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Abstract: Aerodynamic measurement on horizontal axis wind turbines in the field is a challenging
research topic and also an essential research method on the aerodynamic performance of blades
in real atmospheric inflow conditions. However, the angle of attack is difficult to determine in the
field due to the unsteadiness and unevenness of the inflow. To study the measuring and analyzing
method of angle of attack in the field, a platform was developed based on a 100 kW wind turbine
from the Institute of Engineering Thermophysics (IET) in China in this paper. Seven-hole probes
were developed and installed at the leading edge to measure the inflow direction, static and total
pressure at the near field. Two data reducing processes, sideslip angle correction, and induced
velocity correction, were proposed to determine the effective angle of attack based on the inflow data
measured by probes. The aerodynamic measurement platform was first validated by the comparison
with wind tunnel results. Then some particular aerodynamic phenomenon in the field were discussed.
As a result, the angle of attack varies quasi-periodically with the rotation of the rotor, which is caused
by the yaw angle of the inflow. The variation of angle of attack induces dynamic response of a
clockwise hysteresis loop in lift coefficient. The dynamic response is the main source of a dispersion
of instantaneous lift coefficients with a standard deviation of 0.2.
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1. Introduction

Wind turbines run in the atmospheric boundary layer, where wind shear [1–4] and
turbulence [5–7] are the main features that have important effects on the aerodynamic performance
of blades, and affect the power generation. The use of 2D wind tunnel data in the present blade
design method based on blade element momentum (BEM) [8] will introduce uncertainty for predicting
aerodynamic performance of blades. The 2D wind tunnel data are usually obtained in steady and
non-rotational inflow conditions, while wind shear, turbulence, yaw, and rotation are remarkable in
the 3D field environment. The differences cause prominent deviation between actual power generation
and predicted results by the design methods [9]. Although a number of empirical correction methods,
such as stall delay [10–12], and dynamic stall [13–15], have been developed to reduce the differences
between 3D field environment and 2D wind tunnel conditions, it is difficult to develop and validate the
empirical correction methods due to lack of aerodynamic measurement method and data in the field.

Tangler [16] has found larger deviation between actual wind turbine performance and predicting
results in 1980s. To explore the source of deviation, several aerodynamic field measurements on
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rotors with diameter of 10–25 m were conducted from 1987 to 1998, which is listed in Table 1, such
as Combined Experiment Phase I and II [17–19] and Unsteady Aerodynamics Experiment Phases
III–IV [20,21] by National Renewable Energy Laboratory (NREL), field tests by Technical University
of Denmark (DTU) [22], Netherlands Energy Research Foundation (ECN) [23] and Delft University
of Technology (DUT) [24]. Then a cooperative research was conducted in the IEA Annexes XIV [25]
and XVIII [26], which improved the insight into 3D airfoil characteristics on rotors. Subsequently,
a DAN-AERO MW [27] experiment in the field focusing on the aerodynamics and aeroacoustics of
MW turbines was conducted from 2007 to 2010 by Risø DTU National Laboratory. In China, a field
measurement platform was established based on a 33 kW wind turbine by Lanzhou University of
Technology to investigate wind turbine aerodynamic and wake [28].

Actually, angle of attack, as the key parameter of aerodynamic performance of an airfoil or blade,
is difficult to determine in the field. The angle of attack is defined as the geometrical angle between the
undisturbed flow direction and the chord line in wind tunnel measurement. The inflow angle that
blade suffered cannot be calculated by inflow data from a cup anemometer at the hub or the mast
far away from wind turbine due to the unsteadiness and unevenness of the inflow. The methods to
calculate the angle of attack in different test projects are also shown in Table 1. The details of each
methods are described in the reports of IEA Annexes XVIII [26] and DAN-AERO MW experiment [27].
Additionally, no descriptions on angle of attack was found in the work of Lanzhou University of
Technology [28]. Generally speaking, at low angles of attack, most methods agree well in terms of
mean values. However, the angle of attack in power method differ more from the other methods.
The frequency resolution of the inverse BEM method is poorer. Only one sample per revolution is
considered. The stagnation method could not be used at high angles of attack due to the fact that, in
stall, the stagnation point is not a unique function of the angle of attack. The wind tunnel method is
based on 2D wind tunnel measurements, in which only the 2D upwash effects are corrected. The angle
of attack in the probe method is made with the geometric angle of attack, without taking into account
the effect of the wake induced velocity.

Recently, Shen [29] proposed two methods evaluating local bound circulation for determining
the angle of attack on a section of a rotor blade with CFD computation data. Morote [30] proposed a
model that introduces two radially dependent interferences on the geometric angle with the analogy of
2D potential flows. Their work provide interesting understanding on the angle of attack on a rotating
wind turbine blade. However, very limited research literature are available for the measurement and
analysis of angle of attack by experimental investigation in the field.

In this work, an aerodynamic measurement platform in the field was developed based on a 100 kW
horizontal axis wind turbine from Institute of Engineering Thermophysics (IET). Seven-hole probes
were developed and installed at the leading edge to measure inflow direction, static and total pressure
at the near field. Pressure scanners and tubes were installed in the chamber of blade to measure pressure
distributions. Two data reducing processes, sideslip angle correction and induced velocity correction,
were proposed to determine the effective angle of attack. Finally, the aerodynamic measurement was
validated by the comparison with wind tunnel results and some particular aerodynamic phenomenon
in the field were discussed.
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Table 1. The existing work on aerodynamic measurement in the field.

Test Projects or Research Teams Turbines Project Period Determination Method of Angle of Attack

Combined Experiment Phase I and II by NREL 3-bladed, 10 m diameter 1987–1993 Wind tunnel method
Unsteady Aerodynamics Experiment Phases III–IV by NREL 3-bladed, 10 m diameter 1993–1998 Wind tunnel method

Delft University of Technology (DUT) 2-bladed, 10 m diameter – Inverse BEM method and Vortex wake method
RISØ National Laboratory in Denmark 3-bladed, 19 m diameter 1987–1993 Power method

Netherlands Energy Research Foundation (ECN) 2-bladed, 27.4 m diameter 1993–1997 Stagnation method
Imperial College (IC) and Rutherford Appleton Laboratory (RAL) 3-bladed, 16.9 m diameter – Probe method

Mie University in Japan 3-bladed, 10 m diameter since 1997 Wind tunnel method
DAN-AERO MW by RISØ 3-bladed, 80 m diameter 2007–2010 Wind tunnel method

Lanzhou University of Technology in China 2-bladed, 14.8 m diameter since 2007 –



Appl. Sci. 2019, 9, 482 4 of 21

2. Wind Farm, Wind Turbine, and Blade

2.1. Wind Farm

The wind turbine is located in Zhangbei County, Hebei Province, China. The annual mean wind
speed at 10 m height is 6.0 m/s, and the mean turbulent intensity at 70 m height is 0.07. According to
wind speed and turbulence parameters, the wind turbine class of this wind farm is IIC, defined by
international standard in IEC 61400. The main wind direction is northwest, as shown in Figure 1.
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Figure 1. Google map of the wind farm.

An upstream anemometer mast with height of 40 m is installed at two and a half times of the rotor
diameter away from wind turbine, including five anemometers and four wind vanes. A downstream
anemometer mast with height of 50 m is installed at three times of the rotor diameter away from wind
turbine, including seven anemometers and four wind vanes. Distributions of anemometers and wind
vanes are shown in Table 2.

Table 2. Distributions of anemometers and wind vanes on the anemometer mast.

Upstream anemometer mast Downstream anemometer mast

Sensor Height Sensor Height

Atmospheric pressure meter 10 m Anemometer 10 m
Temperature and humidity meter 10 m Anemometer 15 m

Anemometer 10 m Anemometer 20 m
Anemometer 15 m Anemometer 26.2 m
Anemometer 26.2 m Anemometer 30 m
Anemometer 35 m Anemometer 40 m
Anemometer 40 m Anemometer 50 m

Wind vane 10 m Wind vane 10 m
Wind vane 15 m Wind vane 15 m
Wind vane 26.2 m Wind vane 26.2 m
Wind vane 40 m Wind vane 50 m

2.2. Wind Turbine and Blades

The wind turbine in the test is an upwind and three-blade turbine with rotor diameter of 21.9 m.
Rated wind speed and rotor speed are 11.3 m/s and 62 rpm, respectively. More parameters in detail
are shown in Figure 2.
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Figure 2. Photo and parameters of the 100 kW wind turbine.

The blades in the test have a length of 10.292 m with a maximum chord of 0.76 m at a span of
1.54 m. Six airfoils, including four DU serial airfoils with different thicknesses and one NACA airfoil,
used in the blade are shown in Table 3. DU serial airfoils from Delft University of Technology are
well-known in the wind energy area and widely used in the wind turbine blades. It is noticeable that
an originally designed airfoil of CAS W2-450 was used at the location of maximum chord. The name
of CAS W2-450 represents the airfoil with relative thickness of 45% is the second version designed by
the Chinese Academy of Sciences (CAS). The aximum twist angle is 15 deg. The distributions of chord
and twist are also shown in Table 3.

Table 3. Chord and twist angle distributions of blades.

Span/m Chord/m Twist Angle/◦ Airfoil

0 0.42 14.99 Circle
0.54 0.42 14.99 Circle
0.79 0.53 14.99 CAS W2-450
2.79 0.67 8.40 DU00-W-350
3.79 0.55 5.69 DU97-W-350
4.79 0.47 3.84 DU91-W2-250
6.54 0.37 1.50 DU93-W-210
9.04 0.28 −1.55 NACA 63418

3. Development of the Aerodynamic Field Measurement Platform

3.1. General Designation

General designation determines what parameters needed to be measured and how to measure
those parameters. For the field measurement platform in this work, aiming to investigate the effects of
unsteady natural inflow on the aerodynamic behaviors of rotor and power generation of wind turbine,
the most important parameters are inflow wind speed and direction, aerodynamic loads of blade, and
operating data of wind turbine.

The objective of inflow wind speed and direction measurement is to obtain the effective angle of
attack that the blades suffered. Although an upstream anemometer mast was installed to measure
inflow conditions of far field, natural wind is unsteady in time and un-uniform in space. The wind
speed and direction measured at far field is not representative of the actual inflow conditions that the
rotor suffered. Moreover, aerodynamic forces over the airfoils are very sensitive to angle of attack.
Hence, the reliability of aerodynamic field measurement platform is determined by the measurement
accuracy of angle of attack. In the general designation, it was planned that air probes are installed at
the leading edge of blade to measure the relative inflow wind speed and direction that blades suffered
directly. However, the inflow data measured by leading-edge air probes are still not the effective angle
of attack. The effects of lift circulation on the flow direction at probe tip should be considered and
corrected. A detailed description is shown in data reducing methods.
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Compared with concentrated aerodynamic force measurements, local flow patterns, such as flow
transition and separation, can be deduced from pressure distribution measurement, which is suitable
for fundamental research. Therefore, pressure distributions of five main airfoils, except NACA 63,418
in Table 3, were measured to evaluate aerodynamic loads over the rotor.

Operating data of wind turbine, including power, rotor speed, pitch angle, yaw angle, and
azimuth angle, are used to analyze the power performance and the blade attitude in cooperation with
aerodynamic data of blade. Consequently, all the data, including inflow wind speed and direction
from anemometer mast and air probes, pressure distributions, and operating data of the wind turbine,
must be sampled synchronously.

In summary, overall layout of field measurement platform is shown in Figure 3. Pressure taps were
embedded in five airfoil sections, and five corresponding air probes were installed at the leading edge.
Meanwhile, four strain gauges were pasted in the inner surface of blade root to monitor the structural
response, and tufts were pasted on the suction side of another blade to assist flow visualization.
Moreover, a synchronous data acquisition system was designed to ensure all the data sampled are
correlative in time.
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3.2. Inflow Measurement at the Leading Edge of the Blade

Air probes used in this paper are seven-hole probes developed by Institute of Engineering
Thermophysics, which were manufactured by 3D printing. The geometry sizes are shown in Figure 4.
The diameter and length of probe fore-body are 6 mm and 100 mm, respectively. The inner diameter of
all the holes is 0.8mm with a center-to-center spacing of 1.75 mm. In order to compensate the upwash
induction of lift circulation on the flow direction at probe tip, a bending angle of 20◦ was set at the
joint of fore-body and after-body.

All the probes were installed on a customized two degrees of freedom calibration apparatus
and calibrated in a 0.5 m by 0.5 m wind tunnel at wind speeds of 10 m/s, 20 m/s, and 30 m/s.
Angular range of calibration database is from –50◦ to 50◦ for angle of attack and from –50◦ to 50◦ for
sideslip angle. Finally, the calibration errors for flow angles are lower than 1◦, and error for dynamic
pressure is lower than 2%, which is shown in Table 4.

Table 4. Calibration errors of leading-edge probes.

Flow Attribute Angle of Attack (◦) Sideslip Angle (◦) Dynamic Pressure (%)

Error 0.96 0.77 1.64
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Each probe was installed at 0.3 m away from corresponding pressure measurement section along
the span of blade. After installation, the length of each probe beyond the leading edge is shown in
Table 5.

Table 5. Locations of probe tip.

Probe Name P1 P2 P3 P4 P5

Span Location (m) 1.798 3.085 4.008 5.122 6.905
Length beyond the leading edge (m) 0.55 0.4 0.345 0.293 0.22

3.3. Pressure Distribution Measurement

In order to measure pressure with higher accuracy, the range of pressure sensor should be
determined firstly. A better method is to evaluate the maximum flow velocity and the corresponding
pressure. The relative inflow speed at blade tip is about 90 m/s when the rotor runs at the rated
revolving speed. The corresponding inflow dynamic pressure is about 5000 Pa, according to the
deductive Bernoulli equation (Equation (1)):

q =
1
2

ρV2 (1)

Therefore, the range of pressure sensor should be lower than 10,000 Pa. In addition, the length of
pressure tube has a damping effect on the dynamic response of pressure signal. It has been shown [31]
experimentally that acoustic damping is small for frequencies up to 40 Hz for a pressure tube with
length of 1.1 m and diameter of 1 mm. It requires that location of pressure sensor should be close
enough to the pressure taps. With both the above considerations, pressure scanners, ESP-64 with full
scale of 1 PSI and measuring accuracy of ±0.05% full scale, manufactured by Measurement Specialties,
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were purchased and installed in the chamber of a blade, as shown in Figure 5. To facilitate field
maintenance and repairs of pressure scanner, three installation windows were manufactured on the
pressure side of the blade.
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It is difficult to fabricate pressure tap in the large composite wind turbine blades. A method to
embed pressure tubes into composite blades during the vacuum assistant resin infusion was developed
and applied on the tested blade in this paper. The method has obtained two patents in China. Finally,
pressure taps were manufactured at five airfoil sections. The parameters of pressure measurement
sections, including airfoil, span location, pressure tap number, and chord, are shown in Table 6.
The photo of finished aerodynamic measurement blade is shown in Figure 6.

Table 6. Parameters of five pressure measurement sections.

Section Name S1 S2 S3 S4 S5

Airfoil CAS-W2-450 DU00-W-350 DU97-W-300 DU91-W2-250 DU93-W-210
Span Location (m) 1.498 2.785 3.708 4.822 6.605

Pressure Tap Number 53 57 49 51 46
Chord (m) 0.758 0.658 0.558 0.467 0.369
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3.4. Synchronous Measurement

Synchronous measurement is to correlate all the parameters sampled, including inflow conditions
from anemometer mast, inflow conditions from leading-edge probes, pressure distributions, strains at
the blade root, and operating data of wind turbine. The sampling frequency of inflow conditions from
anemometer mast is as low as 1 Hz, while it of the other instruments is higher than 50 Hz. Thus, the
method of synchronous measurement is to produce a trigger that only ensure the first data of all the
parameters sampled is synchronous. In this paper, a synchronizer was customized to trigger all the
data acquisition instruments by respective communication protocols, as shown in Figure 7. The time
error among first data of all the parameters is less than 20 ms by checking the absolute sampling time.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 20 
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Figure 7. The measuring and controlling system.

4. Data Reducing Methods

4.1. Sideslip Angle Correction for Normalization of Pressure Coefficients and Force Coefficients

Usually, pressure coefficients are normalized by Equation (2), where pi is the surface pressure
measured by pressure scanner, ps and p0 are the static and total pressure measured by leading-edge
probe, respectively:

Cpi =
pi − ps

p0 − ps
(2)

However, the relative sideslip angle, β, which is defined in Figure 8, is usually non-zero in the
field environment. In non-zero sideslip condition, flow inside of the airfoil plane plays a dominant
role in generation of aerodynamic force. So dynamic pressure in Equation (2), p0 − ps, should be
corrected as (p0 − ps) · cos2 β in non-zero sideslip condition. The new normalization method is shown
in Equation (3):

Cpi =
pi − ps

(p0 − ps) · cos2 β
(3)
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Body-axis forces and their coefficients are calculated by Equations (4) and (5), where N is the
normal force perpendicular to the chord, A is the tangential force parallel to the chord, dxi, dyi are the
interval of pressure taps parallel and perpendicular to the chord respectively, CN is the normal force
coefficient, CA is the tangential force coefficient, C is the chord of airfoil:

A =
N
∑

i=1
pi · dyi

N =
N
∑

i=1
pi · dxi

(4)


CA =

N
∑

i=1
pi ·dyi

(p0−ps)·cos2 β·C =
N
∑

i=1

Cpi ·dyi
C

CN =

N
∑

i=1
pi ·dxi

(p0−ps)·cos2 β·C =
N
∑

i=1

Cpi ·dxi
C

(5)

Air-axis force coefficients are calculated by body-axis force coefficients according to Equation (6),
where Cd is the drag coefficient along the inflow direction, Cl is the lift coefficient perpendicular to the
inflow direction, α is the effective angle of attack, as shown in Figure 8:{

Cd = CA · cos α + CN · sin α

Cl = CN · cos α− CA · sin α
(6)

4.2. Induced Velocity Correction for Determination of the Effective Angle of Attack

The inflow speed and direction measured by probe, Vp and αp are shown in Figure 9. Vp comprises
the induced velocity of lift circulation Vi and the undisturbed inflow velocity Ve. Effective angle of
attack, αe, is the angle between the undisturbed inflow velocity Ve and the chord line. Thus, the
effective angle of attack at the probe section is corrected by Equation (7):

αe = αp − αi (7)
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The iteration steps to calculate αe are shown in Figure 10.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 20 
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Step 1: Assume the angle of attack measured by probe, αp, is the initial angle of attack, and
calculate the sectional lift by integration of the pressure distribution and Equation (6).

Step 2: Compute the lift circulation by the Kutta–Joukowski theorem, as shown in Equation (8),
where Vp is the inflow speed measured by probe, β is sideslip angle measured by probe, L is the
sectional lift calculated by Step 1, and ρ is the air density measured by atmospheric pressure and
temperature meters:

Γ =
L

ρVp cos β
(8)

Step 3: Let us consider the blade as a lift line and compute the induced velocity, Vi, by the
Biot–Savart integral law, as shown in Equation (9), where |AB| is the distance between probe tip to lift
line, and a1, a2 are shown in Figure 11:

Vi =
Γ

4π|AB| (cos a1 + cos a2) (9)
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Step 4: Compute the new inflow velocity, Vn, by velocity resolution of Vp and Vi, and compute
the new angle of attack, αn.

Step 5: Calculate the error between the new angle of attack and the initial angle of attack used
in Step 1. If the error is less than 0.1◦, the effective angle of attack is equal to the new angle of attack.
If not, repeat Steps 1 to 4, replacing the initial angle of attack with the new angle of attack.

5. Results and Discussions

5.1. Field Test Cases Selection

The direct validation method is to compare the aerodynamic performance of blade section
measured in the field with the 2D airfoil data measured in a wind tunnel. Thus, the testing conditions
between field measurement and 2D wind tunnel measurement should be similar as much as possible.
However, there exists some differences between field measurement on the 3D blade and wind tunnel
measurement on the 2D airfoil. Firstly, tip and root vortices over a blade with finite length will have a
3D induction effect on the flow over the entire blade. Additionally, the airfoil and twist angle along the
blade span are different, which will have another 3D effect. Secondly, for a rotating blade, stall delay
effects [10] are remarkable, especially for the blade root. Finally, wind turbine usually operates in yaw
and high turbulent density conditions due to the unsteady atmospheric inflow.

Therefore, to minimize the 3D induction effect, aerodynamic data of DU93-W-210 airfoil, located
at the mid-span in Table 3, were chosen to compare. In addition, for eliminating the stall delay effects,
the aerodynamic data were sampled when the wind turbine was shutdown.

The testing cases are shown in Table 7, where pitching angles are changed from 60◦ to 90◦ with
interval of 5◦, sampling frequency is 50 Hz and sampling time is 60 s. In this paper, the pitching angle
is 90◦ when the leading edge of the blade points to upstream of the inflow.

Table 7. The testing cases to compare with the 2D wind tunnel.

Case Status of Turbine Pitching Angle (◦) Sampling Frequency (Hz) Sampling Time (sec)

1 Stop 60 50 60
2 Stop 65 50 60
3 Stop 70 50 60
4 Stop 75 50 60
5 Stop 80 50 60
6 Stop 85 50 60
7 Stop 90 50 60

Azimuth angle of rotor, χ, is the angle between pitch axis of the blade with pressure taps and tower
axis. Yaw angle of wind turbine, γ, is the angle between inflow direction and rotating axis of rotor.
Yaw angle is positive when the freestream comes from left side of the wind turbine. The definitions
are shown in Figure 12.
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The inflow conditions at the nacelle are shown in Figure 13. It is observed that inflow speed varies
in the 8 m/s to 12 m/s ranges, and yaw angle varies in the –20◦ to 0◦. In the sampling time of 60 s,
both magnitude and direction of inflow vary significantly, which is the third difference from the 2D
wind tunnel measurement as is mentioned previously.
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Figure 13. Inflow speed (a) and yaw angle (b) at the nacelle in the testing cases.

When the wind turbine is shutdown, the rotor is still free to rotate, although rotor speed is
very low. It is shown from Figure 14 that rotor speed increases with the decrease of pitching angle.
The maximum rotor speed is about 9 rpm at a pitching angle of 60◦, which is much lower than rated
rotor speed of 62 rpm. In these testing cases, rotor can be regarded as quasi-static, and stall delay
effects due to rotating is weak enough to be ignored.
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5.2. Angle-Averaged Processing Method

Instantaneous lift coefficient calculated by Equation (6) and angle of attack calculated by
Equation (7) at each sampling time were plotted as scattered points in Figure 15. It is shown that the
distributions of the scattered point are almost overlapped at all the pitching angles.Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 20 
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Figure 15. Instantaneous lift coefficients at r/R = 0.64 with different pitching angles.

However, it is difficult to determine relationship between lift coefficient and angle of attack,
because each angle of attack corresponds to a number of lift coefficient values. An angle-averaged
method was employed to process the multi-value lift coefficient at one angle of attack to single-value.
In the angle-averaged method, all the angles of attack were divided into several data sets with the
length of 1◦. Each angle of attack set is αk = [αk1, αk2, . . . αkn], and the corresponding lift coefficient
dataset is Clk = [Clk1, Clk2, . . . Clkn]. Then the lift coefficients and angles of attack in each dataset were
averaged to obtain the angle-averaged lift coefficient and angle of attack, as shown in Equation (10),
where i = 1, 2, . . . n. 

αk =

n
∑

i=1
αki

n

Clk =

n
∑

i=1
Clki

n

(10)
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The relationship curves of angle-averaged lift coefficient and angle of attack are shown in
Figure 16a. All the curves at different pitching angles are almost overlapped also. Thus, the cases
at the different pitching angle can be regarded as one case to simplify the data analysis. Finally, the
instantaneous data of all the cases at different pitching angles was angle-averaged to plot in one curve,
as shown in Figure 16b.
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Figure 16. Angle-averaged lift coefficients from each pitching angle case (a) and all the cases (b).

5.3. Comparison with 2D Wind Tunnel Data

In order to minimize the 3D induction effect from blade root and tip, aerodynamic data of
DU93-W-210 airfoil at r/R = 0.64 of the blade was chosen to compare with the 2D wind tunnel data,
where R is the radius of rotor. The Reynolds number was computed by Equation (11), where V is the
velocity measured by the corresponding seven-hole probe, P and T are the atmospheric pressure and
temperature measured by the corresponding sensor on the upstream anemometer mast, R is the ideal
gas constant, µ(T) is the kinetic viscosity calculated by Sutherland’s law. The obvious fluctuations of
Reynolds number can be observed in Figure 17. However, the mean Reynolds number is about 2 × 105

at the test cases.
Re =

ρVl
µ

=
P

RT
· Vl

µ(T)
(11)
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Wind tunnel data of DU93-W-210 airfoil is from Mie University [32]. The measurements were
performed in the low-speed wind tunnel with a maximum velocity of 52 m/s, and a measurement
section size of 0.65 × 0.65 × 2.0 m. The turbulence intensity is less than 0.15% at the test section.
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The experimental wind speed was at 30m/s corresponding to a Reynolds number of Re = 3.5 × 105,
which is the most proximate inflow conditions with the field conditions that can be found in the
literatures. More detailed information about the wind tunnel measurements can be found in Kamada’s
work [32].

Three methods were applied to investigate the effects of sideslip angle and induced velocity on
the relationship between the lift coefficient and angle of attack. As is shown in Table 8, only sideslip
angle correction for normalization of aerodynamic coefficients was taken into account in Method I.
Only the induced velocity correction for the determination of the effective angle of attack was applied
in Method II. In Method III, both corrections were applied.

Table 8. Computation methods of angle of attack.

Method I Method II Method III

Sideslip angle correction • # •
Induced velocity correction # • •

The relationship curves between lift coefficient and angle of attack with the three methods were
plotted in Figure 18 and compared with wind tunnel data from Mie University [32]. It can be shown that
good agreements are achieved between field data using Method III and wind tunnel data, especially
at an angle of attack less than 8◦. However, remarkable deviations are observed when Method I was
applied. The slope of relationship curve between lift coefficient and angle of attack is clearly lower.
It means that induced velocity from lift circulation has appreciable impact on the directly measured
velocity by leading-edge probes. When determining the angle of attack in the field, induced velocity
correction must be taken into account. When Method II was applied, both Method II and Method III
give almost similar results at angles of attack less than 10◦. It means that the sideslip angle has little
impact on the relationship between the lift coefficient and the angle of attack.
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Figure 18. Comparison of lift coefficients of DU93-W-210 between the field test and 2D wind tunnel test.

Furthermore, pressure coefficients of the field measurements, angle-averaged with the data of
all the testing cases, were further compared with the wind tunnel data in detail. It is shown from
Figure 19 that between two angles of attack, 6◦ and 12◦, the shapes of the pressure distributions are
different, and at each angle of attack, the pressure distribution of the field measurement has good
agreement with the wind tunnel data.
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Figure 19. Comparison of pressure coefficients: (a) α = 6◦, (b) α = 12◦.

In summary, good agreements are achieved for the lift and pressure coefficients between the field
measurements and 2D wind tunnel measurements, which verifies that the designation, implementation,
and data reducing methods of the aerodynamic field measurement platform developed in this paper
are reasonable and reliable.

To evaluate the dispersion of instantaneous lift coefficients in Figure 15, the standard deviations
were calculated by Equation (12), where n is the sample size of the lift coefficient dataset, Clk is
the angle-averaged lift coefficient defined in Equation (11). Figure 20 shows standard deviations of
lift coefficient at different angle-average angles of attack, which are about 0.2. This means that the
natural inflow condition in the field will introduce about standard deviation of 0.2 for lift coefficient
when aerodynamic loads are predicted by aerodynamic data from 2D wind tunnel tests. In order to
investigate the source of the dispersion of instantaneous lift coefficients, aerodynamic data in time
history were analyzed further:

σ(Clk) =

√
1
n

n

∑
i=1

(Clki − Clk)
2 (12)
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5.4. Time History Analysis for the Dispersion of Instantaneous Lift Coefficients

Although good agreements has been achieved for both angle-averaged lift and pressure
coefficients from Figures 18 and 19, remarkable dispersion can be observed for instantaneous lift
coefficients from Figures 15 and 20. Time history of azimuth angle, angle of attack, and lift coefficient in
Case 1, where the pitching angle is 60◦, were analyzed and shown in Figure 21. It can be observed that
both the lift coefficient and the angle of attack vary quasi-periodically, and the frequencies are same
with azimuth angle. For this reason, aerodynamic behaviors in one rotation period were discussed.
It is shown from Figure 22a that both the angle of attack and lift coefficient are largest when the tested
blade rotates across the bottom of rotor corresponding to azimuth angle of 0◦, while they are lowest
when the tested blade rotates across the top of rotor corresponding to azimuth angle of 180◦ or –180◦.
In one rotation period, remarkable dynamic response phenomenon can be observed from Figure 22b.
A clockwise hysteresis loop of lift coefficients was formed when angles of attack increased from –12◦ to
6◦ and decreased from 6◦ to –12◦. Obviously, the dynamic response make instantaneous lift coefficients
at the same angle of attack dispersive.
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Figure 22. (a) The variation of angle of attack and lift coefficient in one rotation period, and (b) dynamic
response of lift coefficient varying with the angle of attack.
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The reason that causes the quasi-periodically variation of angle of attack is investigated also in
the present research. A comparison between yaw angle and variation amplitude of angle of attack is
shown in Figure 23, where amplitude of angle of attack was multiplied by –1 to make a direct contrast
with yaw angle. It can be observed that variation amplitude of angle of attack is closely correlated
with yaw angle, although certain irregular deviations exists at some instantaneous time. As a whole,
the variation amplitudes are determined by the yaw angles.
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Figure 23. Comparison of yaw angle and variation amplitude of angle of attack measured by probe in
Case 1.

If yaw angle is negative, angle of attack will be largest when the tested blade rotates across the
bottom of rotor at azimuth angle of 0◦. It can also be deduced that if yaw angle is positive, angle of
attack will be lowest when the tested blade is at azimuth angle of 0◦. The quasi-periodically variation
of the angle of attack caused by the yawing angle, induces dynamic response of a clockwise hysteresis
loop in the lift coefficient. The dynamic response is the main source of the dispersion of instantaneous
lift coefficients with a standard deviation of 0.2.

6. Conclusions and Future Research

An aerodynamic measurement platform in the field was developed based on a horizontal axis
wind turbine from IET in China in this paper to study the measuring and analyzing method of the angle
of attack. Five seven-hole probes were installed at the leading edge to measure inflow conditions at
the near field, which is very important to improve the measuring accuracy of actual inflow conditions
over the blades, and provide the static and total pressure for data normalization. Two data reducing
processes, sideslip angle correction and induced velocity correction, were proposed to determine the
effective angle of attack. An angle-averaged processing method was employed to investigate the
single-valued relationship between lift coefficient of blade section and angle of attack. As a result,
good agreements are achieved for angle-averaged lift and pressure coefficients between field and 2D
wind tunnel measurement. Without consideration of induced velocity by lift circulation, the slope of
Cl ~ α curve will be clearly lower.

In the field, angle of attack varies quasi-periodically with the rotation of rotor in field, which is
caused by yaw angle of inflow. The variation amplitudes of angle of attack are determined by the
yaw angles. The variation of angle of attack induces dynamic response of a clockwise hysteresis loop
in the lift coefficient. The dynamic response is the main source of a dispersion of instantaneous lift
coefficients with a standard deviation of 0.2.
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