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Featured Application: The research presented in the paper is related to the development of a
method aiming at cost-effective pretreatment of corncobs based on the re-use of extremely dilute
sulfuric acid as the pretreatment liquid. This method can be applied for corncobs pretreatment
in the process of xylose preparation to diminish water and sulfuric acid consumption.

Abstract: Huge amounts of waste acid and wastewater are generated during the corncob pretreatment
process, which limits chemical utilization of biomass resources to produce value-added chemicals
and biofuels. In this work, a new approach, i.e., reuse of the corncob pretreatment liquid, is proposed
toward diminishing acid and water consumption. Metal ions and soluble proteins in the pretreatment
liquid were analyzed by the inductively coupled plasma atomic emission spectroscopy (ICP-AES)
and the Coomassie rilliant blue G250 method, respectively. The results showed that the increament of
soluble proteins and total metal ions in solution by three reuse rounds of the pretreatment liquid is
nearly identical to that in solution by new added pretreatment liquid. Besides, the surface morphology
of the corncob obtained by three reuse rounds of the liquid pretreatment did not exhibit significant
difference comparing to that of the corncob acquired by new liquid pretreatment. Further, selection
basis of an optimal reuse round of the pretreatment liquid is suggested depending on the effective
removal of soluble proteins and metal ions from corncobs. By repeated use of the pretreatment liquid,
the consumption of both acid and water during the corncob pretreatment process is expected to be
significantly reduced.

Keywords: corncob pretreatment; soluble proteins; metal ions; reuse rounds of the pretreatment
liquid; acid and water saving

1. Introduction

In recent years, shortages of resources and energy are key issues that become more and more
significant and have to be confronted in many countries. The development and utilization of biomass
resource is known as an effective means to address this issue due to its unique characteristics such as
high abundance, superior renewablilty, and remarkable sustainability [1]. In fact, effective transmission
of biomass to value-added chemicals and high energy–density fuels has received considerable attention,
which is pivotal for a more sustainable economy and carbon-neutral society [2]. Biomass is a promising
renewable energy that can be derived from various sustainable sources, including lignocellulose,
lipids, starch, and aquatic plants. Among various biomass resources, corncob is highly valued since
it contains large amounts of pentosans and hexoses. In fact, corncob is an important raw material
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for producing pentose [3], hydroxymethylfurfural [4], ethanol [5], xylitolp [6], levulinic acid [7],
formic acid and acetic acid [8], etc. These products are highly applicable in various fields including
food, medicine [9,10], and fine chemicals [11,12]. However, due to production costs and technical
restrictions, large majority of corncobs are still incinerated, giving rise to huge waste of resources and
severe environmental problems.

For biomass transmission, pretreatment is the most critical processing step, influencing
downstream processes [13] such as conditioning of pretreated samples, recovery of coproducts,
and wastewater treatment [14]. More importantly, an appropriate pretreatment setp is essential
to improve the conversion rate of biomass resources to value-added chemicals and to reduce
difficulties on subsequent separation and purification of the final products. Depending on different
target products, biomass pretreatment approaches can be various [15]. To date, techniques on
effective pretreatment of biomass are well developed, including steam explosion method [16,17],
alkali treatment [18,19], supercritical water gasification [20], microbial treatment [21], acid
treatment [22], etc. For example, Kim et al. [14] proposed a two-setp corn stover pretreatment method,
i.e., hot water pretreatment followed by disk milling, to achieve high sugar yields with low inhibitor
concentrations. Narra et al. [18] adopted the mild alkali for rice straw pretreatment. By removing the
majority of the lignins while increasing the content of cellulose, the efficiency of enzymatic hydrolysis
at high-solid loadings for fermentable sugar production are improved.

Among various pretreatment methods, acid treatment has been widely utilized for corncob
pretreatment, especially in industrial production due to its technically mature. During the acid
pretreatment process, dilute sulfuric acid and/or nitric acid are usually adopted since they are low-cost
and readily available chemicals for industrial applications. It is known that corncob is lignocellulosic
material that has a basic composition of cellulose (40~44%), hemicellulose (31~33%), and lignin
(16~18%) [23]. In addition to the basic composition, other substances such as salts, proteins, starch and
ashes occupy a small portion (less than 10% in total) of the corncob [24]. Depending on where the
corncob originates, the proportions of cellulose, hemicellulose, lignin, and other substances in corncobs
vary modesty. Narra et al. [25] used dilute nitric acid for corncobs pretreatment, aiming at converting
hemicellulose from corncob to fermentable sugars for bio-methane and bio-ethanol production. Based
on the optimized conditions, corncobs were processed with nitric acid concentration of 2.0 vol.% at
121 ◦C and a 1:5 solid-to-liquid ratio, yielding sugar concentration as high as 110.12 mg·mL−1. As an
alternative, dilute sulfuric acid was also used as pretreatment solution in Narra’s work. By comparison,
both acids yield almost the same sugar concentrations at identical operation conditions.

In the process of xylose preparation, corncob raw materials have to be pretreated in order to
remove metal ions and soluble proteins that are not conducive to the separation and purification of
the xylose product from corncobs [26]. However, studies on pretreatment of corncob raw material
for effective eliminating soluble proteins and metal ions have rarely been reported. In our previous
study [26], we suggested using an extremely dilute sulfuric acid solution as pretreatment liquid for
processing corncob raw material. By exploiting optimum process conditions, the removal rate of
soluble proteins and metal ions attained to 97.0% and 94.3%, respectively [26]. Interestingly, as the
basic composition of the corncob, the contents of cellulose, hemicellulose and lignin after pretreatment
exhibit negligible variations. We believe that this is attributed to the extremely low concentrations of
sulfuric acid (0.1 wt.%) utilized for corncob pretreatment under comparatively moderate operating
conditions, i.e., a 100 ◦C processing temperature in combination with an atmospheric pressure.

Despite the afore-mentioned advantages, the acid treatment method is constrained since large
amounts of waste acid and wastewater have been produced. The wastewater can be discharged only if
it meets relevant discharge standards after treatment; meanwhile, the production efficiency is reduced
and the production cost is increased. In industrial corncob pretreatment, the ratio between the mass of
the corncob to the volume of the dilute acid solution is generally in the range of 1:10 to 1:5. However,
a huge amount of waste acid are generated after pretreatment, which results in extra waste disposal
processes. Although the amount of sulfuric acid and water utilized during corncob pretreatment has
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been decreasing through a variety of means, reducing the consumption of both acid and water at an
order of magnitude level is still an ongoing problem.

In this paper, a new process for economic pretreatment of corncob by repeated using extremely
dilute sulfuric acid as the pretreatment liquid is proposed. To evaluate the effect of corncob
pretreatment, metal ions and soluble proteins in solution are analyzed respectively for different
re-use rounds of the pretreatment liquid. In addition, basis for the selection of an optimal reuse round
of the pretreatment liquid are suggested. To the best of authors’ knowledge, no previous published
work was found in which extremely dilute sulfuric acid as the pretreatment liquid has been reused
on corncob pretreatment. The methodological approach presented in this study aims to provide the
industrialists and researchers a guideline for design of a cost-effective pretreatment process on corncob
conversion with significantly reduced water and sulfuric acid consumption.

2. Materials and Method

2.1. Materials

Corncobs (120-mesh) were provided by Zhenhua Corncob Processing Co., Ltd. (Liaocheng,
Shandong, China). Sulfuric acid (98 wt.%) were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). The deionized water was self-made in laboratory with the conductivity of
1.0 × 10−4 S/m.

2.2. Analytical Method

2.2.1. Analysis of the Soluble Protein

The Coomassie brilliant blue G-250 method [27] was employed to determine the soluble protein
content of the solution by using a visible spectrophotometer (V-5100B, Shanghai Yuanyin Instrument
Co., Ltd., Shanghai, China). The detection wavelength was 595 nm.

2.2.2. Analysis of the Metal Ions

The samples were subjected to elemental analysis using inductively coupled plasma emission
spectrometry (ICP-6300, Thermo Sentific Co., Ltd., Waltham, MA, USA) at a power of 1.20 kW and a
plasma flow rate of 15.0 L/min.

2.2.3. Analysis of Corncob Surface Morphology

SEM images of the corncobs surface morphology were analyzed by a scanning electron microscope
S-3000N (Hitachi Co., Ltd., Toyko, Japan) at an accelerating voltage of 10 kV. Corncob samples were
previously sputter-coated with a uniform palladium layer (<10 nm) by MC1000 (Hitachi Co., Ltd.,
Toyko, Japan) under a Vacuum (7.0 Pa) to avoid charging effects.

2.3. Experimental Method

The experiments were carried out by adding 30 g corncob raw material and 300 mL deionized
(DI) water (or a mixture of pretreatment liquid and deionized water) to a 500 mL three-necked flask.
The reaction was conducted by placing the flask to an oil bath heater (HH-WO, Kenuo Instrument
Co., Ltd., Tianjin, China) and stirring with a mechanical stirrer (MYP2011-100, Meiyingpu Instrument
Co., Ltd., Shanghai, China) while maintaining the operation temperature of 100 ◦C for 0.5 h to
remove soluble proteins from the corncob. Afterward, the 98 wt.% sulfuric acid was added into the
solid-liquid mixture to adjust the mass fraction of the sulfuric acid to 0.1% (equivalent to a molarity of
0.01 mol·L−1), and the reaction was continued at 100 ◦C for another 1 h to remove metal ions from the
corncob. Then the solid-liquid mixtures was filtered and the filtrate was collected. The afore-mentioned
experimental process is referred to as the first-round use of the pretreatment liquid (Figure 1). Later,
the collected filtrate was further used for corncob pretreatment by adding DI water into the filtrate until
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300 mL and another new 30 g corncob raw material while maintaining at 100 ◦C for 0.5 h. Followed by
the concentrated sulfuric acid was added to the solid-liquid mixtures and processed for 1 h. After the
reaction was completed, the filtrate was collected. By adding DI water to the filtrate until it reached
300 mL, the pretreatment liquid is thus recovered. This is referred to as the second-round use of
the pretreatment liquid. Based on the above experimental procedure, the pretreatment liquid can be
reused several times while still guaranteeing a high removal rate of metal ions and soluble proteins
from corncobs.
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3. Results and Discussion

Acid pretreatment of corncobs produce large amounts of waste acid and wastewater. Aiming at
this problem, we reused the pretreatment liquid three rounds for corncobs pretreatment. The effect on
the removal of metal ions and soluble proteins in the corncob was examined. Due to relatively high
contents of K+, Ca2+, Mg2+, and Na+ in corncobs, these four ions were used as the objective metal ions.

3.1. Effect of Reuse of Pretreatment Solution on Soluble Protein Removal in Corncob

3.1.1. Effect of pH Change of the Pretreatment Solution on Soluble Protein Removal in Corncob

The concentration of the soluble protein and the increment of soluble protein in solution after
pretreatment of corncobs are presented in Table 1. The corncob was primarily reacted with the
deionized water at 100 ◦C for 0.5 h in order to better remove the soluble proteins from the corncob.
However, after adjusting the mass fraction of sulfuric acid solution to 0.1% and continuing the reaction
for 1 h, it can be seen from Table 1 that the obtained pretreatment liquid had a pH value of 3.1. After the
first reuse round of the pretreatment liquid, the increment of soluble proteins in the pretreatment liquid
was 67.2 mg, which exhibits a very small difference as compared to the increment of soluble proteins
in the solution after pretreatment of the corncob with the new added pretreatment liquid (68.4 mg).
With the pretreatment liquid being reused continuously, the resulting solutions have pH values in
the range of 3.1~3.2. No significant differences were found for the increment of soluble proteins in
different reuse rounds (from the first to the third reuse round) of the pretreatment liquid comparing to
the increment of the soluble proteins in the solution after corncob pretreatment with the new added
liquid, indicating that the pretreatment liquid with a pH value of 3.1~3.2 exhibits nearly equivalent
effect on removing the soluble proteins from corncob as compared to the newly added liquid.

Table 1. Concentration increment of soluble protein in solution after corncobs being pretreated.

Reuse of
Pretreatment

Liquid (n)

Volume of
Previous Used

Liquid (mL)

Volume of
Deionized
Water (mL)

Solution
pH after

Pretreatment

Concentration of
the Soluble

Protein
(mg·L−1)

Increment of
the Soluble

Proteins (mg)

0 0 300 3.1 228 68.4
1 225 75 3.2 395 67.2
2 228 72 3.1 532 69.5
3 226 74 3.1 628 68.2

3.1.2. Effect of Reuse Round of Pretreatment Liquid on Soluble Protein Removal in Corncob

Figure 2 shows that the increments of soluble proteins in the solution for three reuse rounds
of the pretreatment liquid are in negligible difference comparing to the increment of the soluble
proteins in the solution after pretreatment of the corncob with the new added liquid. Therefore,
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the corncob pretreatment liquid can be continuously reused for effectively removing soluble proteins
from the corncob.Appl. Sci. 2018, 8, x 5 of 9 
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Figure 2. Increment of the soluble proteins in pretreatment liquid for different reuse round of the
pretreatment liquid. The error bars show the standard error of the three mean values from soluble
protein measurements.

Note that as long as the increment of soluble proteins in the pretreatment liquid was significantly
reduced and/or the soluble proteins in the pretreatment liquid was saturated, the pretreatment liquid
was no longer applicable. At this point, we believe that the pretreatment liquid has attained a threshold
processing round with respect to effective removal of soluble proteins in the corncob.

3.2. Effect of Reuse of Pretreatment Liquid on Removal of Metal Ions in Corncob

The concentration of metal ions as well as the increment of metal ions in the solution after
pretreatment of corncobs are presented in Table 2. It can be seen that the concentrations of K+,
Ca2+, Mg2+, and Na+ in solution increase gradually as the reuse round of the pretreatment liquid
increases. Meanwhile, the increment of K+, Ca2+, Mg2+, and Na+ in the solution after repeated use
of the pretreatment liquid exhibits slight difference comparing to the increment in the solution after
pretreatment of the corncob with the new added pretreatment liquid. In Figure 3, the increment of
total amount of metal ions in the solution drops only a bit after the pretreatment liquid being reused
for three rounds. This negligible drops of the amont of total metal ions found from the pretreatment
liquid being reused for three rounds (n = 3) as compared to those in the pretreatment liquid only after
first use (n = 0) can ensure the reuse of the pretreatment liquid for effectively removing metal ions
from the corncob.

Note that as long as the increment of metal ions in the pretreatment liquid was significantly
reduced and/or the concentration of metal ions reached saturation, the pretreatment liquid were
considered no longer usable. At this point, we believe that the pretreatment liquid has attained a
threshold processing round with respect to effective removal of metal ions in the corncob.

Table 2. Concentration of metal ions and the increment of metal ions in pretreatment solution after
corncobs pretreatment.

Reuse Times
of the

Pretreatment
Liquid/(n)

Concentration of Metal Ions after
Pretreatment/(mg·L−1)

Increment of Metal Ions after
Pretreatment/(mg)

K+ Ca2+ Mg2+ Na+ Total
Amount K+ Ca2+ Mg2+ Na+ Total

Amount

0 638.3 59.3 16.9 3.2 717.7 191.5 17.8 5.1 1.0 215.4
1 1107.6 102.2 29.1 6.0 1244.9 188.7 17.3 4.9 1.1 212.0
2 1477.1 136.7 39.1 7.7 1660.6 190.6 17.7 5.1 1.0 214.4
3 1743.6 161.2 46.2 9.1 1960.1 189.2 17.5 5.0 1.0 212.7
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pretreatment liquid. The error bars show the standard error of the three mean values from total metal
ions measurements.

3.3. Selection of Reuse Times of the Corncob Pretreatment Liquid

As discussed in Sections 3.1.2 and 3.2, the reuse times of the corncob pretreatment liquid depends
significantly on the removal effects of soluble proteins and metal ions in the corncob. That is, an optimal
reuse times of the pretreatment liquid is determined by the threshold processing times with respect
to effective removal of soluble proteins, only if there was no significant change of the increment of
metal ions and/or the metal ions were not saturated in the pretreatment liquid. Likewise, an optimal
reuse times of the pretreatment liquid is determined by the threshold processing round with respect
to effective removal of metal ions, only if there was no significant change of the increment of soluble
proteins and/or the soluble proteins were not saturated in the pretreatment liquid.

Therefore, the number of reuses of the corncob pretreatment liquid can be selected by the
combination of removal effects of both soluble protein and metal ions in the corncob.

3.4. Morphology Comparison of the Corncob after Pretreatment Liquid and New Liquid Pretreatment

The surface morphology of the raw corncob and the corncob pretreated after three reuse rounds
of the pretreatment liquid as well as the corncob pretreated by the new added pretreatment liquid are
compared, as shown in Figure 4a–c, respectively. It can be seen that both of the surface morphologies
of the corncob pretreated by three reuse rounds of the pretreatment liquid and the corncob pretreated
by new pretreatment liquid are smoother and more porous than that of the corncob raw material.
The comparative smooth surface of the corncob after pretreatment (Figure 4b,c) may be attributed to
the absence of the impurities deposited on the surface of the corncob. Besides, the surface morphology
of the corncob obtained after three reuse rounds of the pretreatment liquid (Figure 4b) exhibits no
significant difference comparing to the surface morphology of the corncob pretreated by the new
pretreatment liquid (Figure 4c), as both have regular and compact surface textures.
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Figure 4. Comparison of surface morphology for (a) unpretreated corncobs; (b) corncobs pretreated
by the pretreatment liquid for three reuse rounds and; (c) corncobs pretreated by the new added
pretreatment liquid. SEM images of (a,c) are taken from our previously published work [26].

4. Conclusions

In this work, a new technology for economic pretreating the corncobs via reusing the pretreatment
liquid was proposed. By analyzing the soluble proteins in the pretreated liquid, it was found that the
pretreatment liquid with a pH value of 3.1~3.2 exhibits nearly equivalent effect on removing the soluble
proteins from corncob as compared to the newly added liquid. The increments of soluble proteins in
the solution for three reuse rounds of the pretreatment liquid are in negligible difference comparing
to the increment of the soluble proteins in the solution after pretreatment of the corncob with the
new added liquid, demonstrating that the pretreatment liquid can be reused for effectively removing
soluble proteins from the corncob. From analysis of metal ions in the pretreatment liquid, the increment
of total amount of metal ions in the solution drops only a little after the pretreatment liquid is reused
for three rounds. The negligible drops of the amont of total metal ions found in the pretreatment liquid
reused for three rounds comparing to those only after once use can ensure the reuse of the pretreatment
liquid for effectively removing metal ions from the corncob. Furthermore, the surface morphology
of the corncob obtained after three reuse rounds of the pretreatment liquid exhibits no significant
difference compared to the surface morphology of the corncob pretreated by the new pretreatment
liquid, with smoother and more porous surfaces than that of the corncob raw material. The number of
reuses of the corncob pretreatment liquid can be determined by the combination of removal effects
of both soluble protein and metal ions in the corncob. The proposed process provides a guideline
for diminishing both acid and water consumption, allowing for the economic and environmentally
friendly pretreatment of corncobs with reduced pollutant emission.
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