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Featured Application: In this paper we describe an automatic system for fluorescence intensity
classification to support the autoimmune diagnostics in HEp-2 image analysis. The system is
based on the use of a pre-trained convolutional neural network (CNN) to extract features and a
support vector machine (SVM) classifier for the positive or negative association.

Abstract: Indirect ImmunoFluorescence (IIF) assays are recommended as the gold standard method
for detection of antinuclear antibodies (ANAs), which are of considerable importance in the diagnosis
of autoimmune diseases. Fluorescence intensity analysis is very often complex, and depending on
the capabilities of the operator, the association with incorrect classes is statistically easy. In this paper,
we present a Convolutional Neural Network (CNN) system to classify positive/negative fluorescence
intensity of HEp-2 IIF images, which is important for autoimmune diseases diagnosis. The method
uses the best known pre-trained CNNs to extract features and a support vector machine (SVM)
classifier for the final association to the positive or negative classes. This system has been developed
and the classifier was trained on a database implemented by the AIDA (AutoImmunité, Diagnostic
Assisté par ordinateur) project. The method proposed here has been tested on a public part of the
same database, consisting of 2080 IIF images. The performance analysis showed an accuracy of
fluorescent intensity around 93%. The results have been evaluated by comparing them with some
of the most representative state-of-the-art works, demonstrating the quality of the system in the
intensity classification of HEp-2 images.

Keywords: IIF images; autoimmune diseases; Convolutional Neural Network (CNN); SVM; accuracy;
receiver operating characteristic (ROC) curve

1. Introduction

Autoimmune diseases are several chronic disorders, and there are over 80 different types, some of
which are disabling. Antinuclear antibodies are significant biomarkers in the diagnosis of autoimmune
diseases in humans, which is performed by means of Indirect ImmunoFluorescence (IIF) test with
human epithelial cells (HEp-2 cells) as antigens. The evaluation of antinuclear antibodies (ANAs)
consists of the analysis of the fluorescence intensity and the staining patterns. IIF is a test having high
sensitivity, but only analytical and not diagnostic specificity, since the positivity for ANA does not
automatically confirm the presence of autoimmune disease; indeed, the ANA may be present even in
healthy subjects [1,2]. In the past years, a great deal of effort was put into research regarding Indirect
Immunofluorescence techniques, with the aim of development of computer-assisted diagnosis (CAD)
systems [3].

In the clinical practice, IIF samples are categorized into a specific number of levels based on the
visual assessment of their fluorescent intensity compared to a set of negative and positive controls.
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As it is aimed at identifying the patient’s positivity or negativity to the test, the fluorescence intensity
classification phase is very important. Moreover, as regards the CAD system, it will be the result of
this phase to establish (in the case of positive output) if the execution of the analysis steps aimed at
identifying the staining patterns present in the image will be carried out. Figure 1 shows examples of
each class.

In the literature, there are few scientific works on the automatic analysis of fluorescence intensity
in IIF images, and to date, to our knowledge, no article has been published with reference to a
public database.

Di Cataldo et al. [4] presented a method, ANAlyte, which is able to characterize IIF images
in terms of fluorescent intensity level and fluorescent pattern without any user-interactions. They
obtained overall accuracy of fluorescent intensity around 85%.

Elgaaied Benammar et al. [5] have optimized and tested a CAD system on HEp-2 images, which
is able to classify the fluorescence intensity. The system classifies positive and negative images
using one support vector machine (SVM) classifier. Results showed 85.5% accuracy in intensity
fluorescence detection.
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In one of our previous works [6], the analysis of fluorescence intensity has been addressed.
The goal has been achieved by performing a preprocessing phase for the image, extracting a
considerable number of features, and implementing an SVM classifier. To achieve a reduction in
complexity and an appropriate selection of features, the linear discriminant analysis (LDA) method
was used. The results obtained show an accuracy of 87% and an AZ area under the receiver operating
characteristic (ROC) curve equal to 91.4%.

In recent scientific research on pattern recognition, Convolutional Neural Networks (CNNs)
have been proved to be efficient and reliable models to achieve remarkable performance for image
classification and object detection tasks [7]. Moreover, it has been demonstrated that pre-trained
CNN architectures can play an important role in terms of features extractors, and allow high
classification performance.

In order to address the fluorescence intensity classification, in this work, a method based on deep
CNN is implemented. The distinctive appearance differences between image classes are represented
through the learned features from pre-trained CNNs. The positive/negative image classification is
carried out using a support vector machine classifier (SVM).
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2. Materials and Methods

2.1. Database

The development of a classification system is intimately linked to the database used [8,9]. In this
work, a public dataset (provided by AIDA: AutoImmunité, Diagnostic Assisté par ordinateur project)
was used [5]. At the time, this dataset is the only public dataset with positive and negative wells,
while the other two main HEp-2 image public datasets [10,11] contain only positive and weak positive
images, but not negative cases. This database consists of two parts—one part is public, the other
is private.

The AIDA HEp-2 public Database is a subset of the full AIDA database, where three physician
experts have expressed, independently, unanimous opinion on reporting. This database is available
to the scientific community, and to our knowledge, until today, it is the biggest HEp-2 image public
database, with a total of 2080 images; 1498 images show positive fluorescence intensity, 582 show
negative. These images correspond to the routine IIF technique performed in different hospitals for
autoimmune diseases diagnosis, and were thus reported by senior immunologists. The database
contains fluorescence positive sera with a variety of more than twenty staining patterns. They carried
out serial dilutions and considered the dilution of 1/80 as positive. HEp-2 images have been acquired
by means of a unit consisting of a fluorescence microscope (40-fold magnification). The images have
24 bits color depth and are stored in common image file formats.

The public database can be downloaded, after registration, from the download section of the site
(http://www.aidaproject.net/downloads). The private part of the AIDA Database is structured in
the same way as the public part, and it has about 20,000 images. However, among all these images,
only a number of about 3000 have triple concordance of reports. This part of the AIDA database is
only accessible to the partners who participated in the project.

The classification system here proposed has been trained using the private part of the database
and tested on the public part.

2.2. Statistics

Whenever you want to discriminate within two classes, for example positive/negative, as in this
case, the evaluation of the performance of a diagnostic system is generally expressed by a pair of
indices—sensitivity and specificity. The sensitivity of a test is the fraction of recognized positive images
(true positives) on the total number of positive images (true positives + false negatives), namely:

Sensitivity =
True Positives

True Positives + False Negatives
(1)

The specificity of a test is the fraction of recognized negative images (true negatives) on the total
number of negative images (true negatives + false positives), that is:

Specificity =
True Negatives

True Negatives + False Positives
(2)

The need to obtain diagnostic systems with high sensitivity and high specificity leads to defining
the accuracy that can be seen as the weighted sum of the two previous indices. Theaccuracy is defined
as follows:

Accuracy =
N+ Sensitivity + N− Specificity

N+ + N−
(3)

where N+ represents the number of positive images and N− the number of negative images.
A diagnostic system generally produces an output value that must be compared to a threshold

value in order to define the positivity or negativity of the image. This leads to variability of the
performances according to the assigned threshold value.

http://www.aidaproject.net/downloads
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An additional way to evaluate the performance of an automated system is represented by
the Receiver Operating Characteristic (ROC). When the threshold value changes, different pairs
of sensitivity and specificity will define the specific ROC. Another measure normally used to describe
the performance of a system is therefore the area below the ROC curve, generally indicated with
AZ [12].

2.3. Preprocessing

In this work, the processing was conducted using only the green channel, as it contains all the
information present in the images; the other two channels essentially lead to noise contributions [13].
In order to obtain a robust system, and in particular less dependent on contrast variations (very
present in IIF test images), in this work the image has been transformed using the following contrast
stretching method:

T(x, y) =
I(x, y)− min[I(x, y)]

max[I(x, y)]− min[I(x, y)]
× 255 (4)

where I is the input image, T is the image after the transformation, min and max represent, respectively,
the minimum and maximum intensity of the input image. The normalization is carried out at the
maximum value of 255, since the IIF always images have an 8-bit depth. Studies were initially
conducted, in which noise reduction filters, such as the Gaussian filter and the median filter,
were applied to the image. However, it was observed that in the use of pre-trained CNNs, filtering
had a negative impact in terms of intensity classification performances.

2.4. Deep CNN

Deep learning, in particular Convolutional Neural Networks (CNN), is a validated image
representation and classification technique for the analysis of biomedical images and applications.
In recent years, the scientific community has produced many encouraging works that report new
and more recent state-of-the-art performance on quite challenging problems in this domain [14–16].
The main reason behind this stream of work is probably because the effective task-dependent image
features can be directly or intrinsically learned through the hierarchy of convolutional kernels inside
CNN. Most deep learning methods use neural network architectures, which is why deep learning
models are often referred to as deep neural networks. The term “deep” usually refers to the number
of layers hidden in the neural network. Traditional neural networks contain only 1–2 hidden layers,
while deep networks can contain up to 150. Deep learning models are trained using large labeled
data sets and neural network architectures that learn features directly from data without having to
manually extract them.

One of the most common types of neural networks is known as a convoluted neural network (CNN
or ConvNet). A CNN conveys the characteristics learned with the input data and uses the convolutional
layers in 2D, which make this architecture suitable for 2D data processing, such as images.

CNNs eliminate the need for manual feature extraction [17–19], so the user does not have to
identify features used for image classification. In fact, it is possible to use the power of the pre-trained
networks, without investing time and effort in training, to implement the extraction phase of the
characteristics. Feature extraction can be the fastest way to use in-depth learning. The operation of
CNN is based on the extraction of the features directly from the images. The automatic extraction
of the features allows the high precision of the deep learning models intended for artificial vision
activities, such as the classification of objects.

In this work, it was decided to perform fluorescence intensity classification by analyzing the
whole image without applying a segmentation to the cells. As it is known that the problem of finding
the best set of discriminating features for a given classification problem is very complex, we have
decided, in line with recent scientific trends, to use pre-trained CNNs to extract features.
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2.5. Pre-Trained Networks Used

In this work, several of the best-known pre-trained CNN architectures have been used in order to
identify the most performing one.

Moreover, for each architecture used, the various layers were analyzed in order to find the most
discriminating one for the classification problem addressed.

The families of CNN architectures that have been used are the following:

• AlexNet [20]: This network has been trained on 1.3 million high-resolution images in the
LSVRC-2010 ImageNet training set into the 1000 different object classes. Rectified Linear Units
(ReLU) is used as a non-linear activation function at each layer;

• googleNET [21]: This architectures makes use of so-called inception blocks. Inception blocks
can be interpreted as a network-in-a-network, where the input is branched into several different
convolutional sub-networks, which are concatenated at the end of the block;

• VGG [22]: The main idea of this architecture is to increase depth and reduce the dimension of
convolution filters. The image is passed through a stack of convolutional (conv.) layers, where are
usedfilters with a very small receptive field: 3 × 3 (which is the smallest size to capture the notion
of left/right, up/down, center);

• ResNet [23]: This architecture is currently the best performing deep architecture, being the winner
of the ImageNet challenge in 2015. The authors propose deeper CNN for solving the problem of
performance degradation due to depth with a residual learning framework. Instead of hoping
each few stacked layers directly fit a desired underlying mapping, the authors explicitly let these
layers fit a residual mapping;

• Densenet [24]: This pre-trained CNN has an architecture that connects each layer with all the
others with depth greater than its own (feed forward mode). One of the peculiarities is that the
concatenation of the features from the previous layers is made by concatenating them;

• Sequeezenet [25]: The authors have built a smaller architecture with three main advantages:
smaller CNNs require less communication across servers during distributed training; smaller
CNNs require less bandwidth to export a new model from the cloud to an autonomous car;
smaller CNNs are more feasible to deploy on FPGAs and other hardware with limited memory.

2.6. SVM Classification

The effectiveness of the characteristics extracted from the different CNNs has been used in order to
associate the generic image with positive or negative classes. The main feature of the SVMs, which led
them to immediate success, is the fact that they can achieve high performance in practical applications.
Furthermore, their simplicity, in terms of parameters, makes it possible to tackle complex classification
problems, in which there are—as in our case—a large number of input features. This need for simplicity
has led us to implement a SVM classifier with linear kernel [26,27], the simplest in terms of parameters
to search.

3. Results

The fluorescence intensity classification method, described in Section 2, was analyzed using all
images (2080 images) in the public AIDA database. Performance analysis was differentiated for each
pre-trained network used.

Table 1 shows the accuracy obtained for the various CNN used. Furthermore, the table shows the
network layer numbers and the layer that has returned the most discriminating features (best layer).

The best configuration, obtained with the densenet201 CNN, showed a sensitivity in the
recognition of positive images equal to 96.1%, while with regard to the ability to identify the negatives,
this configuration showed a specificity of 84.4%. The ROC (Receiver Operating Characteristic) curve
in the Figure 2 was obtained by plotting the true positive rate (TPR) against the false positive rate
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(FPR) at various threshold settings. The area under the curve value obtained was AZ = 0.974 ± 0.003.
The accuracy value obtained was Accuracy = 92.8%.

Table 1. Classification accuracy for the pre-trained convolutional neural networks (CNNs) analyzed.

Pre-Trained CNN Depth n. Layers Best Layer Results Accuracy

alexnet 8 25 conv3 90.3%
googlenet 22 144 incep_3a-output 90.1%

vgg16 16 41 drop7 90.3%
vgg19 19 47 drop7 90.5%

resnet18 18 72 res5b_relu 92.3%
resnet50 50 177 avg_pool 92.2%

resnet101 101 347 res5c_relu 92.2%
sequeezenet 18 68 drop9 89.2%
densenet201 201 709 bn 92.8%
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Figure 2. Receiver Operating Characteristic (ROC) curve of fluorescence intensity classification method.

Table 2 shows the results obtained and the performance comparison with other notable intensity
fluorescence classification methods proposed in the literature in the last years. Due to the greater
statistical weight of our result, Table 2 also shows that our method of fluorescence intensity
classification performs better than the other methods analyzed.

From the comparison of the system proposed here with the other method [9] of using the same
database, it is easy to deduce the quality of the analysis carried out and the potentialities of the method.
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Table 2. Performance comparison with other methods.

Images Dataset Accuracy AZ Sensitivity Specificity

Di Cataldo [4] 71 85.7% - - -
Benammar [5] 1006 85.5% - 91.1% 70.8%

Cascio [6] 2080 87.0% 91.4% 92.9% 70.5%
Our method 2080 92.8% 97.4% 96.1% 84.4%

4. Discussion

In this paper the problem of automatic classification of fluorescence intensity in HEp-2 images,
very important for the diagnosis of autoimmune diseases, has been addressed. To this end, CNN
pre-trained networks were analyzed as feature pullers, combined with the traditional SVM (support
vector machine) classifier. In particular, several more well-known pre-trained CNN architectures
have been used. For each architecture used, the different layers were analyzed in order to find the
most discriminating one for the classification problem addressed. In order to identify the set of
features having the highest classification power for the characterization of the fluorescence intensity,
the analysis carried out for the different configurations allowed the identification, in terms of network
and layer, of the best-performing solution.

The classification system proposed here has been trained using the private part of the database
and tested on the public part, to allow future comparisons and to avoid bias effects.

A comparison of the performances was presented with other recent state-of-the-art methods that
highlight the quality of the proposed system and the very promising capabilities in discriminating
the positive and negative images of the IIF test. In fact, the intensive analysis performed in this
work, in terms of the pre-trained network number and the relative layers used as features extractors,
has allowed us to obtain better fluorescence intensity classification performance than those obtained
from other recent state-of-the-art methods. In order to have a further reference for the evaluation of
the obtained performances, and a real perception on the complexity of the problem faced, we compare
the performances of classification intensity obtained in the work of Benammar et al. [5] by two young
immunologists, to those of researchers who were made to analyze images of the same AIDA database.
The accuracy obtained by them for fluorescence intensity was 66% for both. Therefore, the results
obtained demonstrate the effectiveness of the method presented here and the possibility that this can
be used as a support tool in the diagnostic workflow of autoimmune diseases.
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