
applied  
sciences

Review

Monitoring Electrochemical Reactions in Situ with
Low Field NMR: A Mini-Review

Bruna Ferreira Gomes 1,† , Carlos Manuel Silva Lobo 1,† and Luiz Alberto Colnago 2,*,†

1 Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil;
bruna.fg.lobo@gmail.com (B.F.G.); carlos.manuel.s.lobo@gmail.com (C.M.S.L.)

2 Embrapa Instrumentação, São Carlos 13560-970, Brazil
* Correspondence: luiz.colnago@embrapa.br; Tel.: +55-16-2107-2821
† All authors contributed equally to this work.

Received: 30 December 2018; Accepted: 21 January 2019; Published: 1 February 2019
����������
�������

Abstract: The number of applications of time domain NMR using low-field spectrometers in research
and development has been steadily increasing in recent years with applications ranging from quality
control of industrial products to the study of physical and chemical properties of a wide array of
solid and liquid samples to, most recently, electrochemical studies. In this mini-review we summarize
the progress that has been achieved in the coupling between time domain NMR (using low-field
spectrometers) and electrochemistry and how the challenges that this coupling poses have been
overcome over the years. We also highlight the effect that the static magnetic field of the NMR
spectrometer has on the electrochemical systems.
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1. Introduction

The uses of low-field time domain NMR in research and development have been steadily
increasing over the years [1–6]. Nowadays, it is used for several purposes, such as the quality
analysis of industrial products as well as the study of physical and chemical properties of a wide array
of samples, both solid and liquid, such as vegetable oil, fuels, reservoir rocks, foods and biological
tissues [1–6]. The instruments used for these analyses are normally based on permanent magnets
which produce a magnetic field intensity usually below 0.6 T (25 MHz for 1H) with a low homogeneity
(above 100 ppm) which means that the relevant information can only be extracted from the intensity of
the free induction decay signal (FID), the spin echo or by measuring the relaxation times T1 and/or
T2 or the diffusion coefficient of the sample. In this review we show the application of time domain
NMR (TD NMR—also known as low-field NMR) to an increasingly popular research field which is
the in situ monitoring of electrochemical reactions (EC-NMR) [7–9]. The first published paper which
detailed the use of TD NMR for such an application was published as recently as 2010 [10] (which is a
40 year delay from the first paper detailing the use of high-field NMR for the same application [11]).
This work showed that TD NMR is suitable for monitoring the electrodeposition reaction of copper
complexes using the transversal relaxation time, T2. Since then, TD NMR has been shown to be suitable
for monitoring the electrodeposition of copper ions using both H-type magnets as well as unilateral
magnets. Furthermore, it has been observed that reactions performed in situ show a higher reaction
rate than those performed ex situ due to a phenomenon known as magnetoelectrolysis [12,13] which
occurs as a result of the interaction between the magnetic field and the ion flow present during the
experiments. This effect increases the mass transport within the solution during the experiment. In this
review, we show the methods used to measure the concentration of paramagnetic ions in solution
using TD NMR, the challenges of in situ EC-NMR and the solutions to those challenges (whenever they
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exist) as well as the influence of the magnetic field from the spectrometer on the magnetoelectrolysis.
The use of inductively coupled coils to improve the signal-to-noise ratio of the NMR signal during
in situ electrochemical experiments is also shown here.

2. TD NMR for the Quantification of Paramagnetic Ions

In 1946, Bloch, Hansen and Packard reported that T2 of the sample is dependent upon the
concentration of the paramagnetic ions [14]. This was later elaborated on by several scientists
who reported that T2 is inversely proportional to the concentration of paramagnetic ions in the
solution [15–17]. The relaxation of the solvent due to the effect of the paramagnetic ions in the
solution was first explained by Bloembergen, Purcell and Pound in 1948 [15]. They demonstrated
that the longitudinal relaxation rate (1/T1) is dependent on the gyromagnetic ratio of hydrogen
(γp), effective magnetic moment (µe f f ), ion density (Nion), viscosity (η), Boltzmann’s constant(k) and
absolute temperature (T), as shown in Equation (1).

1
T1
=

12π2γ2
pηNionµ2

e f f

5kT
(1)

In the 1970s, Schlüter and Weiss [18–20] indirectly quantified the concentration of paramagnetic
ions in solution by measuring the relaxation rate (1/T1) of the solution and taking advantage
of the inverse correlation between both properties. Since measuring T1 using the conventional
inversion-recovery pulse sequence is a long process, and since Bloembergen, Purcell and Pound
reported that (1/T2) is also proportional to the concentration of paramagnetic ions in solution it is
possible to indirectly quantify the concentration of such ions using T2, which can be measured in a fast
and simple way using the CPMG pulse sequence. Figure 1 shows how the transversal relaxation rate
(1/T2) varies linearly with the concentration of several paramagnetic ions [21].

Figure 1. Variation of transverse relaxation rate (T2
−1) of the water versus the concentration of Co2+,

Cr3+, Cu2+, Fe3+ and Mn2+ in the solutions. Reprinted from Publication [21], Copyright (2018),
with permission from Elsevier.

In 2016 Gomes et al. determined the limits of detection and quantification (LOD and LOQ,
respectively) of two low-field NMR equipments. One based on a H-type magnet (0.23 T —9.8 MHz
for 1H) and the other using a unilateral magnet (0.33 T at 3 mm above the magnet surface—14.1 MHz
for 1H) using different paramagnetic ions (Ni2+, Cu2+, Cr3+ and Mn2+). These values were compared to
the LOD and LOQ of a Uv/Vis spectrometer for the same ions, with the exception of Mn2+ which does
not significantly absorb radiation in the Uv/Visible spectrum to be quantified. The authors concluded
that the LOD and LOQ using the unilateral sensor was the highest, followed by those obtained by
the Uv/Vis spectrometer, which also has the drawback of not being able to quantify ions that do not
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absorb radiation in this region (as is the case with Mn2+ ions). The NMR spectrometer with the H-type
magnet showed the lowest LOD and LOQ. The average LOD and LOQ of all the paramagnetic ions
tested and on each of the different magnets are summarized in Table 1 [22].

Table 1. Average limits of detection and quantification (LOD and LOQ) of the different spectrometers
for the tested paramagnetic ions [22].

Magnet Type LOD (mol⋅L−1) LOQ (mol⋅L−1)

H-type 4× 10−6 2× 10−5

Unilateral 1× 10−3 5× 10−3

Uv/Vis 6× 10−4 2× 10−3

The linear relationship between the relaxation rate (1/T2) and the concentration of paramagnetic
ions has been exploited to quantify paramagnetic ions in solutions, to calculate KSP values [23], to study
coordination complexes with paramagnetic ions as ligands [24] and also to monitor electrochemical
reactions in situ [8,9].

3. TD NMR Coupled to Electrochemistry

Electrochemical measurements are quite limited when it comes to discriminating how much
of each compound involved in the reaction is consumed or produced, since they measure the total
current that flows through the system, which includes not only the target reaction but also parallel
reactions such as gas evolution. Thus, it is not possible to exactly determine how much of the current
has been used to produce a certain compound based on these measurements alone. It is for this reason
that coupling NMR to electrochemical methods is useful, as NMR (more specifically high-field NMR)
can provide information regarding the presence and concentration of the different soluble molecules
involved in the reaction. On the other hand, TD NMR can be used to follow the consumption of
paramagnetic ions in the solution through measurements of either T1 or T2.

Taking advantage of this fact, in 2010 Barbosa et al. [10] used an electrochemical cell with a
height of 6 cm and 3 cm of diameter (Figure 2) in a 2.1 T superconductor magnetic resonance imaging
system to follow in situ the electrodeposition reaction of copper ions in a solution containing sorbitol
as a complexing agent. However, they could not observe a substantial difference in the values of T2,
which could be linked to the large cell volume.

Figure 2. Schematic diagram of the EC-NMR cell used by Barbosa et al. WE, CE and RE refer to
the working, counter and reference electrodes, respectively. Reproduced with permission from [10].
Copyright (2010), The Electrochemical Society.
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Introducing an electrochemical cell in the NMR detection region does bring with it some
challenges. First and foremost, introducing metal electrodes in the detection region of the NMR
spectrometer reduces the signal-to-noise ratio of the NMR experiments by introducing noise and by
reducing the intensity of the signal due to distortions caused to the static magnetic field, which reduces
the homogeneity of the magnetic field. Typical ways to deal with these problems include using
radio-frequency filters (chokes), the use of non-metallic electrodes and even the use of metallic thin
films [25].

In 2012 Nunes et al. [7] published the first article showing that it is possible to monitor the
electrodeposition reaction of Cu2+ ions by coupling the electrochemical experiment to a low-field
bench-top NMR spectrometer (0.23 T). They measured the T2 of the solution using the CPMG pulse
sequence and were able to track the consumption of the copper ions in real-time (Figure 3) despite
the fact that the noise in the NMR signals was increased. The authors placed the electrodes in the
NMR detection region and made no use of radio-frequency filters. However, they did isolate the cables
connecting the electrochemical cell to the potentiostat to reduce the interference that the electrodes
cause on the NMR signal.
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Figure 3. (A)The electrodes of the cell were as follows: working electrode (WE) and counter electrode
(CE), platinum; reference electrode (RE), silver. (B) Variation of the Cu2+ concentration (◻) and the
potentiostat current (∎) during the electrodeposition reaction. Adapted with permission from [7].
Copyright (2012) American Chemical Society.

In 2018, Lobo et al. [26] showed that it is possible to increase the NMR signal-to-noise ratio of the
TD NMR experiments performed during in situ electrochemical experiments by using a secondary
coil which is wrapped directly on the electrochemical cell. The system that was used consisted of an
electrochemical cell built into a 5 mm standard NMR tube which contained a Pt wire as CE and an
Ag/AgCl wire as RE positioned above the secondary electrode and a WE consisting of a Pt disc placed
at the bottom of the tube (Figure 4A). The developed setup achieved an increase of 20 times in the
NMR signal intensity and was used to successfully follow the electrodeposition reaction of cupric ions
at two distinct potentials (vs. Ag/AgCl): −1 and −4 V (Figure 4B).
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Figure 4. (A) Experimental setup using an inductively coupled coil to enhance the NMR signal-to-noise
ratio. (B) Cupric ion concentration over time. Reactions performed at −1 and −4 V (vs. Ag/AgCl)
are represented by black squares and red circles, respectively. Adapted from [26], copyright (2018),
with permission from Elsevier.

4. TD NMR for the Study of Magnetoelectrolysis

In 2014, Gomes et al. [8] used a similar system to that used by Nunes et al. in 2012 and observed
that the reaction rate of the Cu2+ electrodeposition reaction monitored in situ by TD NMR was faster
than the same reaction performed ex situ (Figure 5). The results showed that after 1 h of reaction 40%
of the copper ions had been deposited on the electrode surface when the reaction was performed in
situ, which is a 48% increase in copper deposition when compared to the 27% that was deposited when
the reaction was performed ex situ (Figure 5). The increase in the reaction rate was associated with the
magnetoelectrolysis effect, which is known to stir the solution, and increases the quantity of ions that
reach the electrode surface.

Figure 5. (A) Illustration of the electrochemical cell inserted in the NMR relaxometer. (B) Variation of
Cu2+ concentration as a function of electrolysis time performed in the electrochemical cell recorded
at 23 ○C under different configurations: (∎) B⊥j, (●) B∥j, and (▲) B = 0. Solution: 0.1 mol⋅L−1 Na2SO4

electrolyte containing 0.01 mol⋅L−1 CuSO4. Conditions: Eapplied = −0.4 V vs. Ag/AgCl (3 mol⋅L−1 KCl).
The Cu2+ concentration data were determined by CPMG pulse sequence. The standard error is
represented by the error bars (n = 3). Adapted with permission from [8]. Copyright (2014) American
Chemical Society.

The magnetoelectrolysis effect is proportional to both the magnetic field intensity, B, and the
current density, j, that reaches the electrode surface. The most important force that results from the
interaction of these quantities is the magnetic field force density, FB, which is given by Equation (2).

FB = j×B (2)

where j has units of A m−2, B is given in T and FB has units N m−3. From Equation (2) we can see that
FB will be maximum when j and B are perpendicular to each other and null when they are parallel.
In practice, however, even if at a macroscopic level j and B are parallel, the electrode surface as well as
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its edges create local distortions to the electric field which results in there being regions where j and
B are no longer parallel and thus FB will be minimum, but not zero, as explained Monzon et al. in
2015 [13], who call this particular effect micro-magnetohydrodynamic effect.

Gomes et al. (2014) [8] also discuss the reason for why the reaction rate remains unaltered despite
an apparent parallel orientation between B and j (Figure 5). They explain this result in terms of
the effect of the edges of the electrode and gas bubbles that form on its surface during the reaction,
which locally alter the electric field, therefore preventing FB from being zero.

Hinds et al. in 2001 [12] explained that the increase of an electrochemical reaction’s velocity due
to FB is due to the fact that this force agitates the solution, which leads to more molecules reaching
the surface of the working electrode and, therefore, reducing the thickness of the electric double-layer
(Figure 6). They also explained that this increase only occurs in those reactions which are limited by
mass transport, since the magnetic agitation caused by FB may be compared to a mechanical agitation,
which homogenizes the solution. Aogaki et al. demonstrated that the increase in the conversion rate
(determined through the measurement of the electric current that flows during the experiment) is
proportional to B [27].

Figure 6. (A) Electric double-layer thickness (δ) during electrochemical experiments performed in
the absence of an external magnetic field, B. The bulk concentration of ionic species is c0. (B) Electric
double-layer thickness when B ≠ 0, which induces a tangential velocity component, U, in the bulk
solution which in turn creates a hydrodynamic boundary layer with thickness δ0. i is the current flowing
in the system. Adapted with permission from [12]. Copyright (2001) American Chemical Society.

Another force that may play an important role in the magnetoelectrolysis effect is the force
of the magnetic field gradient, also known as Kelvin’s force, F∇B, which is more influent the less
homogeneous the magnetic field is, as shown by Equation (3).

F∇B =
1

2µ0
cχm2(B ⋅ ∇)B (3)

where µ0 is the magnetic permeability of free space in units of T m A−1, c is the concentration of
paramagnetic species in solution given in mol m−3, χm is the molar magnetic susceptibility, B is the
external magnetic field in T, ∇ is the Del operator and F∇B is given in units of N m−3. This force can
alter the morphology of metallic deposits as well as contribute to the magnetic agitation of the solution.

In 2015, Gomes et al. [9] again showed that it is possible to follow the electrochemical deposition
of copper ions, this time using a unilateral, homebuilt, sensor. To do this, however, a Faraday cage
was built around the system to isolate it from ambient radio-frequencies which are driven into the
NMR detection region by the electrodes and completely destroy the NMR signal. The cage consisted
of a simple box whose inner walls were lined with aluminum foil. The reactions performed in situ
(they again tested both B⊥j and B∥j) showed that after the 3h reaction 40% of copper had been



Appl. Sci. 2019, 9, 498 7 of 9

deposited while only 12% had been deposited during the ex situ reaction, the former value being
independent of the orientation between j and B.

The authors also investigated and estimated the magnetic forces at play during the in situ
experiments and attributed the higher deposition rate of the in situ reactions to the effects of FB and
F∇B, the latter being quite important as the magnet produces a highly inhomogeneous magnetic field
(the gradient was estimated to be 6 T m−1). Just as with the work from 2014, the reaction rate remained
the same whether j and B were parallel or not (Figure 7), for the same reasons.

The works from Gomes et al. from 2014 and 2015 highlight the importance of taking the effect
of the magnetic field into account whenever EC-NMR experiments are performed in situ, since the
reaction rate may differ from the rate observed in an ex situ reaction and this difference is proportional
to the intensity of the applied magnetic field as shown in Equation (2). Thus, before initiating any
in situ EC-NMR experiments the influence of the external magnetic field must be assessed to avoid
inaccurate conclusions. It is worth pointing out that the effect of the magnetic field is especially evident
on reactions that are limited by mass-transport because it has the effect of reducing the thickness of the
electric double-layer due to magnetic stirring.
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Figure 7. (A) Simulated magnetic field profile of the home-built unilateral NMR sensor. The simulation
procedure was performed without the electrochemical cell on unilateral probe. The gray color scale
represents the magnetic field from 0.05 to 1.0 T. Each color scale is equivalent to 0.05 T. (B) Variation of
the Cu2+ concentration during the electrodeposition reaction measured by CPMG pulse sequence under
different configurations: B = 0 (△), B⊥j (◻) and B∥j (●). Eapplied = −0.5 V vs. Ag wire. T = 25 ± 1 ○C.
The error bars were calculated from three replicates. Adapted from Publication [9], Copyright (2015),
with permission from Elsevier.

5. Conclusions

In this mini-review it was demonstrated that low-field, TD NMR could be a useful method to
study electrodeposition reactions of paramagnetic ions. It also shows that it is possible to study
the effect of the magnetic field on the electrodeposition reaction rate (magnetoelectrolysis) through
TD NMR. Therefore, this low field NMR spectrometer can be an important tool to study several
galvanization processes, not only with Cu2+, but also with other paramagnetic ions such as Cr3+, Ni2+,
that have many industrial applications.
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