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Abstract: It is difficult to capture the real-time online measurement data for biochemical oxygen
demand (BOD) in wastewater treatment processes. An optimized extreme learning machine (ELM)
based on an improved cuckoo search algorithm (ICS) is proposed in this paper for the design of soft
BOD measurement model. In ICS-ELM, the input weights matrices of the extreme learning machine
and the threshold of the hidden layer are encoded as the cuckoo’s nest locations. The best input
weights matrices and threshold are obtained by using the strong global search ability of improved
cuckoo search algorithm. The optimal results can be used to improve the precision of forecasting
based on less number of neurons of the hidden layer in ELM. Simulation results show that the soft
sensor model has good real-time performance, high prediction accuracy, and stronger generalization
performance for BOD measurement of the effluent quality compared to other modeling methods
such as back propagation (BP) network in most cases.

Keywords: Biochemical oxygen demand (BOD); cuckoo search algorithm (CSA); extreme learning
machine (ELM); soft sensor; wastewater treatment process

1. Introduction

The awareness of environmental protection in the society has been gradually improving due
to better education on sustainability, and wastewater treatment has become one of the important
research topics in the field of environmental protection. Biochemical oxygen demand (BOD) is one
of the major parameters of effluent quality indices of wastewater treatment processes. Real-time and
accurate monitoring of BOD is the key factor to improve the automatic control of the performance of
wastewater treatment processes. However, due to the strong nonlinear and time-varying characteristics
of wastewater treatment processes as well as the capacity of current detection methods [1] and
measurement accuracies of the sensors and instruments, it is difficult to achieve accurate real-time
and on-line measurement of BOD data; this limits the application of closed-loop control in wastewater
treatment processes [2]. Hence, there is a great need on how to measure BOD rapidly and accurately to
control the wastewater treatment processes.

Recently, the development of soft sensing technology provides a new way of measuring
variables which are not measurable on-line in real-time. Especially, researchers have applied soft
sensing technology to model the wastewater treatment processes and have achieved good results.
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Zhang et al. [3] considered the inflow (Q) as well as the chemical oxygen demand (COD), pH, the
suspended solids (SS) and the total nitrogen (TN) of the influent as the auxiliary variables to model a
feed-forward three-layer multiple inputs and single output (MISO) neural network, called adaptive
growing and pruning (AGP) network. The parameters of the neural network were trained by back
propagation (BP) algorithm. This soft sensor model was used to predict the BOD concentration of
effluent in their simulation study. Simple learning algorithm has the greatest advantage as it can speed
up the measurement, but unfortunately the prediction accuracy is not sufficient for it to be applied
in real-time. Qiao et al. [4] proposed a soft sensor method for the measurement of BOD based on a
self-organizing neural network with random weights (SNNRW). It used the output weight vector to
calculate the sensitivity of the hidden layer nodes to the residual. Based on the sensitivity analysis, it
could remove less sensitive nodes of the hidden layer by itself according to the level of the sensitivity.
It can achieve higher prediction accuracy while performing much more complex calculations. Liu [5]
proposed an online soft BOD measurement method based on an echo sound network (ESN) algorithm.
The weights of the ESN are trained and obtained by online learning method. The range of learning rate
of ESN network is analyzed and determined by Lyapunov theory, which ensured the convergence of
the algorithm. This algorithm improved the accuracy of prediction and the adaptability of the model,
but with high computation load.

The extreme learning machine (ELM) is a new feed-forward neural network learning algorithm
which was originally proposed by Professor Huang Guangbin of Nanyang Technological University [6].
It has the advantages of simple training process, higher training speed and strong anti-interference
ability [7]. The training time is greatly reduced compared to other networks, as ELM only needs
to set the number of hidden layer nodes, and the randomly generated input weights and hidden
layer thresholds are no longer adjusted in the training process. Through experiments, Han et al. [8]
demonstrated that ELM has higher training speed and better generalization ability than BP neural
network and support vector machine (SVM). Therefore, soft sensor technology based on ELM learning
algorithm has been widely applied in industrial process measurement [9,10].

Compared to BP neural network learning algorithm, ELM can avoid issues such as easy to
get local optimum solution [11], poor performance indices and low learning rate. However, ELM
algorithm itself has some shortcomings, such as the random selection of the input weights and hidden
layer threshold which in general would lead to a poor stability of the network. In order to improve
the prediction accuracy of the algorithm, it is necessary to increase the number of the hidden layer
nodes [6], and the increase will inevitably reduce the computing speed of the ELM learning algorithm.
Thus, the application of ELM has to overcome this contradicting pair of operational needs. Researchers
have studied and improved the above problems of ELM in recent years. Zhu et al. [12] introduced
differential evolution (DE) algorithm into ELM to obtain the optimal connecting weights between the
input layer and hidden layer, and the optimal threshold of hidden layer. These optimal parameters
can improve the stability of the network. Yan et al. [13] proposed a regularized extreme learning
machine (algorithm) based on discriminative information (called IELM), which can significantly
improve the classification performance and generalization ability of ELM. Kassani et al. [14] proposed
an incremental method for sparsifying the ELM using a newly devised indicator driven by the
condition number in the ELM design matrix, called sparse pseudoinverse incremental-ELM (SPI-ELM),
which exhibits better generalization performance and lower run-time complexity compared to ELM.
Although they improved the computational speed, training accuracy and generalization performance
of ELM algorithm, the least squares-based ELM algorithm still has the problem of randomness of the
parameters, which will affect the stability of the network.

Based on the above evaluation of algorithms that exist, a BOD soft sensor based on an improved
extreme learning machine is proposed in this paper. Adverse effects of randomness of extreme learning
parameters on prediction results and stability of the network are considered while proposing such
soft sensor. The parameters of ELM are coded as the cuckoo nest locations, with the corresponding
fitness values of the root mean square error (RMSE) between the actual value and the prediction value,
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to obtain the optimal parameters of the ELM by using an improved cuckoo search (ICS) algorithm [15].
The fuzzy rough monotone dependence (FRMD) algorithm proposed by Liang et al. [16] to reduce
the dimensionality of the data from the BSM1 simulation model [17,18] is used in Matlab simulation.
The reduction data is used as the input of the soft sensor and effluent BOD is used as the output of it.

2. Materials and Methods

The following steps should be taken to build the Neural Network model: (i) Obtain data and
normalizing them. (ii) Carry out data attribute reduction process using fuzzy rough monotone
dependence (FRMD) algorithm (mentioned in Section 2.3.2). This would help to reduce the input
layer nodes, which would save the computational cost when the model training process is carried
out and make the process more efficient. (iii) Train the model using the final data, until it reaches the
fitness function f (Equation (13)). (iv) Verify the model using the test data sets. (v) Employ the model
into field trials. The most important thing to build a Neural Network model of a process is to obtain
valuable data for training and verification. This would guarantee the correctness and effectiveness of
the model. The modeling process can easily be implemented in MATLAB.

Our paper focuses on the following three points: The first one is fuzzy rough monotone
dependence (FRMD) algorithm for the data attribute reduction process to reduce the data attribute, and
simultaneously reduce the number of input layer nodes of the neural network (NN) model. The second
one is using an improved cuckoo search algorithm (ICS) to adjust and optimize the input weights
and the hidden layer biases during the training process. This would help to improve the prediction
accuracy and the stability of the extreme learning machine (ELM) NN model. The third one is using
the proposed model to do a real-time BOD estimation study in wastewater treatment process.

2.1. Extreme Learning Machine

For N arbitrarily distinct samples of data (xi, ti) ∈ Rn ×Rm, where xi = [xi1, xi2, . . . , xin]
T ∈ Rn,

ti = [ti1, ti2, . . . , tim]
T ∈ Rm, and an infinitely differentiable activation function of any finite interval,

g : R→ R , standard single hidden layer feed-forward networks (SLFNs) with L hidden nodes are
mathematically modeled as

y(xj) =
L

∑
i=1

βig(xj ·wi + bi) = oj, j = 1, 2, . . . , N (1)

where wi = [wi1, wi2, . . . , win]
T is the connecting weight matrices of the ith hidden node and the

input nodes; βi = [βi1, βi2, . . . , βin]
T is the connecting weight matrices of the ith hidden node and the

output nodes; and bi is the threshold of the ith hidden node. xj ·wi is the inner product of xj and wi.
The network topology with linear output nodes is shown in Figure 1.
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Using the initialized random assignment weights wi ∈ Rn and the thresholds bi ∈ R, the standard

SLFNs can approximate these N samples with zero error means that
N
∑

j=1

∥∥oj − tj
∥∥ = 0, i.e., there exist

βi, wi and bi, such that

h(xj) =
L

∑
i=1

βig(xj ·wi + bi) = tj, j = 1, 2, . . . , N (2)

Compact form of Equation (2) can be expressed in matrices as follows:

Hβ = T (3)

where,

H =

 h(x1)
...

h(xN)

 =

 g(x1 ·w1 + b1) . . . g(x1 ·wL + bL)
...

. . .
...

g(xN ·w1 + b1) . . . g(xN ·wL + bL)


N×L

(4)

β =


βT

1
βT

2
...

βT
L


L×m

(5)

and

T =


tT
1

tT
2
...

tT
N


N×m

(6)

As named in Huang [19], H is called the hidden layer output matrix of the neural network; The ith

column of H is the ith hidden node output with respect to inputs x1, x2, . . . , xN; The row of matrix H
represents the hidden layer feature mapping with respect to input xi, that is xi : h(xi).

If the activation function g is infinitely differentiable and the nodes with parameters of hidden
layers can be randomly generated, then there is [6] Theorem 1. Given an small positive value
ε (ε > 0), an activation function g: R→R which is infinitely differentiable in any interval and,
N arbitrary distinct samples (xi, ti) ∈ Rn × Rm, there exists L ≤ N for any parameters of the
network {(wi, bi)}L

i=1, according to any continuous probability distribution, then with probability one,
‖HN×LβL×m − TN×m‖ < ε.

From the point of view of interpolation, the largest number of hidden layer nodes L should be less
than the number of training samples N. In fact, when L is equal to N, the training error will be zero.
According to Theorem 1, when L is less than N, SLFNs will approach the training samples with very
little training error, and the matrix H is a non-square matrix, there exists ŵi, b̂i, β̂, so that Equation (7)
can be established.

‖H(ŵ1, . . . , ŵL, b̂1, . . . b̂L)β̂− T‖ = min
wi ,bi ,β

‖H(w1, . . . , wL, b1, . . . , bL)β− T‖ (7)

Unlike the traditional function approximation theories, the input weights wi and the hidden
layer biases bi are in fact not necessarily tuned and the hidden layer output matrix H can actually
remain unchanged once random values have been assigned to these parameters in the beginning of
learning, and this makes Equation (7) is considerate as a linear system. The training for SLFNs is
simply equivalent to finding the least squares solution β̂ of the linear equations Hβ = T, that is

‖H(w1, . . . , wL, b1, . . . bL)β̂− T‖ = min
β
‖H(w1, . . . , wL, b1, . . . , bL)β− T‖ (8)
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The smallest norm least squares solution of the weights of the above linear system is unique,
which is

β̂ = H+T (9)

where H+ is the Moore–Penrose generalized inverse of the matrix H [20,21].
Thus, the main steps of ELM’s learning algorithm can be summarized as follows:
With the given training set (xi, ti) ∈ Rn × Rm, i = 1, . . . , N, the activation function g(x) and the

number of the hidden nodes L,
Step 1: Assign input weight, wi and bias of hidden layer, bi, randomly (where i = 1, . . . , L);
Step 2: Calculate the hidden layer output matrix, H;
Step 3: Calculate the output weight, β̂.

2.2. Improved Cuckoo Search Algorithm-Based ELM (ICS-ELM)

2.2.1. Improved Cuckoo Search (ICS) Algorithm

The cuckoo search (CS) algorithm is approved as an efficient optimization method [22,23].
The principle of CS algorithm is how a cuckoo can find an optimal nest to hatch the eggs by free
search based on the obligate brood parasitism and Lévy flights mechanism which is unique in nature.
An important advantage of this algorithm is its simplicity. In fact, comparing with other population- or
agent-based metaheuristic algorithms such as particle swarm optimization (PSO) and harmony search,
there is essentially only a single parameter pa, which represents the probability to be found by the host,
in CS (apart from the population size n). Therefore, it is very easy to implement.

Its few parameters, simple operation, easy to realize, and good ability to search random paths are
the main advantages of CS algorithm. Therefore, once the CS algorithm was proposed, it has been
rapidly developed and applied to solve a variety of optimization problems. But at the same time, clearly,
CS has some disadvantages such as slow convergence speed and lack of adaptability. We proposed
an improved cuckoo search algorithm, named improved cuckoo search (ICS) algorithm [15], which
introduces the cosine cyclic operator into the CS algorithm to realize the periodic change of pa and an
adaptive dynamic adjustment strategy for the search step size S, which are described as follows.

pa(t) = pa,max

∣∣∣∣cos
(

2π

T
t
)∣∣∣∣+ pa,min (10)

S =
m

bestXi−1
× exp

(
−k×

(
t

tmax

)p)
+ Smin (11)

where, in Equation (10), T is the cycle of the periodic operator; t is the evolution generation of the
current iteration; pa,max and pa,min are the dynamic control parameters of pa which are equal to 0.75
and 0.1 respectively. In Equation (11), m ∈ (0, 1) is a regulatory factor; bestXi-1 is the optimal nest
position of the last generation groups; is the limiting factor; t and tmax are the current iteration number
and the maximum iteration number; Smin is the minimum search step; p is an integer from 1 to 30.

Based on the above analysis and improvements, the ICS algorithm steps can be described
as follows:

Step 1: Set the objective function and initialization function; generate initial population of n
host nests xi (i = 1, 2, . . . , n); set the size of population, the dimension of independent variables,
the maximum iteration number, the maximum and minimum probability of being detected.

Step 2: Calculate the current optimal nest position by putting xi into the objective function.
Step 3: Record the location of the nest, and use Equation (11) to calculate the current step size S,

then use Equation (12) to update the location of the nest.

xt+1
i = xt

i + α⊕ S, i = 1, 2, . . . , n (12)
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where, the product of ⊕ is a kind of calculation means entrywise multiplications; α>0 is a step size
control factor.

Step 4: Compare the current value of the objective function with the last value; Update the value
if the function value is better than the previous one; otherwise, keep it unchanged.

Step 5: After updating the nest location, choose a random number ε ∈ [0, 1], which obeys a
uniform distribution; if ε > pa, randomly change the value of xt+1

i ; otherwise leave as it is. Keep the
optimal nest position at last.

Step 6: Return to Step 2 if the iteration number has not reached the maximum iteration number;
otherwise, continue to the next step.

Step 7: Output the optimal nest location.
You can find more details of the ICS algorithm in Du et al. [15].

2.2.2. ICS-Based ELM

When the structure of ELM has been fixed, the network needs to be trained offline first before
using the soft sensor online. To improve the prediction accuracy, the input weights wi and the hidden
layer biases bi should be optimized through the training process by ICS algorithm.

The root mean square error (RMSE) of the actual value and the predicted value is taken as the
fitness value of the nest of each group, shows in Equation (13).

f (αi) =

√√√√√√
Ntrain

∑
j=1
‖

m
∑

i=1
βig
(
wi × xj + bi

)
− tj

∣∣|22
mNtrain

(13)

where, Ntrain is the number of training samples; m is the number of the hidden nodes; f is the
fitness function.

2.3. Experimental Data Processing

2.3.1. Acquisition of Experimental Data from Benchmark Simulation Model No. 1 (BSM1)

The experimental data used in our research are obtained from the outputs of a 14-day simulation
on the benchmark simulation model No. 1 (BSM1) [17] developed by International Water Association
(IWA). Data set provided by the European Co-operation in the field of Scientific and Technical Research
(COST) based on the actual water quality of the influent of the wastewater treatment plant was used as
the simulation input for the experimental process. The data represented four conditions namely steady
state as well as dry, rainy, and stormy weathers. The plant consists of 5 bioreactors and a ten-layer
secondary settler which is shown in Figure 2.Appl. Sci. 2019, 9, 523 7 of 13 
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The initial conditions of the operating parameters of the main executor in BSM1 are set as follows
(Table 1):
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Table 1. Parameters of BSM1.

Parameters Values Units Descriptions

KLa3, KLa4 240 mg/day Oxygen transfer coefficient of the 3rd and 4th bioreactors
KLa5 83 mg/day Oxygen transfer coefficient of the 5th bioreactor
Qint 55338 m3/day Internal recirculation flow rate
Qr 18446 m3/day Returned sludge flow rate
Qw 385 m3/day Waste sludge flow rate

Steps to obtain the experimental data:
Step 1: Run a 100-day steady state simulation and repeat until the system achieves steady stability;
Step 2: Run a 14-day simulation with the input data representing dry weather conditions and

repeat until the system achieves dynamic stability;
Step 3: Simulate BSM1 to obtain experimental data using the influent data mentioned above.
The 2-week data (1344 groups in total with a sampling time of 15 minutes, 4 groups× 24 hours×

14 days = 1344 groups), of the wastewater treatment process was finally obtained. The compositions
of wastewater are shown in Table 2.

Table 2. Components of wastewater. COD: chemical oxygen demand.

Component Unit Description

Si mg COD/L Soluble inert organic matter
Ss mg COD/L Readily biodegradable substrate
Xi mg COD /L Particulate inert organic matter
Xs mg COD/L Slowly biodegradable substrate

Xbh mg COD /L Active heterotrophic biomass
Xba mg COD/L Active autotrophic biomass
Xp mg COD /L Particulate product arising from biomass decay
So mg -COD/L Oxygen (negative COD)
Sno mg N/L Nitrate and nitrite nitrogen
Snh mg N/L NH4

+ and NH3 nitrogen
Snd mg N/L Soluble biodegradable organic nitrogen
Xnd mg N/L Particulate biodegradable organic nitrogen
Salk mole/m3 Alkalinity
TSS mg SS/L Total amount of solids
Q m3/day Influent flow rate

2.3.2. Fuzzy Rough Monotone Dependence Algorithm for Data Processing

Obviously, the reaction mechanisms of activated sludge process is very complex, and the process
parameters involved are numerous, and therefore the dimension of the obtained wastewater data
is too high. This will not only lead to the occurrence of over fitting, but also cause the dimension
disaster. In order to avoid these problems and not to affect the accuracy of model prediction, it is
necessary to find out the parameters which have great influence on the BOD of the effluent. Therefore,
the fuzzy rough monotone dependence (FRMD) [16,24] algorithm is used for processing the data to
reduce the attribute.

It can be shown that there is a monotonic dependence between conditional attributes and decision
attributes. Based on the FRMD algorithm, the steps of attribute reduction for wastewater data are
as follows:

Step 1: Define and initialize a two-dimensional array D[n,m] for the decision table, where the mth

column is the decision attribute (that is, the data of effluent water quality), and 1st to the (m − 1)th

columns are the conditional attributes (that is, the data of the wastewater influent);
Step 2: Arrange the decision attribute values in ascending order, and exchange the rows of the

conditional attributes corresponding to the ordered decision attribute;
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Step 3: Make a circular study of the fuzzy rough monotone dependence relation between each
condition attribute value and decision attribute value; Obtain the membership function values;

Step 4: If the membership degree function in the set is monotonically increasing, output is the
maximum value of them; otherwise, output is 0.

After the attribute reduction, if the membership degree is 0, the conditional attribute will be
discarded. The remaining conditional attributes are considered as influential to the BOD, and will be
used as the input of the soft sensor to predict BOD.

3. Results and Discussion

3.1. Data Attribute Reduction

Using fuzzy rough monotone dependence (FRMD) algorithm to do the data attribute reduction
process, BOD is taken as the decision attribute, and components in Table 2 are taken as the conditional
attributes. The membership function degrees of each conditional attribute to the BOD are shown
in Figure 2. Among them, conditional attributes whose membership degrees are equal to 0 have
been discarded.

Figure 3 shows the membership degrees between BOD and the components parameters;
the conditional attributes which have zero degree are not shown in Figure 3. Nine attributes are
shown in Figure 3, but we can clearly see that the degrees of Xnd and TSS are much closer to zero than
others. Therefore, for reducing the complexity of the system, those two attributes were not taken into
account in the next simulation. The remaining seven attributes were taken as the inputs of the ELM
soft sensor.Appl. Sci. 2019, 9, 523 9 of 13 
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3.2. Comparison and Discussion of Simulation Results

The effectiveness of the ICS-based ELM BOD soft sensing model was verified based on the data
attribute reduction results; Ss, Xi, Xs, Xbh, Snh, and Snd of the influent and the flow rate Q are used as
the auxiliary variables for the network input, so the ICS-based ELM network structure had 7 input
nodes, 40 hidden nodes and one output node (7-40-1). The 1344 groups of data are randomly divided
into training datasets (500 groups), verifying datasets (460 groups), and testing datasets (384 groups) for
the simulation. The training accuracy and prediction accuracy of the soft sensor model are represented
by mean square error (MSE).

MSE =
1
N

N

∑
i=1

(Y(i)−Y∗(i))2 (14)

where, Y(n) is the predicted output of the model; Y*(n) is the actual measured value; N is the sample
size number.
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Parameters are set as follows: For the ICS algorithm, the population size n is 25, the maximum
and the minimum probability to be discovered by the host bird are 0.75 and 0.1 respectively; for the
adaptive step length control parameters m = 0.8, k = 0.2, p = 25, Smin = 0.01.

When the number of iterations t = 100, the iteration will be terminated; the curve of the
optimization process is shown in Figure 4. The prediction results and errors of ICS-based ELM
soft sensor for effluent BOD are shown in Figure 5.Appl. Sci. 2019, 9, 523 10 of 13 
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Figure 5. Compared prediction results of improved cuckoo search algorithm-based extreme learning
machine (ICS-ELM) and basic ELM under dry weather condition, (a) effluent BOD concentration,
(b) error in predicting the measured effluent BOD.

It can be seen from the results, the ICS-based ELM has a better prediction accuracy than the
basic ELM. To verify the advantage of the ICS-based ELM, a comparison studies are simulated with
the other five models, which are extreme learning machine (ELM), cuckoo search (CS)-based ELM,
relevance vector machine (RVM), back-propagation (BP) neural network and least squares support
vector machines (LS-SVM), with the same influent data under dry weather condition. The MSE results
are shown in Table 3, and the prediction results are shown in Figure 6. Clearly, the MSE from ICS-based
ELM are much smaller than the other five models. But the training process will take a slightly longer
computer time than for the basic ELM because of the optimization process of the input weights wi and
the hidden layer biases bi.
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Table 3. Prediction results of the six soft sensor models. MSE: mean square error; CS-ELM: cuckoo
search-extreme learning machine; RVM: relevance vector machine; BP: back propagation; LS-SVM:
least squares support vector machines.

Model MSE Hidden Nodes Training Time (sec)

ELM 1.3011 40 1.78
CS-ELM 0.0640 15 76.67

RVM 0.0513 - -
BP1 0.0909 25 -

LS-SVM1 0.0865 - -
ICS-ELM 0.0254 40 61.4
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To further verify the anti-interference ability of the ICS-based ELM prediction model, rainy and
stormy weather conditions are considered as the disturbances of the system to simulate the BOD as
shown in Figures 7 and 8.

Appl. Sci. 2019, 9, 523 11 of 13 

CS-ELM 0.0640 15 76.67 

RVM 0.0513 - - 

BP1 0.0909 25 - 

LS-SVM1 0.0865 - - 

ICS-ELM 0.0254 40 61.4 

  
                                       (a)                                               (b) 

Figure 6. Prediction of effluent BOD under dry weather condition using five soft sensors, (a) 

effluent BOD concentration, (b) error in predicting the measured effluent BOD. 

To further verify the anti-interference ability of the ICS-based ELM prediction model, rainy 

and stormy weather conditions are considered as the disturbances of the system to simulate the 

BOD as shown in Figures 7,8. 

  
(a) (b) 

Figure 7. Prediction of effluent BOD concentration under rainy condition, (a) Effluent BOD 

concentration, (b) Error in predicting the measured effluent BOD. 

Figure 7. Prediction of effluent BOD concentration under rainy condition, (a) Effluent BOD
concentration, (b) Error in predicting the measured effluent BOD.



Appl. Sci. 2019, 9, 523 11 of 12

Appl. Sci. 2019, 9, 523 12 of 13 

  
(a) (b) 

Figure 8. Prediction of effluent BOD under stormy weather condition with a storm event, (a) 

Effluent BOD concentration, (b) error in predicting the measured effluent BOD. 

As can be seen from the results shown in Figure 7 and Figure 8, no matter how the weather 

condition changes, a well-trained ICS-based ELM still can predict the effluent BOD with smaller 

errors compared to other five models considered in this paper.  

4. Conclusions 

In this paper, an ICS-based ELM is applied to BOD soft sensing modeling to predict the 

effluent water quality. It overcomes low prediction accuracy and poor stability of basic ELM 

algorithm with an improved cuckoo search algorithm. The input weights and the hidden layer 

biases of ELM are optimized with an offline training process. Results show that ICS-based ELM 

BOD soft sensing model can improve the accuracy of the prediction with better anti-interference 

and generalization abilities than basic ELM algorithm. Because of the accurately prediction of the 

BOD in the process, it would be helpful to the energy saving in the aeration operation in the future 

research. In summary: 

(1) The fuzzy rough monotone dependence (FRMD) algorithm was used to do the data 

attribute reduction process. This allowed finding out the input parameters closely related to BOD 

based on the membership function degrees of each conditional attribute. This would help to reduce 

the input layer nodes, which would save the computational cost when training the model and make 

the process more efficient. 

(2) A periodic change of pa and an adaptive dynamic adjustment strategy are designed to 

improve the cuckoo search algorithm. The input weights and the hidden layer biases of the 

proposed ICS-based ELM are optimized during the offline training process. Through the 

verification of the results, the proposed method can effectively improve the accuracy of the 

prediction with better anti-interference and generalization abilities. 

(3) Comparing the simulation results of ICS-based ELM, CS-based ELM, basic ELM, LS-SVM, 

and BP models showed that no matter how the weather condition changes, a well-trained ICS-

based ELM still can predict the effluent BOD with smaller errors compared to other five models 

considered in this paper. 

Author Contributions: conceptualization, P.Y., J.C., V.J. and X.D.; methodology, X.D.; software, P.Y.; 

validation, P.Y., J.C., V.J. and X.D.; formal analysis, P.Y. and X.D.; investigation, X.D.; resources, P.Y.; data 

curation, J.C.; writing-original draft preparation, P.Y. and X.D.; writing-review and editing, V.J.; visualization, 

P.Y.; supervision, J.C. and V.J.; project administration, X.D.; funding acquisition, J.C. and X.D. 

Funding: This research was funded by the National Natural Science Foundation of China, grant number (No. 

61563032), the Natural Science Foundation of Gansu Province (No. 1506RJZA104, No. 2017GS10945), 

University Scientific Research Project of Gansu Province (No. 2015B-030), and the Excellent Young Teacher 

Project of Lanzhou University of Technology (No. Q201408). 
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BOD concentration, (b) error in predicting the measured effluent BOD.

As can be seen from the results shown in Figures 7 and 8, no matter how the weather condition
changes, a well-trained ICS-based ELM still can predict the effluent BOD with smaller errors compared
to other five models considered in this paper.

4. Conclusions

In this paper, an ICS-based ELM is applied to BOD soft sensing modeling to predict the effluent
water quality. It overcomes low prediction accuracy and poor stability of basic ELM algorithm with
an improved cuckoo search algorithm. The input weights and the hidden layer biases of ELM are
optimized with an offline training process. Results show that ICS-based ELM BOD soft sensing model
can improve the accuracy of the prediction with better anti-interference and generalization abilities
than basic ELM algorithm. Because of the accurately prediction of the BOD in the process, it would be
helpful to the energy saving in the aeration operation in the future research. In summary:

(1) The fuzzy rough monotone dependence (FRMD) algorithm was used to do the data attribute
reduction process. This allowed finding out the input parameters closely related to BOD based on
the membership function degrees of each conditional attribute. This would help to reduce the input
layer nodes, which would save the computational cost when training the model and make the process
more efficient.

(2) A periodic change of pa and an adaptive dynamic adjustment strategy are designed to improve
the cuckoo search algorithm. The input weights and the hidden layer biases of the proposed ICS-based
ELM are optimized during the offline training process. Through the verification of the results, the
proposed method can effectively improve the accuracy of the prediction with better anti-interference
and generalization abilities.

(3) Comparing the simulation results of ICS-based ELM, CS-based ELM, basic ELM, LS-SVM, and
BP models showed that no matter how the weather condition changes, a well-trained ICS-based ELM
still can predict the effluent BOD with smaller errors compared to other five models considered in
this paper.
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