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Abstract: We report the synthesis and properties of a new thiazolothiazole (TzTz)-based semiconducting
polymer incorporating the dithienothienothiophenebisimide (TBI) unit, named PTzTBI. PTzTBI showed
relatively deep HOMO and LUMO energy levels of −5.48 and −3.20 eV, respectively. Although PTzTBI
mainly formed face-on backbone orientation unfavorable for transistors, PTzTBI functioned as an
ambipolar semiconductor for the first time with TzTz-based polymers, with reasonably high and
well-balanced hole (0.02 cm2 V−1 s−1) and electron (0.01 cm2 V−1 s−1) mobilities.
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1. Introduction

Semiconducting polymers have been widely used in various organic electronic devices such
as field-effect transistors (OFETs), photovoltaics (OPVs), or light-emitting diodes (OLEDs), due to
their good electrical and optical properties and solution processability [1–5]. Through studies on
polymer-based OFETs in recent decades, the community has seen significant improvements in
the charge carrier mobility and has come to better understand the charge transport in thin films.
In particular, the development of vast numbers of semiconducting polymers has greatly contributed to
this advance in understanding [6–10]. However, the number of semiconducting polymers that enable
electron transport (of n-type and ambipolar polymers) is still limited compared to the hole transporting
(p-type) semiconducting polymers, despite the fact that they are indispensable to realizing organic
logic circuits. One plausible reason is that strong electron-deficient building units, which can lower
the lowest unoccupied molecular orbital (LUMO) energy level of the semiconducting polymers and
thereby ensure electron transportation, are not in abundance.

Thiazolothiazole (TzTz) (Figure 1a) is an electron-deficient unit that was introduced in
semiconducting polymers as well as molecules in the earlier stage, and has provided high-performance
materials for OFETs as well as OPVs [11–18]. For example, we have reported a series of TzTz-thiopohene
copolymers (PTzBTs) [16,18,19]. PTzBTs showed relatively high hole mobilities of 0.4 cm2 V−1 s−1

and relatively high power conversion efficiencies of more than 7% [19]. However, although some
TzTz-based small molecules have been reported to be n-type semiconductors [20], TzTz-based polymers
are mostly p-type semiconductors, and, to the best of our knowledge, none of them have been reported
to show n-channel or even ambipolar characteristics. This is most likely because the electron deficiency
of TzTz is relatively weak [21], and thus TzTz-based polymers tend to show shallow LUMO energy
levels (ELUMO).
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Figure 1. Molecular structure of (a) thiazolothiazole (TzTz) and (b) 

dithienothienothiophenebisimide (TBI). 

Recently, we have developed dithienothienothiophenebisimide (TBI) (Figure 1b) as an electron-
deficient building unit for semiconducting polymers [22]. With two imide moieties bridging 
thienothiophene and the two neighboring thiophene rings, TBI has relatively strong electron 
deficiency and thus offers deeper ELUMO. Here, we combined TBI with TzTz to develop a 
semiconducting polymer having an electron transporting property. In this paper, we report the 
synthesis, electronic properties, ordering structure in the thin film, and OFET characteristics of a new 
TzTz-TBI semiconducting polymer. 

2. Methods and Materials 

2.1. Materials 

Distannylated TzTz monomer (1) [19] and dibrominated TBI monomer (2) [22] were synthesized 
according to the reported procedure. Synthesis of PTzTBI (Scheme 1) was carried out as follows. 

To a reaction tube equipped with a stirring bar, (1) (48.4 mg, 0.05 mmol), (2) (52.5 mg, 0.05 mmol), 
Pd2(dba)3 (1.0 mg, 0.002 mmol)(Tokyo Chemical Industry Co., Ltd., Chuo-ku, Tokyo, Japan), P(o-Tol)3 
(2.4 mg, 0.008 mmol)(Tokyo Chemical Industry Co., Ltd., Chuo-ku, Tokyo, Japan), and toluene (2 
mL)(FUJIFILM Wako Pure Chemical Corporation, Osaka-chi, Osaka, Japan) were added. The tube 
was purged with argon and sealed. The tube was then set into a microwave reactor (Biotage Initiator, 
Biotage Japan Ltd, Koto-ku, Tokyo, Japan) and heated at 180 °C for 1 h. After cooling to room 
temperature, the reaction mixture was poured into 100 mL of methanol containing 5 mL of 
hydrochloric acid and stirred for 3 h. Then, the precipitated solid was subjected to sequential Soxhlet 
extractions with methanol and hexane to remove low molecular weight fractions. The residue was 
then extracted with chloroform. The extracted solution was concentrated and reprecipitated in 200 
mL of methanol. The precipitate was dried in vacuo to yield the polymer as a dark blue solid (80%). 
The number average and weight average molecular weights (Mn and Mw), determined by high-
temperature (140 °C) gel-permeation chromatography (HLC-8121 GPC/HT, TOSOH Corporation, 
Minato-ku, Tokyo, Japan) calibrated with polystyrene standard, were 44.0 kDa and 87.2 kDa, 
respectively, and the polydispersity index (PDI) was 2.0. 
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2.2. Instrumentation 

UV-vis absorption spectra were measured using a Shimadzu UV-3600 spectrometer (Shimadzu 
Corporation, Nakagyo-ku, Kyoto, Japan). Cyclic voltammetry (CV) was carried out with an ALS 
Electrochemical Analyzer Model 612D (ALS Co., Ltd, Sumida-ku, Tokyo, Japan), using a polymer 
thin film in acetonitrile containing tetrabutylammonium hexafluorophosphate (Bu4NPF6, 0.1 M) as 
the supporting electrolyte at a scan rate of 100 mV/s. The counter and working electrodes were made 

Figure 1. Molecular structure of (a) thiazolothiazole (TzTz) and (b) dithienothienothiophenebisimide (TBI).

Recently, we have developed dithienothienothiophenebisimide (TBI) (Figure 1b) as an
electron-deficient building unit for semiconducting polymers [22]. With two imide moieties
bridging thienothiophene and the two neighboring thiophene rings, TBI has relatively strong
electron deficiency and thus offers deeper ELUMO. Here, we combined TBI with TzTz to develop
a semiconducting polymer having an electron transporting property. In this paper, we report the
synthesis, electronic properties, ordering structure in the thin film, and OFET characteristics of a new
TzTz-TBI semiconducting polymer.

2. Methods and Materials

2.1. Materials

Distannylated TzTz monomer (1) [19] and dibrominated TBI monomer (2) [22] were synthesized
according to the reported procedure. Synthesis of PTzTBI (Scheme 1) was carried out as follows.
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To a reaction tube equipped with a stirring bar, (1) (48.4 mg, 0.05 mmol), (2) (52.5 mg, 0.05 mmol),
Pd2(dba)3 (1.0 mg, 0.002 mmol)(Tokyo Chemical Industry Co., Ltd., Chuo-ku, Tokyo, Japan), P(o-Tol)3

(2.4 mg, 0.008 mmol)(Tokyo Chemical Industry Co., Ltd., Chuo-ku, Tokyo, Japan), and toluene
(2 mL)(FUJIFILM Wako Pure Chemical Corporation, Osaka-chi, Osaka, Japan) were added. The tube
was purged with argon and sealed. The tube was then set into a microwave reactor (Biotage Initiator,
Biotage Japan Ltd, Koto-ku, Tokyo, Japan) and heated at 180 ◦C for 1 h. After cooling to room
temperature, the reaction mixture was poured into 100 mL of methanol containing 5 mL of hydrochloric
acid and stirred for 3 h. Then, the precipitated solid was subjected to sequential Soxhlet extractions
with methanol and hexane to remove low molecular weight fractions. The residue was then extracted
with chloroform. The extracted solution was concentrated and reprecipitated in 200 mL of methanol.
The precipitate was dried in vacuo to yield the polymer as a dark blue solid (80%). The number
average and weight average molecular weights (Mn and Mw), determined by high-temperature
(140 ◦C) gel-permeation chromatography (HLC-8121 GPC/HT, TOSOH Corporation, Minato-ku,
Tokyo, Japan) calibrated with polystyrene standard, were 44.0 kDa and 87.2 kDa, respectively, and the
polydispersity index (PDI) was 2.0.

2.2. Instrumentation

UV-vis absorption spectra were measured using a Shimadzu UV-3600 spectrometer (Shimadzu
Corporation, Nakagyo-ku, Kyoto, Japan). Cyclic voltammetry (CV) was carried out with an ALS
Electrochemical Analyzer Model 612D (ALS Co., Ltd, Sumida-ku, Tokyo, Japan), using a polymer thin
film in acetonitrile containing tetrabutylammonium hexafluorophosphate (Bu4NPF6, 0.1 M) as the
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supporting electrolyte at a scan rate of 100 mV/s. The counter and working electrodes were made
of Pt, and the reference electrode was Ag/AgCl. All potentials were calibrated with the standard
ferrocene/ferrocenium redox couple (Fc/Fc+:E1/2 = +0.47 V measured under identical conditions).
HOMO (EHOMO) and LUMO (ELUMO) energy levels were calculated with the following equations:

EHOMO (eV) = −4.80 + 0.47 − Eox

ELUMO (eV) = −4.80 + 0.47 + Ered

where Eox and Ered are the onset oxidation and reduction potential of cyclic voltammograms,
respectively, and −4.80 eV is the HOMO energy level of ferrocene against the vacuum level.

2.3. Fabrication of OFET Devices and Measurement of the Transport Properties

All film fabrication processes except substrate cleaning were performed in a glove box. Heavily
doped n+−Si (100) wafers with 200 nm-thick thermally grown SiO2 (Ci = 17.3 nF cm−2) were used for
the substrate. The Si/SiO2 substrates were ultrasonicated with acetone and isopropanol for 10 min
and then were subjected to a UV/ozone treatment at room temperature for 20 min. A solution of
octadecyltriethoxysilane in trichloroethylene (3 mM) was spin-coated onto the cleaned substrate at
a rate of 3000 rpm for 15 s, followed by hydrolysis in a closed container in the presence of ammonia
hydroxide solution for 24 h. After the hydrolysis, the substrates were rinsed with water and boiling
2-propanol. The polymer layer was spin-coated from a hot (~100 ◦C) 2 g/L CB solution at 1000 rpm
for 10 s, and then at 2500 rpm for 35 s and subsequently annealed at 200 ◦C for 30 min, respectively.
On top of the polymer thin films (80 nm), Au drain and source electrodes (thickness 80 nm) were
deposited in a vacuum evaporation system through a shadow mask, where the source-drain channel
length (L) and width (W) were 40 µm and 1.5 mm, respectively.

Current–voltage characteristics of the OFET devices were measured at room temperature in air
with a Keithly 4200-SCS (Keithly Instruments Inc., Cleveland, Ohio, United States) semiconductor
characterization system at VD = −60 V and/or 60 V, where VD is drain voltage. Field-effect mobilities
were calculated in the saturation regime (VD = |60 V|) using the following equation:

ID = (WCi/2L)µ(VG − VT)2

where Ci is the capacitance of the dielectric layer, ID is the source-drain current, VG is the gate voltage,
and VT is the threshold voltage, respectively. Current on/off ratios (Ion/Ioff) were determined from
the minimum current around VG = 0 − 20 V (Ioff), and the current at VG = |60 V| (Ion). The mobility
data were collected from more than seven different devices.

2.4. Grazing Incident X-Ray Diffraction Measurements

Grazing incident X-ray diffraction (GIXD) measurements were conducted at the SPring-8 on
the beamline BL46XU. The sample was irradiated at a fixed incident angle on the order of 0.12◦

through a Huber diffractometer with the X-ray energy of 12.39 keV (λ = 1 Å). Two-dimensional (2D)
GIXD patterns were recorded with a 2D image detector (Pilatus 300K, DECTRIS Ltd, Baden-daettwil,
Taefernweg, Swizeland). Samples for the X-ray measurements were prepared by spin-coating the
polymer solution on the SiO2 substrates with the same condition as the OFET device fabrication.

3. Results

Scheme 1 displays the synthesis of PTzTBI, in which PTzTBI was synthesized using the
distannylated TzTz monomer (1) and the dibrominated TBI monomer (2) via the Stille coupling
reaction. PTzTBI was soluble in chloroform and chlorinated benzenes. The Mn of PTzTBI was found to
be 44.0 kDa, which was sufficiently high for semiconducting polymers with a PDI of 2.0.



Appl. Sci. 2019, 9, 451 4 of 7

Figure 2a shows the UV-vis absorption spectrum of the PTzTBI thin film. The absorption range of
PTzTBI was approximately 500–700 nm. The absorption maxima (λmax) were observed at 590 nm and
647 nm. The absorption edge (λedge) was determined to be 705 nm from the onset, which corresponded
to an optical bandgap (Eg) of 1.73 eV. To investigate the EHOMO and ELUMO, cyclic voltammetry was
carried out (Figure 2b). EHOMO and ELUMO of the PTzTBI were −5.48 and −3.20 eV, which were found
to be lower than most of the TzTz-based polymers and similar to those of the TBI-based polymers that
offer electron transportation [21].
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Figure 2. (a) UV-vis absorption spectrum of PTzTBI in thin film. (b) Cyclic voltammgram of PTzTBI.

Transistor characteristics of the polymers were evaluated using devices with a top-contact,
bottom-gate configuration fabricated by using PTzTBI thin films spin-coated from chlorobenzene
solution onto octadecyltriethoxysilane (ODTS)-modified Si/SiO2 substrates, which were subsequently
annealed at 200 ◦C. Figure 3a,b depicts typical transfer and output curves of the PTzTBI device,
respectively. Interestingly, PTzTBI functioned as ambipolar semiconductor, though ELUMO was
relatively high: it showed transistor response in both positive and negative bias. The hole and
electron mobilites (µh and µe) of PTzTBI evaluated at the saturation regime were 0.02 and 0.01 cm2

V−1 s−1, respectively, which are among the average values for semiconducting polymers. To the best
of our knowledge, this is the first example showing electron transportation in TzTz-based polymers.
Although the mobility values were slightly lower than the other TzTz-based polymers, the result
indicates well-balanced ambipolar behavior that is crucial for realizing logic circuits.
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Figure 3. (a) Transfer curves (p-channel: Vd = −60 V, n-channel: Vd = 60 V) and (b) out-put curves
(p-channel: Vg = −60~20 V, n-channel: Vg = 60~−20 V) of a PTzTBI-based field-effect transistor (OFET).

The ordering structure of PTzTBI in the thin film was investigated by the GIXD measurement.
The 2D GIXD image of the PTzTBI film on SiO2 substrate is shown in Figure 4a. The cross-sectional
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profile cut from the 2D GIXD pattern along the qz and qxy is also depicted in Figure 4b upper and
lower, respectively. Although diffractions corresponding to the lamellar and π − π stacking structure
appeared on both the qz and qxy axes, the π − π stacking diffraction mainly appeared on the qz axis.
This texture indicates that PTzTBI mainly forms the face-on orientation, which is in general unfavorable
for OFET devices, though the edge-on orientation still co-exists. The π–π stacking distance of 3.57 Å
(calculated by the diffraction at the qz axis corresponding to the face-on orientation) was relatively
short for semiconducting polymers. The crystallinity of the polymer was evaluated by calculating the
coherence length of the lamellar (Ll), and π–π stacking (Lπ) structures were estimated from Scherrer’s
equation (L = 2π/fwhm) [23,24], where fwhm is the full width half-maximum of the diffraction peak,
using the diffraction of face-on orientation. The Ll and Lπ calculated for the face-on fraction were 25
and 16, which were relatively low compared to TzTz–thiophene copolymers [25], and were comparable
to other TBI-based polymers measured under the same conditions (see Figure S2, Table S2). It is also
noted that in some cases, even though the thin films give GIXD texture corresponding to the face-on
orientation, the edge-on can be the predominant orientation at the film–substrate interface [25,26].
Thus, it is not surprising that such relatively high µh and µe were observed for PTzTBI. In addition,
surface morphology of the PTzTBI thin film on the OFET device was observed using the atomic force
microscopy (AFM). As seen in Figure 4c, PTzTBI formed a relatively large domain and smooth thin
film surface with a surface roughness (RMS) of 4.04 nm.
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4. Conclusions

We synthesized a semiconducting polymer, PTzTBI, by combining the TBI building unit with the
TzTz building unit. Owing to the relatively strong electron deficiency of TBI, PTzTBI was found to have
relatively deep EHOMO and ELUMO of −5.48 and −3.20 eV, respectively. Importantly, PTzTBI functioned
as the ambipolar semiconductor with well-balanced µh (0.02 cm2 V−1 s−1) and µe (0.01 cm2 V−1 s−1).
Although PTzTBI formed unfavorable face-on backbone orientation in the thin film, crystallinity of
PTzTBI was comparable to other TBI-based polymers, which is likely ascribed to its relatively high
mobilities. To the best of our knowledge, this is the first example reporting electron transportation
in TzTz-based semiconducting polymers. Further optimization of molecular structure and device
fabrication conditions may improve OFET performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/3/451/s1,
Figure S1. 1H-NMR spectra of PTzTBI. Figure S2. X-ray diffraction patterns of TBI-based polymers. Table S1.
Detailed X-ray diffraction parameters of TBI-based polymers.
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