and 2-D image features that represent a physical outlier, i.e.,
that do not describe the same point in the world, get diluted in all the other inliers.

After matching 2-D feature points with 2-D range measures, it is possible to estimate the scale
factor. These feature points were already triangulated using their respective matches in the previous
image frame. Thus, we already have a set of matches between the 2-D LIDAR measures and 3-D
triangulated feature points. By consequence, a match is obtained between the raw LIDAR measures

Appl. Sci. 2019, 9, 5516 9 of 18

in the world ψi and the triangulated feature points Xi. This being said, given the set of matches
{ψ1, ..., ψN} ←→ {X1, ..., XN} the scale factor s is calculated as follows:

s =
1
N

N

∑
i=1

||Xi||
||ψi||

(9)

(a) (b)

Figure 6. Two examples (a,b) of the LIDAR measurements projection in the omnidirectional image and
2-D features association with them.

In other words, the scale factor is the average of the relation between the norm of the triangulated
matched features and the distances measured by the LIDAR that are matched. This factor is directly
applied to the translation vector extracted from the essential matrix E in the following way:txs

tys

tzs

 =

tx

ty

tz

 1
s

(10)

Although in most iterations at least one match between the image features and the LIDAR
measures is found, sometimes this does not happen. The last scale factor is used in these cases to
prevent the motion from not being scaled.

4.3. Orientation Correction

After having a stable camera motion estimation, the need to support it in rotation-only motion
types emerged due to high errors in the estimation in these cases. To do so, a gyroscope is used fusing
it with the angular velocity resultant from the VO approach using a KF. Besides the angular velocity,
the gyroscope bias is also estimated in order improve the motion estimation accuracy. Only the yaw
component is estimated because the robot does not present harsh rotations in the other components.
Even so, the model is extendable for all the components. So, the state vector is x = [ωx ωy ωz bx by bz]T ,
where ωx, ωy, ωz are the angular velocities states and bx, by, bz the gyroscope bias. The control vector
comes from the VO estimation as u = [∆θx ∆θy ∆θz]T and the observations are z = [Gωx

Gωy
Gωz]T

from the gyroscope. This being said, the state model is as follows:

x̂k+1|k = Ax̂k|k + Buk ⇔ (11)

Appl. Sci. 2019, 9, 5516 10 of 18

⇔ x̂k+1|k =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

x̂k|k +

∆t 0 0
0 ∆t 0
0 0 ∆t
0 0 0
0 0 0
0 0 0

uk (12)

witch results in:
ω̂ik = ∆θik ∆t (13)

b̂ik = bik−1
(14)

with i ∈ {x, y, z}. We considered bias as a constant state ignoring flicker noise and temperature
oscillations. Even so, this is a reasonable approximation due to the low impact of these two components
in time-limited estimations. In addition the observations model is:

ẑk+1 = Hx̂k+1|k ⇔ ẑk+1

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 x̂k+1|k (15)

that results, for both components, in an equation of the following form:

Gωi = ω̂i + b̂i (16)

with i ∈ {x, y, z}. This equation can be interpreted as: the angular velocity state is equal to the
gyroscope observation minus the bias estimation. So, it is expected that this performs a correction of
the angular velocity observation that is used in the computation of the state.

The VO approach in some cases provides unrealistic estimations in pure rotations. Due to this, the
covariance matrix of the state Q is dynamic. Both Q and the observations covariance R are initialized
with constant values on their diagonals. The values of the diagonal of Q correspondent to the bias
states are decreased over time, since bias is considered as a constant state. To detected and cancel
the unrealistic peaks of angular velocity on the state, a non-linear approach was adopted. In this, a
sigmoid function that varies with the angular velocity states was calibrated. So, if a peak of angular
velocity is detected, the sigmoid increases the covariance noise of the angular velocity which leads the
filter to consider the gyroscope measure instead.

In this way, it is possible to have in consideration two different sources of information to estimate
the robot rotation.

4.4. Heterogeneous Computing Optimizations

After having the previously described fusion working on top of a standard computer, we needed
it to be fast in an embedded configuration to run on the robot in real-time. So, we chose a low-cost
microprocessor—Raspberry Pi 3B—and we tried to optimize the developed code to run on this
platform. To do so, we use both Raspberry Pi’s CPU and GPU with parallel computing techniques.

To access Raspberry Pi’s GPU, the VC4CL (https://github.com/doe300/VC4CL) driver was
used. This is an open-source OpenCL 1.2 implementation for Raspberry Pi’s GPU that allows the
use of OpenCL C++. To facilitate OpenCL usage, an additional layer of abstraction consisting of an
OpenCL-wrapper for C++ and ROS was developed. This allowed a communication between the
host CPU and the device GPU using simple write and read routines. The implementation layout is
represented in Figure 7.

After validating this tool with small kernels like performing arithmetic operations in arrays we
moved to the VO algorithm parallelization.

https://github.com/doe300/VC4CL

Appl. Sci. 2019, 9, 5516 11 of 18

After profiling the VO implementation, we concluded that RANSAC was the most
time-consuming block. It runs over 2000 iterations performing several loops and solving equations
using SVD in each one. In short, this method is constituted by three main steps:

• randomSample()—calculation of a random set of matches of size 8;
• essentialMatrix()—calculation of the essential matrix E using the given set; and,
• getInliers()—calculation of the set of inliers for the given essential matrix E.

As the essentialMatrix() routine uses complex calculations it is hard to parallelize in GPU context.
We optimize both randomSample() and getInliers() in GPU and essentialMatrix() in CPU.

Kernel

- kernel :: cl::Kernel
- global_size : cl::NDRange
- local_size : cl::NDRange

+ setArgument(arg : Template,
 size : size_t,
 index : int) : void
+ exec() : void

Buffer

+ buf : cl::Buffer
- size : size_t

+ read(data : void*) : void
+ write(data: const void*) : void

ClContainer

+ context : cl::Context
+ prog_sources : string[]
+ queues : cl::CommandQueue[]
- platform : cl::Platform
- device : cl::Device

+ init() : void
+ program(source : string) void
+ read_source(path : string) : string

1 0

1

0

0..*

1..*

Figure 7. Unified modeling language (UML) diagram of the OpenCL abstraction layer implemented.

For the GPU-based optimizations, a 16-way single instruction multiple data (SIMD) kernel
architecture was adopted since each quad processing unit (QPU) of this device uses 16-way SIMD,
executing an instruction with four-way data parallelism, four cycles in a row. This way, our approach
for each routine follows the following pattern:

1. Load the routine input data correspondent to all the RANSAC iterations.
2. Write all the data to the correspondent kernel at once using 16-way vector types.
3. Execute the kernel to all the data in a 16-way vectorized way and load it to a single output array.
4. Read all the output data at once and label the corresponding RANSAC iteration to it.

In this way, we maximize the GPU performance using vectorized kernels that match with its
architecture. Also, we minimize the data transfer delays between the host and the device by performing
the communication only once for writing and once for reading.

To optimize the essentialMatrix() routine on the CPU, we take advantage of its four cores creating
four threads. Each one computes a quarter of all the essential matrices corresponding to a quarter of
the total number of RANSAC iterations.

The final solution scheme is represented in Figure 8.
We achieved a parallel RANSAC method that uses both CPU and GPU optimizations.

Appl. Sci. 2019, 9, 5516 12 of 18

Figure 8. Parallel RANSAC configuration.

5. Results

To generate the results we built three open-source datasets (http://vcriis01.inesctec.pt/) (with
the id DS_AG_38) denoted here as sequences A, B, and C. The first one ran on a computer with
the following specifications: Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz and 8 GB RAM. It did not
contain parallel computing optimizations. The two other sequences ran on the Raspberry Pi with
the developed parallel configuration. All of them were recorded in a garden environment on top of
our ground robot. Due to the characteristics of the environment, GPS was not available to generate
ground-truth. Thus, in sequences A and B we used Hector SLAM [37] to do so since this method
reveals high precision. For sequence C, since the robot performed a small straight trajectory, we used
wheel odometry as ground-truth. The vision system was composed of a perspective (https://www.
raspberrypi.org/products/camera-module-v2/) and a fisheye (https://www.ptrobotics.com/lcd-
cameras-raspberry-pi/5417-raspberry-pi-camera-module-w-fisheye-lens.html) camera to benchmark
the original Libviso2 approach with ours. The LIDAR (LMS151-10100) used is the one present in our
robotic platform, with the following characteristics: angular resolution of 0.25, an aperture angle of
270◦ and a scanning range until 50 meters. The gyroscope (UM7 Orientation sensor), also present in
our robotic platform, has the following characteristics: EKF estimation rate of 500 Hz, ±1◦ typical
static pitch/roll accuracy, ±3◦ typical dynamic pitch/roll accuracy, ±3◦ typical static yaw accuracy,
±5◦ typical dynamic yaw accuracy, 0.5◦ angle repeatability and 0.01◦ angular resolution.

5.1. Processing Time

To test the performance of the developed parallel RANSAC approach and to analyze its impact on
the global processing time of the omnidirectional version of Libviso2, the code was profiled. To do so,
the high resolution clock from <chrono> library of std was used. The three optimized functions were

http://vcriis01.inesctec.pt/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.ptrobotics.com/lcd-cameras-raspberry-pi/5417-raspberry-pi-camera-module-w-fisheye-lens.html
https://www.ptrobotics.com/lcd-cameras-raspberry-pi/5417-raspberry-pi-camera-module-w-fisheye-lens.html

Appl. Sci. 2019, 9, 5516 13 of 18

profiled as well as RANSAC itself and the global processing time of the method. Also, to analyze the
impact of the parameter that sets the maximum number of features per bucket computed by Libviso2
on the processing time, two values were used for it (Table 1). The two sequences, B and C executed
on the Raspberry Pi, were used in this evaluation. This being said, the three optimized methods
randomSample(), getInliers, and essentialMatrix were evaluated. Consequently, the RANSAC method
itself was also evaluated as well as all the whole FAST-FUSION approach which is denoted as ’process’
in Table 1. It is worth to note that the duration times present in this table with respect to the three
functions of RANSAC correspond to the time spent by them during all the iterations. Table 1 shows
the corresponding results.

Table 1. Runtime performance (sec) of the extended version of Libviso2 on Raspberry Pi using both the
serial and parallel configurations.

Sequence B C

Configuration Serial Parallel Serial Parallel

Features per Bucket 2 3 2 3 2 3 2 3

Random Sample 0.032 0.037 0.003 0.004 0.031 0.037 0.003 0.004
Get Inliers 0.054 0.072 0.036 0.042 0.055 0.075 0.035 0.041
Essential Matrix 0.255 0.251 0.095 0.096 0.247 0.249 0.094 0.094
RANSAC 0.336 0.361 0.140 0.150 0.337 0.360 0.139 0.146
Process 0.501 0.600 0.305 0.403 0.468 0.528 0.267 0.331

5.2. Motion Estimation

As referenced before, we tested our approach using three different sequences. All of them were
placed in an outdoor environment in a ground robot context. In sequence A, we tested the mathematical
approach, i.e., the omnidirectional VO system fused with the gyroscope and the laser sensor. The
system was executed in a standard computer and benchmarked with the original Libviso2 approach
(Figure 9). The two other sequences tested the full system, i.e., the mathematical approach with the
heterogeneous computing optimizations and benchmark them with the raw Libviso2 results. Figure 10
shows the results for these two sequences. It is worth noting that we present results with and without
the KF that corrects orientation for both the original version of Libviso2 and our FAST-FUSION. This
is done to show the importance of this approach and to demonstrate its modularity since it can be
coupled to any odometry system.

− 3 5 − 3 0 − 2 5 − 2 0 − 1 5 − 1 0 − 5 0 5 1 0

x[m]

− 5 0

− 4 0

− 3 0

− 2 0

− 1 0

0

1 0

2 0

y
[m

]

VO st an d a lon e

VO w i t h KF

Hect o r SLAM

(a) Sequence A

− 8 − 6 − 4 − 2 0 2 4 6 8

x[m]

− 1 0

− 8

− 6

− 4

− 2

0

2

4

6

y
[m

]

VO st an d a lon e

VO w i t h KF

Hect o r SLAM

(b) Sequence A

Figure 9. (a) Original version of Libviso2 and (b) FAST-FUSION motion estimation with and
without the orientation correction running on a standard computer, and considering an approximated
circle motion.

Appl. Sci. 2019, 9, 5516 14 of 18

− 2 0 − 1 0 0 1 0 2 0 3 0 4 0

x[m]

− 5

0

5

1 0

1 5

2 0

2 5

3 0

3 5
y

[m
]

VO st an d a lon e

VO w i t h KF

Hect o r SLAM

(a) Sequence B

− 5 0 5 1 0 1 5 2 0

x[m]

− 5

0

5

1 0

1 5

y
[m

]

VO st an d a lon e

VO w i t h KF

Hect o r SLAM

(b) Sequence B

− 5 0 5 1 0 1 5 2 0 2 5 3 0

x[m]

− 4

− 2

0

2

4

6

8

1 0

y
[m

]

VO st an d a lon e

VO w i t h KF

Hect o r SLAMEncoders

(c) Sequence C

− 5 0 5 1 0 1 5 2 0 2 5 3 0

x[m]

− 2

0

2

4

6

8

1 0

1 2

1 4

y
[m

]

VO st an d a lon e

VO w i t h KF

En cod er s

(d) Sequence C

Figure 10. (a,c) Original version of Libviso2 and (b,d) FAST-FUSION motion estimation with and
without the orientation correction running on a Raspberri Pi 3B.

6. Discussion

6.1. Processing Time

As said before, we tested our parallel configuration on Raspberry Pi 3B using sequences B and
C. To analyze the impact of the number of features computed by the VO method on its final runtime
performance, two values for it were used, set by the features per bucket parameter.

Starting to look at the RandomSample() method, we can see that this was the least heavy block of
RANSAC. It took, on average, about 9.80% of RANSAC’s total time for the serial configuration. Using
the parallel configuration, we were able to reduce its processing time by 10 times. The GetInliers()
method had more weight in RANSAC than the previous one. On average, it took about 18.3% of its
total processing time for the serial configuration. It is also visible that the increase in the number of
features computed reveals the impact on the performance of this method. This was expected since
this method iterated through all the matches in each RANSAC iteration and calculate the Sampson
distance to each one. However, for the parallel configuration, this factor did not have the same impact.
As the method execution was distributed by the 12 QPUs of Raspberry Pi’s GPU, the processing
requirements were distributed when increasing the density of features. This led to an increase of gain
when increasing the feature density for this method. In fact, using two features per bucket led to an
average gain of approximately 1.53 times, and setting this parameter to three resulted in 1.80 times.

By analysis of the EssentialMatrix() method, it is visible that this was the most expensive method
of RANSAC. For the serial configuration, it occupied, on average, 72.0% of RANSAC’s processing
time. This is due to the complexity of SVD calculations and the fact that it is an iterative method.
Besides this, the CPU optimization was revealed to be efficient since we obtained an average gain of
approximately 2.64 times.

Appl. Sci. 2019, 9, 5516 15 of 18

Looking for the final results, we achieved a global average gain of 2.35 times on RANSAC
comparing the serial and the parallel configurations. This had a direct impact on the global process
runtime performance. Using two features per bucket allowed us to obtain for sequence B an average of
3.28 frames per second and for sequence C 3.75 frames per second. Although for RANSAC the gains
were equally good, using three features per bucket resulted in a slower process. For sequence B the
result was 2.48 frames per second and for sequence C 3.02 frames per second.

Summing up, we were able to optimize a VO method using heterogeneous computing techniques
using a low cost and low power GPU. Using the default level of features per bucket of the original
version of Libviso2, which is 2, we achieved embedded real-time performance.

6.2. Motion Estimation

The motion estimation accuracy of our approach is based on three main goals:

• Perform a reasonable estimation of the motion scale;
• have the ability to deal with pure rotations; and,
• present real-time performance.

By analysis of Figure 9 is possible to evaluate the two first goals. It is visible that for sequence
A, the original version of Libviso2 presented high inaccuracies estimating the motion scale and had
difficulties dealing with the rotational component of the robot motion. Applying the KF to the
original version improved the estimation of rotation, but globally, the result was still very far from
the ground-truth. On the other hand, using a fisheye camera on our FAST-FUSION approach led to a
more stable and accurate estimation (Figure 9b). Without the KF, we saw an initial error estimating the
rotation that propagates through all the sequence. However, when applying the KF module, this initial
error was corrected, and the estimation got closer to the ground-truth.

The final solution results for sequences B and C are present in Figure 10. In this we benchmark the
raw Libviso2 version without optimizations with our FAST-FUSION approach. In an embedded system,
the impact of computational efficiency was high. Figure 10a proves this. We can see a considerable error
in the Libviso2 raw estimation in terms of scale and rotation. In addition, the number of frames that it
processes was lower than in our approach since it was slower. This contributed to a degeneration of
the motion estimation. For FAST-FUSION, we can see in Figure 10b an estimation much more closer to
the ground-truth. Sequence C compared the two VO approaches with wheel odometry in a rectilinear
path. Although both approaches revealed error, it is visible that FAST-FUSION estimated a scale factor
much closer to the ground-truth (Figure 10d). Consequently, it provided a more accurate estimation.

This being said, we present a version of a state-of-the-art monocular VO method that works
with omnidirectional cameras, fused with sensors, and optimized in GPU, providing higher accuracy
than the original one. Our system works in an embedded paradigm working in real-time. Besides
presenting some estimation errors, we consider the results quite satisfactory, taking into account the
conditions: a monocular omnidirectional VO method fused with sensors running in a low-power
embedded device.

7. Conclusions

We proposed a real-time embedded localization system for ground robots called FAST-FUSION.
Our system is composed of an omnidirectional extension of the state-of-the-art monocular VO method
Libviso2 that uses raw omnidirectional images, a LIDAR to calculate the motion scale, and a gyroscope
to support the estimation in pure rotations. Our VO approach works with raw omnidirectional
camera images using a state-of-the-art camera model to consider the lens/mirror distortion. The
standalone VO approach is publicly available at the official Libviso2 repository (https://github.com/
srv/viso2). We also propose a GPU-based optimization for Raspberry Pi that uses OpenCL to increase
the FAST-FUSION frame rate. To test our solution, we created three open-source datasets using
our robotic platform. In short, we achieved real-time performance in an embedded configuration,

https://github.com/srv/viso2
https://github.com/srv/viso2

Appl. Sci. 2019, 9, 5516 16 of 18

and our system presented higher accuracy than the original Libviso2 approach. Our system can be
implemented considering the following low-cost hardware configuration: a Raspberry Pi 3B (30e),
a Raspberry Pi fisheye camera (35.85e), a UM7 Orientation sensor (148.88e), and a RPLIDAR A2M8
360 Degree Laser Scanner (330.00e).

In a future work, instead of using low-level features such as blobs and corners, high-level features,
also known as landmarks, will be used. With this evolution a SLAM approach will substitute the
current monocular VO method used in FAST-FUSION.

Author Contributions: Conceptualization, A.A. and F.B. and A.S.; methodology, A.A. and F.B.; software, A.A.;
validation, F.B., A.J.S. and L.S.; formal analysis, F.B. and A.J.S.; investigation, A.A. and F.S. and A.A. and L.S.;
resources, F.B. and L.S.; data curation, L.S.; writing–original draft preparation, A.A.; writing–review and editing,
A.A. and F.B. and A.J.S.; funding acquisition, F.S.

Funding: This research was funded by the ERDF European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation—COMPETE 2020 under the PORTUGAL 2020
Partnership Agreement, and through the Portuguese National Innovation Agency (ANI) as a part of project
“ROMOVI: POCI-01-0247-FEDER-017945”. The opinions included in this paper shall be the sole responsibility of
their authors. The European Commission and the Authorities of the Programme aren’t responsible for the use of
information contained therein.

Acknowledgments: The authors acknowledge the comments and suggestions from the anonymous reviewers
and the assistant editor Amy An for helping improving the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

VO Visual odometry
SLAM Simultaneous localization and mapping
API Application programming interface
KF Kalman filter
SVD Single value decomposition
CPU Central processing unit
GPU Graphical processing unit
QPU Quad processing unit
ROS Robot operating system
OpenCL Open computing language
GNSS Global navigation satellite systems
LIDAR Light detection and ranging
DSO Direct sparse odometry
SVO Semi-direct visual odometry
SIFT Scale-invariant feature transform
UML Unified modeling language

References

1. Bonin-Font, F.; Ortiz, A.; Oliver, G. Visual Navigation for Mobile Robots: A Survey. J. Intell. Robot. Syst.
2008, 53, 263. doi:10.1007/s10846-008-9235-4. [CrossRef]

2. Kelly, A.; Stentz, A.; Amidi, O.; Bode, M.; Bradley, D.; Diaz-Calderon, A.; Happold, M.; Herman, H.;
Mandelbaum, R.; Pilarski, T.; et al. Toward Reliable Off Road Autonomous Vehicles Operating in Challenging
Environments. Int. J. Robot. Res. 2006, 25, 449–483. doi:10.1177/0278364906065543. [CrossRef]

3. Aqel, M.O.A.; Marhaban, M.H.; Saripan, M.I.; Ismail, N.B. Review of visual odometry: Types, approaches,
challenges, and applications. SpringerPlus 2016, 5, 1897. doi:10.1186/s40064-016-3573-7. [CrossRef]
[PubMed]

4. Nister, D.; Naroditsky, O.; Bergen, J. Visual odometry. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, 27 June–2 July
2004. doi:10.1109/cvpr.2004.1315094. [CrossRef]

https://doi.org/10.1007/s10846-008-9235-4
http://dx.doi.org/10.1007/s10846-008-9235-4
https://doi.org/10.1177/0278364906065543
http://dx.doi.org/10.1177/0278364906065543
https://doi.org/10.1186/s40064-016-3573-7
http://dx.doi.org/10.1186/s40064-016-3573-7
http://www.ncbi.nlm.nih.gov/pubmed/27843754
https://doi.org/10.1109/cvpr.2004.1315094
http://dx.doi.org/10.1109/cvpr.2004.1315094

Appl. Sci. 2019, 9, 5516 17 of 18

5. Scaramuzza, D.; Fraundorfer, F. Visual Odometry [Tutorial]. IEEE Robot. Autom. Mag. 2011, 18, 80–92.
doi:10.1109/mra.2011.943233. [CrossRef]

6. Gräter, J.; Schwarze, T.; Lauer, M. Robust scale estimation for monocular visual odometry using structure
from motion and vanishing points. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV),
Seoul, Korea, 28 June–1 July 2015; pp. 475–480. doi:10.1109/IVS.2015.7225730. [CrossRef]

7. Zhang, Z.; Rebecq, H.; Forster, C.; Scaramuzza, D. Benefit of large field-of-view cameras for visual odometry.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016. doi:10.1109/icra.2016.7487210. [CrossRef]

8. Khokhar, A.A.; Prasanna, V.K.; Shaaban, M.E.; Wang, C. Heterogeneous computing: Challenges and
opportunities. Computer 1993, 26, 18–27. doi:10.1109/2.214439. [CrossRef]

9. Mittal, S.; Vetter, J.S. A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Comput. Surv.
2015, 47, 69:1–69:35. doi:10.1145/2788396. [CrossRef]

10. Stone, J.E.; Gohara, D.; Shi, G. OpenCL: A Parallel Programming Standard for Heterogeneous Computing
Systems. Comput. Sci. Eng. 2010, 12, 66–73. doi:10.1109/MCSE.2010.69. [CrossRef] [PubMed]

11. Geiger, A.; Ziegler, J.; Stiller, C. StereoScan: Dense 3d reconstruction in real-time. In Proceedings
of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011.
doi:10.1109/ivs.2011.5940405. [CrossRef]

12. Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018,
40, 611–625. doi:10.1109/tpami.2017.2658577. [CrossRef] [PubMed]

13. Matsuki, H.; von Stumberg, L.; Usenko, V.; Stueckler, J.; Cremers, D. Omnidirectional DSO: Direct Sparse
Odometry with Fisheye Cameras. IEEE Robot. Autom. Lett. 2018, 3, 3693–3700. [CrossRef]

14. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Computer
Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing:
Cham, Switzerland, 2014; pp. 834–849.

15. Caruso, D.; Engel, J.; Cremers, D. Large-scale direct SLAM for omnidirectional cameras. In Proceedings of
the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015. doi:10.1109/iros.2015.7353366. [CrossRef]

16. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of
the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7
June 2014. doi:10.1109/icra.2014.6906584. [CrossRef]

17. Corke, P.; Strelow, D.; Singh, S. Omnidirectional visual odometry for a planetary rover. In
Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 4007–4012.
doi:10.1109/IROS.2004.1390041. [CrossRef]

18. Scaramuzza, D.; Siegwart, R. Appearance-Guided Monocular Omnidirectional Visual Odometry for Outdoor
Ground Vehicles. IEEE Trans. Robot. 2008, 24, 1015–1026. doi:10.1109/tro.2008.2004490. [CrossRef]

19. Tardif, J.P.; Pavlidis, Y.; Daniilidis, K. Monocular visual odometry in urban environments using an
omnidirectional camera. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nice, France, 22–26 September 2008. doi:10.1109/iros.2008.4651205. [CrossRef]

20. Valiente, D.; Gil, A.; Reinoso, Ó.; Juliá, M.; Holloway, M. Improved Omnidirectional Odometry for a
View-Based Mapping Approach. Sensors 2017, 17, 325. doi:10.3390/s17020325. [CrossRef] [PubMed]

21. Valiente, D.; Gil, A.; Payá, L.; Sebastián, J.; Reinoso, Ó. Robust Visual Localization with Dynamic Uncertainty
Management in Omnidirectional SLAM. Appl. Sci. 2017, 7, 1294. doi:10.3390/app7121294. [CrossRef]

22. Li, J.; Wang, X.; Li, S. Spherical-Model-Based SLAM on Full-View Images for Indoor Environments. Appl.
Sci. 2018, 8, 2268. doi:10.3390/app8112268. [CrossRef]

23. Strelow, D.; Singh, S. Motion Estimation from Image and Inertial Measurements. Int. J. Robot. Res. 2004,
23, 1157–1195. doi:10.1177/0278364904045593. [CrossRef]

24. Konolige, K.; Agrawal, M.; Solà, J. Large-Scale Visual Odometry for Rough Terrain. In Robotics Research;
Kaneko, M., Nakamura, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 201–212.

25. Usenko, V.C.; Engel, J.; Stückler, J.; Cremers, D. Direct visual-inertial odometry with stereo cameras. In
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 1885–1892.

https://doi.org/10.1109/mra.2011.943233
http://dx.doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1109/IVS.2015.7225730
http://dx.doi.org/10.1109/IVS.2015.7225730
https://doi.org/10.1109/icra.2016.7487210
http://dx.doi.org/10.1109/icra.2016.7487210
https://doi.org/10.1109/2.214439
http://dx.doi.org/10.1109/2.214439
https://doi.org/10.1145/2788396
http://dx.doi.org/10.1145/2788396
https://doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://www.ncbi.nlm.nih.gov/pubmed/21037981
https://doi.org/10.1109/ivs.2011.5940405
http://dx.doi.org/10.1109/ivs.2011.5940405
https://doi.org/10.1109/tpami.2017.2658577
http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://dx.doi.org/10.1109/LRA.2018.2855443
https://doi.org/10.1109/iros.2015.7353366
http://dx.doi.org/10.1109/iros.2015.7353366
https://doi.org/10.1109/icra.2014.6906584
http://dx.doi.org/10.1109/icra.2014.6906584
https://doi.org/10.1109/IROS.2004.1390041
http://dx.doi.org/10.1109/IROS.2004.1390041
https://doi.org/10.1109/tro.2008.2004490
http://dx.doi.org/10.1109/TRO.2008.2004490
https://doi.org/10.1109/iros.2008.4651205
http://dx.doi.org/10.1109/iros.2008.4651205
https://doi.org/10.3390/s17020325
http://dx.doi.org/10.3390/s17020325
http://www.ncbi.nlm.nih.gov/pubmed/28208766
https://doi.org/10.3390/app7121294
http://dx.doi.org/10.3390/app7121294
https://doi.org/10.3390/app8112268
http://dx.doi.org/10.3390/app8112268
https://doi.org/10.1177/0278364904045593
http://dx.doi.org/10.1177/0278364904045593

Appl. Sci. 2019, 9, 5516 18 of 18

26. Kneip, L.; Chli, M.; Siegwart, R. Robust Real-Time Visual Odometry with a Single Camera and an IMU.
In Proceedings of the British Machine Vision Conference 2011, Dundee, UK, 29 August–2 September 2011.
doi:10.5244/C.25.16. [CrossRef]

27. Nützi, G.; Weiss, S.; Scaramuzza, D.; Siegwart, R. Fusion of IMU and Vision for Absolute Scale Estimation in
Monocular SLAM. J. Intell. Robot. Syst. 2011, 61, 287–299. doi:10.1007/s10846-010-9490-z. [CrossRef]

28. Frost, D.P.; Kahler, O.; Murray, D.W. Object-aware bundle adjustment for correcting monocular scale drift.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016. doi:10.1109/icra.2016.7487680. [CrossRef]

29. Gräter, J.; Wilczynski, A.; Lauer, M. LIMO: Lidar-Monocular Visual Odometry. In Proceedings of
the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018.

30. Wu, K.; Di, K.; Sun, X.; Wan, W.; Liu, Z. Enhanced Monocular Visual Odometry Integrated with Laser
Distance Meter for Astronaut Navigation. Sensors 2014, 14, 4981–5003. doi:10.3390/s140304981. [CrossRef]
[PubMed]

31. Giubilato, R.; Chiodini, S.; Pertile, M.; Debei, S. Scale Correct Monocular Visual Odometry Using a LiDAR
Altimeter. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain, 1–5 October 2018; pp. 3694–3700. doi:10.1109/IROS.2018.8594096. [CrossRef]

32. Zhang, H.; Martin, F. CUDA accelerated robot localization and mapping. In Proceedings of the 2013 IEEE
Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 22–23 April 2013,
pp. 1–6. doi:10.1109/TePRA.2013.6556350. [CrossRef]

33. Vargas, J.A.D.; Kurka, P.R.G. The Use of a Graphic Processing Unit (GPU) in a Real Time Visual Odometry
Application. In Proceedings of the 2015 IEEE International Conference on Dependable Systems and Networks
Workshops, Rio de Janeiro, Brazil, 22–25 June 2015; pp. 141–146. doi:10.1109/DSN-W.2015.32. [CrossRef]

34. Scaramuzza, D.; Martinelli, A.; Siegwart, R. A Flexible Technique for Accurate Omnidirectional Camera
Calibration and Structure from Motion. In Proceedings of the Fourth IEEE International Conference on
Computer Vision Systems (ICVS’06), New York, NY, USA, 4–7 January 2006. doi:10.1109/icvs.2006.3.
[CrossRef]

35. Scaramuzza, D.; Martinelli, A.; Siegwart, R. A Toolbox for Easily Calibrating Omnidirectional Cameras.
In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,
China, 9–15 October 2006. doi:10.1109/iros.2006.282372. [CrossRef]

36. Harker, M.; O’Leary, P. First Order Geometric Distance (The Myth of Sampsonus). In Proceedings of the
BMVC, Edinburgh, UK, 4–7 September 2006; pp. 87–96. doi:10.5244/C.20.10. [CrossRef]

37. Kohlbrecher, S.; Meyer, J.; von Stryk, O.; Klingauf, U. A Flexible and Scalable SLAM System with Full 3D
Motion Estimation. In Proceedings of the IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR), Kyoto, Japan, 1–5 November 2011.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.5244/C.25.16
http://dx.doi.org/10.5244/C.25.16
https://doi.org/10.1007/s10846-010-9490-z
http://dx.doi.org/10.1007/s10846-010-9490-z
https://doi.org/10.1109/icra.2016.7487680
http://dx.doi.org/10.1109/icra.2016.7487680
https://doi.org/10.3390/s140304981
http://dx.doi.org/10.3390/s140304981
http://www.ncbi.nlm.nih.gov/pubmed/24618780
https://doi.org/10.1109/IROS.2018.8594096
http://dx.doi.org/10.1109/IROS.2018.8594096
https://doi.org/10.1109/TePRA.2013.6556350
http://dx.doi.org/10.1109/TePRA.2013.6556350
https://doi.org/10.1109/DSN-W.2015.32
http://dx.doi.org/10.1109/DSN-W.2015.32
https://doi.org/10.1109/icvs.2006.3
http://dx.doi.org/10.1109/icvs.2006.3
https://doi.org/10.1109/iros.2006.282372
http://dx.doi.org/10.1109/iros.2006.282372
https://doi.org/10.5244/C.20.10
http://dx.doi.org/10.5244/C.20.10
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Omnidirectional Visual Odometry
	Visual Odometry Challenges

	FAST-FUSION System Architecture
	FAST-FUSION Approach
	Omnidirectional Visual Odometry
	Motion Scale Calculation
	Orientation Correction
	Heterogeneous Computing Optimizations

	Results
	Processing Time
	Motion Estimation

	Discussion
	Processing Time
	Motion Estimation

	Conclusions
	References

