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generator presented in this article are the outcome of two research projects: The first was issued
by the Polish Ministry of Science and Higher Education and the second one was part of the
European Union’s 7th Framework Programme (see Funding Section).

Abstract: This paper presents the issue of generating motion trajectories in a digital servo drive
in accordance with the PLCopen Motion Control standard. This standard does not limit the
details of motion generation in the electromechanical systems, but indicates its interface and set of
necessary parameters. Moreover, it is placed within a state machine, which allows the individual
software elements to integrate with it seamlessly. This work discusses time-optimal point-to-point
trajecto-ries, i.e., the initial and final reference speeds are zero, and they are compliant with the
MC_MoveAbsolute() function defined in the PLCopen Motion Control standard. The smoothness
of the resulting trajectory can be attributed to the use of a fourth order trajectory generator, which
defines the bounds up to snap – the second derivative of acceleration. One of the aims of this
article was to bridge the theoretical aspect of trajectory generation with the algorithms practical
implementation, by the means of PLC code generation using the MATLAB/Simulink package.

Keywords: PLCopen Motion Control; trajectory generation; digital servo drive; motion control;
real-time algorithm implementation

1. Introduction

Servo drive systems are exploited widely in industries due to their efficiency, high-performance
in motion control, and fast response times to dynamic reference signals [1,2]. In order to comply
with the technological requirements, modern automatic machines have to guarantee decent dynamics
for position and velocity control of motors, these servo drives solutions are utilized in Computer
Numerically Controlled (CNC) machining, robotics, factory automation, and many other areas.

The most common control scheme implemented in servo drives to control position and velocity
is the cascade control algorithm [3]. Its task is to regulate current, velocity, and position of the
motor in separate closed control loops, in order to minimize overshoot and reduce the influence of
external disturbances.

Nowadays, an increasing number of commercial control system manufacturers provide open
architecture systems [4], meeting the need to constantly improve the servo drives functionality. This
approach allows for design, testing, and integration of new control algorithms and techniques such as
control laws, multi-sensor integration, or Artificial Intelligence (AI).

Simultaneously, evolution of the servo drive system programming languages is progressing.
Currently, most of the commercial systems allow the user to implement custom code in the native
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control structure. These modifications can be written in popular programming languages such as C,
C++, or Structured Text (ST).

Automatic code generation [5] is one of the ideas which facilitates implementing the code in
various industrial control platforms. It is based on text languages (C, ST) and allows to compile and
transfer developed code or algorithms between devices of different classes and manufacturers with
minimal effort on the programmer’s part.

In the following work, generation of motion profiles (especially position) for servo drives is
considered. This is a crucial aspect of applications that demand a high motion fidelity, e.g., CNC feed
drives and multi-axis manipulators. In this case, constraining the acceleration profile obtained by
the second order trajectory generator leads to oscillations whenever the movement direction changes
(i.e., zero crossing of set velocity). This is the main reason for using third and higher order trajectory
generators, for defining constraints on jerk or snap [6].

This paper is organized as follows: Section 1 serves as a brief introduction to control of digital
servo drives; Section 2 is devoted to PLCopen Motion Control, particularly to one of its motion
functions—MC_MoveAbsolute(). Section 3 presents a step by step algorithm to find a motion profile
with boundaries defined up to the fourth derivative of position, and the trajectory generator of the
fourth order is described. This topic is expanded upon in Section 4, where a real-time calculation
of the beforementioned profile is discussed. Finally, Section 5 puts these solutions in context of the
Programmable Logic/Automation Controller (PLC/PAC) devices that are IEC 61131-3 compliant,
while Section 6 summarizes the paper.

2. Trajectory Generation in Digital Servo Drives: PLCopen Motion Control

In References [6–9], trajectory generation algorithms used in motion solutions are presented. The
dynamics of mechanical aspects of the systems are considered in order to develop a feedforward
controller. The following work is further expanding the ideas presented in Reference [9], such that the
mathematical foundation laid there could be implemented in a real-time system.

In Reference [10], the concept of utilizing the PLCopen Motion Control standard for controlling
the digital servo drive of the CNC machine is given. In the PLCopen Motion Control standard, several
states are defined that outline the operation of a digital servo drive. These states depict the actual
status of the motion system, being the type of movement executed (if any), present errors, stopping,
or awaiting commands from the control system. Of particular interest are the two states tied to the
motion execution:

(a) Discrete Motion – movement to a defined position;
(b) Continuous Motion – movement without a setpoint (e.g., shaft rotating with set velocity).

The transition between particular states is achieved by calling related functions, e.g.,
MC_MoveAbsolute (absolute movement) or MC_MoveAdditive (additive moment in a specified
direction). The entire state machine is presented in Figure 1.



Appl. Sci. 2019, 9, 538 3 of 17

Appl. Sci. 2018, 8, x FOR PEER REVIEW  2 of 18 

control structure. These modifications can be written in popular programming languages such as C, 
C++, or Structured Text (ST). 

Automatic code generation [5] is one of the ideas which facilitates implementing the code in 
various industrial control platforms. It is based on text languages (C, ST) and allows to compile and 
transfer developed code or algorithms between devices of different classes and manufacturers with 
minimal effort on the programmer’s part. 

In the following work, generation of motion profiles (especially position) for servo drives is 
considered. This is a crucial aspect of applications that demand a high motion fidelity, e.g., CNC feed 
drives and multi-axis manipulators. In this case, constraining the acceleration profile obtained by the 
second order trajectory generator leads to oscillations whenever the movement direction changes 
(i.e., zero crossing of set velocity). This is the main reason for using third and higher order trajectory 
generators, for defining constraints on jerk or snap [6]. 

This paper is organized as follows: Section 1 serves as a brief introduction to control of digital 
servo drives; Section 2 is devoted to PLCopen Motion Control, particularly to one of its motion 
functions—MC_MoveAbsolute(). Section 3 presents a step by step algorithm to find a motion profile 
with boundaries defined up to the fourth derivative of position, and the trajectory generator of the 
fourth order is described. This topic is expanded upon in Section 4, where a real-time calculation of 
the beforementioned profile is discussed. Finally, Section 5 puts these solutions in context of the 
Programmable Logic/Automation Controller (PLC/PAC) devices that are IEC 61131-3 compliant, 
while Section 6 summarizes the paper. 

2. Trajectory Generation in Digital Servo Drives: PLCopen Motion Control 

In References [6–9], trajectory generation algorithms used in motion solutions are presented. The 
dynamics of mechanical aspects of the systems are considered in order to develop a feedforward 
controller. The following work is further expanding the ideas presented in Reference [9], such that 
the mathematical foundation laid there could be implemented in a real-time system.  

 
Figure 1. PLCopen Motion Control standard state execution state diagram. 

In Reference [10], the concept of utilizing the PLCopen Motion Control standard for controlling 
the digital servo drive of the CNC machine is given. In the PLCopen Motion Control standard, several 
states are defined that outline the operation of a digital servo drive. These states depict the actual 

Figure 1. PLCopen Motion Control standard state execution state diagram.

MC_MoveAbsolute() – Function Description

This function block starts a controlled movement to a specified absolute position. All of the
parameters needed to start the movement are transferred on a rising edge of the Execute input
(Figure 2). The axis changes to the Discrete Motion state after all of them have been successfully
transferred. Before the function block can be used for a real axis, the axis must be homed. States in
which this function block can be used: Standstill, Discrete Motion, and Continuous Motion.
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Figure 3. MC_MoveAbsoluteuse() example. (a): first use scenario; (b): second use scenario. 

Figure 2. PLCopen Motion Control MC_MoveAbsolute()function block.

In the following figures, the timing diagrams for MC_MoveAbsolute() possible usage scenarios
are shown. In Figure 3a, the first function block (MC_MoveAbsolute_0) stopped its movement before
the second function block (MC_MoveAbsolute_1) was started. In Figure 3b, the second function block
(MC_MoveAbsolute_1) was started before the first function block (MC_MoveAbsolute_0) completed
its movement. In both cases, as seen in Figure 3a,b, the movements finish in the same position.
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3. Fourth Order Position Profile Generation

In this work, the position profile will be understood as a setpoint trajectory with a sampling
time specified for a real-time algorithm implementation. The following convention, adopted from [9],
was used to denote the parameters: x – position, displacement (profile, m); v – velocity (profile, m/s);
a – acceleration (profile, m/s2); j – jerk (profile, m/s3); d – derivative of jerk (profile, m/s4); x, v, a, j, d
– bound on |x|, |v|, |a|, |j|, |d|, respectively; td, tj, ta, tv – time interval during in which |d|, |j|, |a|, |v|
obtains its bound, respectively; Ts – sampling time in seconds.

The fourth order position trajectory generation problem was considered within this document.
One input was used to define the desired position (i.e., increment from an actual position to the
new one) and another four input parameters described the movement profile including velocity,
acceler-ation, jerk, and snap. These latter parameters described the boundaries which cannot be
crossed while executing the movement. The generated trajectory was time-optimal, i.e., the position
was reached in the shortest possible time. For simplicity we assumed that the shape of the profiles was
symmetric no matter what the direction of movement was.

u =

∣∣∣∣[ x v a j d
]T
∣∣∣∣ (1)

The direction of movement can be calculated based on the following equation:

sd = sgn(x) (2)

where the sd variable equals 1 if the movement direction is positive, or −1 when it is negative.
While considering the real-time implementation with respect to sampling time of code execu-tion,

it is necessary to round up calculated time values:

tcorr = Tsceil
(

tcalc
Ts

)
(3)

Fourth order trajectory profiles are shown in Figure 4.
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In the following sections, calculations for the type of trajectory generation for MC_MoveAbsolute()
are shown in an algorithmic way.

3.1. Calculation of Time td

The following equations are used for calculation of time td which covers the duration of a single
movement section with applied snap boundary (i.e., its constrained value), as in Figure 4.

tddmax = 4

√
x

8d
(4)

Rounding up (4) with respect to the sampling time Ts:

Tsceil
(

tddmax

Ts

)
= Tsceil

 4
√

x
8d

Ts

 (5)

dd =


Tsceil

(
4
√

x
8d

Ts

)
x

8

Tsceil

 4
√

x
8d

Ts

4

 (6)

If the following Equation (7) holds true:

v ≥ vmax = 2
x

8

(
Tsceil

(
4
√

x
8d

Ts

))4

Tsceil

 4
√

x
8d

Ts

3

(7)

Then:
dd1 = dd (8)
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Otherwise:

tdvmax = 3

√
v

2d
(9)

This rounded up with respect to the sampling time (Ts) yields the following equation:

Tsceil
(

tdvmax

Ts

)
= Tsceil

 3
√

v
2d

Ts

 (10)

Then:

dd1 =


Tsceil

(
3
√

v
2d

Ts

)
v

2

Tsceil

 3
√

v
2d

Ts

3

 (11)

If the following Equation (12) holds true:

a ≥ amax =
v

2

(
Tsceil

(
3
√

v
2d

Ts

))3

Tsceil

 3
√

v
2d

Ts

2

(12)

Then:
dd2 = dd1 (13)

Otherwise:

tdamax = 2

√
a
d

(14)

This rounded up with respect to the sampling time (Ts) yields the following equation:

Tsceil
(

tdamax

Ts

)
= Tsceil

 2
√

a
d

Ts

 (15)

Then:

dd2 =


Tsceil

(
2
√

a
d

Ts

)
aTsceil

 2
√

a
d

Ts

2

 (16)

If the following Equation (17) holds true:

j ≥ jmax =
a(

Tsceil

(
2
√

a
d

Ts

))2

Tsceil

 2
√

a
d

Ts

 (17)

Then:
dd3 = dd2 (18)

Otherwise:

td jmax =
j
d

(19)
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This rounded up with respect to the sampling time (Ts) yields the following equation:

Tsceil
( td jmax

Ts

)
= Tsceil

 j
d

Ts

 (20)

Then:

dd3 =


Tsceil

(
j
d

Ts

)
j

Tsceil

 j
d

Ts



 (21)

Time td is derived from Equation (21) as:

td = dd31 (22)

The next section shows how to evaluate value of time (tj).

3.2. Calculation of Time tj

When time (td) is calculated, the very next step is to calculate the value of time (tj), while taking
into account movement constraints and sampling time rounding of calculated values. The value tj
means the time of jerk (3rd order derivative of position), as shown in Figure 4. Derivation of time (tj)
starts from calculations:

P = − 1
9 td

2

Q = − 1
27 td

3 − x
4dd3[2]td

D =
√

P3 + Q2

D = 3
√
−Q + D

tjjmax = R− P
R −

5
3 td

(23)

This rounded up with respect to the sampling time (Ts) yields the following:

Tsceil

(
tj jmax

Ts

)
= Tsceil

(
R− P

R −
5
3 td

Ts

)
(24)

Then:

dd4 =


td

Tsceil
(

tj jmax
Ts

)
1
2

x

td

{
4td

3+

(
Tsceil

( tj jmax
Ts

))[
8td

2+

(
Tsceil

( tj jmax
Ts

))(
5td+Tsceil

( tj jmax
Ts

))]}

 (25)

If the following Equation (26) holds true:

v ≥ v′max = dd41dd43

[
2dd41

2 + dd42(3dd41 + dd42)
]

(26)

Then:
dd5 = dd4 (27)

Otherwise:

tjvmax =

√
1
4

td
2 +

v
dd32td

− 1.5td (28)
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This rounded up with respect to the sampling time (Ts) yields the following:

Tsceil

(
tjvmax

Ts

)
= Tsceil


√

1
4 td

2 + v
dd32td

− 1.5td

Ts

 (29)

Then:

dd5 =


td

Tsceil
(

tjvmax
Ts

)
v

td

{
2td

2+

(
Tsceil

( tjvmax
Ts

))[
3td+Tsceil

( tjvmax
Ts

)]}

 (30)

If the following Equation (31) holds true:

a ≥ a′max = dd53dd51(dd51 + dd52) (31)

Then:
dd6 = dd5 (32)

Otherwise:
tjamax =

a
dd32td

− td (33)

This rounded up with respect to the sampling time (Ts) yields the following:

Tsceil

(
tjamax

Ts

)
= Tsceil

 a
dd32td

− td

Ts

 (34)

Then:

dd6 =


td

Tsceil
(

tj amax
Ts

)
a

td

[
td+Tsceil

( tj amax
Ts

)]

 (35)

Time tj is derived from Equation (35) as:

tj = dd62 (36)

The following section considers calculations of acceleration phase time (ta).

3.3. Calculation of Time ta

When times td and tj are calculated, taking into account movement constraints and sam-pling
time rounding of calculated values, the next step is to calculate value of time (ta). This means the time
of acceleration (second order derivative of position), as shown in Figure 4. The derivation of time (ta)
starts from the following calculations:

c =

 dd61(dd61 + dd62)

3dd61
{

2dd61
2 + dd62(3dd61 + dd62)

}
2dd61

{
dd61

[
4dd61

2 + dd62(8dd61 + 5dd62)
]
+ dd62

3}
 (37)

And:

taamax =
1
2

−c2 +

√
c22 − 4c1

(
c3 − x

dd63

)
c1

(38)
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This rounded up with respect to the sampling time (Ts) yields the following:

Tsceil
(

taamax

Ts

)
= Tsceil


1
2

−c2+

√
c2

2−4c1

(
c3− x

dd63

)
c1

Ts

 (39)

Then:

dd7 =


td
tj

Tsceil
(

taamax
Ts

)
x(

Tsceil
(

taamax
Ts

))[
c1

(
Tsceil

(
taamax

Ts

))
+c2

]
+c3

 (40)

If the following Equation (41) holds true:

v ≥ v′′max = dd74dd71[dd71(2dd71 + 3dd72 + dd73) + dd72(dd72 + dd73)] (41)

Then:
dd8 = dd7 (42)

Otherwise:

tavmax =
dd61

[
dd61(−2dd61 − 3dd62)− dd62

2]+ v
dd63

dd61(dd61 + dd62)
(43)

This rounded up with respect to the sampling time (Ts) yields the following:

Tsceil
(

tavmax

Ts

)
= Tsceil


dd61[dd61(−2dd61−3dd62)−dd62

2]+ v
dd63

dd61(dd61+dd62)

Ts

 (44)

Then:

dd8 =


td
tj

Tsceil
(

tavmax
Ts

)
v

td

{
td

[
2td+3tj+Tsceil

(
tavmax

Ts

)]
+tj

[
tj+Tsceil

(
tavmax

Ts

)]}

 (45)

Time ta is derived from Equation (45) as:

ta = dd83 (46)

The following section considers further calculations of the fourth order trajectory profile.

3.4. Final Calculation of Movement Profile Times and Direction

Final calculations (including time of constant velocity movement (tv)) start with:

tvvmax =
x− dd84[ta(c1ta + c2) + c3]

v
(47)

This rounded up with respect to the sampling time (Ts) yields the following:

Tsceil
(

tvvmax

Ts

)
= Tsceil

( x−dd84[ta(c1ta+c2)+c3]
v

Ts

)
(48)
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Then:

dd9 =



td
tj
ta

Tsceil
(

tvvmax
Ts

)
sd x

ta(c1ta+c2)+c3+
(

Tsceil
(

tvvmax
Ts

))
td

[
td

(
2td+3tj+ta

)
+tj

(
tj+ta

)]


(49)

Where sd is calculated in Equation (2).
The column vector in Equation (49) is the final part of the fourth order trajectory profile generation.

Now we have all the time values necessary to create the movement profile based on the parameters
given by the user. This part of the algorithm is called the trajectory planner. The next part of the
algorithm is called the profile generator. It is described in the following section and its purpose is to
generate a movement profile out of the times td, tj, ta, tv were calculated in previous sections.

4. Generation of Profile

The generation of a movement profile starts with the calculation of switching times t0 . . . t15 as
shown in Figure 4:

t16 =



0 0 0 0
1 0 0 0
1 1 0 0
2 1 0 0
2 1 1 0
3 1 1 0
3 2 1 0
4 2 1 0
4 2 1 1
5 2 1 1
5 3 1 1
6 3 1 1
6 3 2 1
7 3 2 1
7 4 2 1
8 4 2 1




td
tj
ta

Tsceil
(

tvvmax
Ts

)
 (50)

For simplicity, we can assume:

tv ≈ Tsceil
(

tvvmax

Ts

)
(51)

Then Equation (50) can be rewritten in the following form:

t16 = SM4


td
tj
ta
tv

 (52)
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where SM4 describes the switching matrix for the fourth order trajectory profile generation. After these
calculations, the following holds true as shown in Figure 5:

t16 =



t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15



=



0
td

td + tj
2td + tj

2td + tj + ta

3td + tj + ta

3td + 2tj + ta

4td + 2tj + ta

4td + 2tj + ta + tv

5td + 2tj + ta + tv

5td + 3tj + ta + tv

6td + 3tj + ta + tv

6td + 3tj + 2ta + tv

7td + 3tj + 2ta + tv

7td + 4tj + 2ta + tv

8td + 4tj + 2ta + tv



(53)

Movement starts in time (t0), while time moment (t15) is the endpoint of the generated move-ment.

t f inal = t1616 = 8td + 4tj + 2ta + tv (54)

Time values from Equation (53) are shown in the following Figure 5.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 18 
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4.1. Execution of Trajectory Profile Generation

When the trajectory profile generation is executed (i.e., by the user) and output of the
reference position trajectory has started, then the generation of snap profile is based on the
following calcula-tions.
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When:
start = TRUE (55)

Then:
ddlocal ← dd95 (56)

The new value of t16 is calculated based on Equation (52) and the resulting Equation (53). The
variable start is set based on the algorithm shown in the following part of this subsection.

Until:
texec ≤ t161 (57)

Then:
p1 = 0 (58)

When:
texec > t161 (59)

Then:
p1 = dd95 (60)

where texec stands for the actual profile generation execution time. Calculations of p2 . . . p16 values are
based on the following conditions/equations:

I f texec ≤ t162, p2 = 0
I f texec > t162, p2 = dd95

(61)

Which gives the following algorithm:

FOR j = 1 . . . 16,
I f texec ≤ t16j, pj = 0

I f texec > t16j, pj = dd95

(62)

p1 . . . p16 are calculated iteratively in each time sample of algorithm execution. Then the actual
value/shape of derivative of jerk signal is calculated with the following equation:

pdjerk
= dir


(p1 − p2 − p3 + p4) + . . .
. . . + (−p5 + p6 + p7 − p8) + . . .
. . . + (−p9 + p10 + p11 − p12) + . . .
. . . + (p13 − p14 − p15 + p16)

 (63)

where the dir variable stands for direction of movement. It is a two-valued variable:

dir = {1,−1} (64)

calculated with Equations (65)–(68).
When the previous trajectory profile generation is finalized, i.e., time of execution (texec) is greater

than the sum of t f inal [s] calculated with Equation (54) and some non-zero settling time (Tset [s]) has
passed, then the system is ready for a new trajectory generation:

ready = TRUE (65)

Determining direction of movement for Equation (63) starts with verifying the condition:

dircalc,k = (dir > 0) AND (ready = TRUE)AND NOT(enable = TRUE) (66)
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Input EN = TRUE means that the user wishes for execution of the trajectory profile calculation
(and profiled movement generation) and information about the readiness of the module for calculations
is passed from the input variable ready to the variable ENstart. The rising edge of the condition:

(dircalc,k−1)OR(ENstart) (67)

enables determination of direction, i.e., calculation of variable dir:

IF dirk−1 ≤ 0 THEN dirk = −1 ELSE dirk = 1 (68)

Equation (68) is used when we want to switch operation mode of the movement, i.e., motor/servo
is mounted in an opposite direction.

4.2. Generation of Start Signal

Generation of the start signal that triggers Equation (56) and results in a new value of the t16

variable (calculated based on Equation (52) and consequently Equation (53)) is connected with the
equation:

IF (ENstartk − ENstartk−1) > 0 THEN GenStartk = 1 (69)

The same start variable is used for triggering new profile calculations (Equations (1)–(53)).

startk = GenStartk−1 (70)

4.3. Calculation of Execution Time

Calculation of trajectory profiling execution time (texec) is based on the following expressions:

IF (GenStartk ≥ 0.5) THEN
(

t′exec,k = − Ts
2

)
ELSE (t′exec,k = texec,k + Ts)

texec,k = t′exec,k−1
(71)

This finishes the algorithm of trajectory profile generation. The next step is to calculate actual
values out of the process involving integrating snap signal values. It is shown in the next subsection.

4.4. Generation of Motion Profile Step

To output the motion profile of all the derivatives and the position itself, the following steps need
to be executed in a real-time control platform:

• Reference signal dk (derivative of jerk/snap) is the zero-order-hold sampled value of pdjerk
variable.

• Reference signal jk (jerk) is the numerically integrated value of signal dk with respect to the
sampling time (Ts):

jk = Tsdk−1 + jk−1 (72)

• Reference signal ak (acceleration) is the numerically integrated value of signal jk with respect to
the sampling time (Ts):

ak = Ts jk−1 + ak−1 (73)

• Reference signal vk (velocity) is the numerically integrated value of signal ak with respect to the
sampling time (Ts):

vk = Tsak−1 + vk−1 (74)

• Reference signal xk (position) is the numerically integrated value of signal vk with respect to the
sampling time (Ts):

xk = Tsvk−1 + xk−1 (75)
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These steps finish the trajectory generation procedure.

5. Implementation of Trajectory Generator According to IEC 61131-3

The proposed algorithm was prepared to be transferrable to real-time implementation (e.g.,
PLC/PAC), which could later be used in industrial control platforms.

The algorithm was divided into the following sections:

• Plan Trajectory (Figure 6) – Equations (1)–(49);
• Generate profile (Figure 6) – Equations (50)–(71); while
• Generate Motion (Figure 6) subsystem calculates Equations (72)–(75).
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In Figure 7, two examples of generated trajectories are shown:
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The function blocks code for the 4th order trajectory generator is presented in Figure 8, with
the Simulink model presented in Figure 6 serving as a base for this conversion. Structured text code
generated with a Simulink PLC Coder is about 900 lines long, and the total memory allocated for this
function block in PLC is 3 kB. This means that the devised solution is implementable in the majority of
PLC/PAC controllers which are IEC-61131-3 [11,12] standard compliant.Appl. Sci. 2018, 8, x FOR PEER REVIEW  17 of 18 
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6. Summary

The article presents, in a step by step manner, the procedure for implementation of a 4th order
trajectory generator that mirrors the MC_MoveAbsolute() function. Due to the straightforward
nature of Equations (1)–(75), it is easily implementable in any of the available textual or graphical
programming languages for real-time control systems.

The implementation of the presented algorithm is possible in control systems adhering to the
IEC 61131-3 standard (e.g., PLC), and its source code was generated as a result of applying the fast
prototyping paradigms, i.e., it was generated from the Simulink model. As an example, generated
profiles are given with different parameters (i.e., boundaries). It is also possible to generate motion
profiles of lower orders than fourth—the algorithm itself is scalable and following the procedure
presented here will lead to obtaining simpler solutions constrained on third or second derivatives.

The most important contribution of this work is the unique nature of the presented approach, as
it allows for practical implementation of this algorithm in commonly used real-time control systems.

The algorithm presented here is fully parametrized. It can be fully integrated by way of
interfaces and its functionality, with other motion control features (i.e., collision avoidance or trajectory
generation profile correction). As proposed in this paper, the implementation of MC_MoveAbsolute() is
parametrized through its inputs (as it can be found in all functions and function blocks in graphical
IEC 61131-3 compliant programming languages). Modularity of the approach enables the user to
combine a proposed solution with an extension boom elasticity estimation feature (loader or forestry
cranes applications) or dynamic collision avoidance (multi-axis serial robotic manipulators).
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The function presented here can be implemented without any problems in all PLC/PAC-based
control systems. The short sampling time (not more than 200 microseconds) requirement is fulfilled
by most available control platforms. In the case of PLC/PACs with higher sampling times proposed,
the algorithm can be extended with sampling time correction. In other cases, the integer multiple of
sampling time requirement needs to be fulfilled by all times for t0–t15 times in Equation (53).
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R03 042 02, (b) Ministerstwo Nauki i Szkolnictwa Wyższego, grant number N N502 336936 and, (c) Marie Curie
7PR, FP7-PEOPLE-2012-IAPP (Industry-Academia Partnerships and Pathways) grant number 324496.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Biaggiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots; Springer:
Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-85628-3.

2. Pillay, P.; Krishnan, R. Application Characteristics of Permanent Magnet Synchronous and Brushless dc
Motors for Servo Drives. IEEE Trans. Ind. Appl. 1991, 27, 986–996. [CrossRef]

3. Mariethoz, S.; Domahidi, A.; Morari, M. High-bandwidth explicit model predictive control of electrical
drives. IEEE Trans. Ind. Appl. 2012, 48, 1980–1992. [CrossRef]

4. Gu, J.S.; De Silva, C.W. Development and implementation of a real-time open-architecture control system for
industrial robot systems. Eng. Appl. Artif. Intell. 2004, 17, 469–483. [CrossRef]

5. Moreira, T.G.; Wehrmeister, M.A.; Pereira, C.E.; Pétin, J.F.; Levrat, E. Automatic code generation for
embedded systems: From UML specifications to VHDL code. In Proceedings of the 2010 8th IEEE
International Conference on Industrial Informatics, Osaka, Japan, 13–16 July 2010; pp. 1085–1090. [CrossRef]

6. Lambrechts, P.; Boerlage, M.; Steinbuch, M. Trajectory planning and feedforward design for high performance
motion systems. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July
2004; Volume 5, pp. 4637–4642. [CrossRef]

7. Boerlage, M.; Steinbuch, M.; Lambrechts, P.; van de Wal, M. Model-based feedfordward for motion systems.
In Proceedings of the IEEE Conference on Control Applications, Istanbul, Turkey, 25 June 2003; Volume 2,
pp. 1158–1163.

8. Boerlage, M. MIMO jerk derivative feedforward for motion systems. In Proceedings of the 2006 American
Control Conference, Minneapolis, MN, USA, 14–16 June 2006; pp. 3892–3897. [CrossRef]

9. Lambrechts, P.; Boerlage, M.; Steinbuch, M. Trajectory planning and feedforward design for
electromechanical motion systems. Control Eng. Pract. 2005, 135, 145–157. [CrossRef]

10. Pietrusewicz, K. Multi-degree of freedom robust control of the CNC X-Y table PMSM-based feed-drive
module. Arch. Electr. Eng. 2012, 61. [CrossRef]

11. Programmable Controllers-Part 3: Programming Languages, IEC 61131-3:2013; International Electrotechnical
Commission, 2013.

12. John, K.H.; Tiegelkamp, M. IEC 61131-3: Programming Industrial Automation Systems: Concepts and
Programming Languages, Requirements for Programming Systems, Decision-Making Aids; Springer: Heidelberg,
Germany, 2010; Volume 2, ISBN 978-3-642-12014-5.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/28.90357
http://dx.doi.org/10.1109/TIA.2012.2226198
http://dx.doi.org/10.1016/j.engappai.2004.03.010
http://dx.doi.org/10.1109/INDIN.2010.5549590
http://dx.doi.org/10.1109/ACC.2004.182683
http://dx.doi.org/10.1109/ACC.2006.1657326
http://dx.doi.org/10.1016/j.conengprac.2004.02.010
http://dx.doi.org/10.2478/v10171-012-0002-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Trajectory Generation in Digital Servo Drives: PLCopen Motion Control 
	Fourth Order Position Profile Generation 
	Calculation of Time td 
	Calculation of Time tj 
	Calculation of Time ta 
	Final Calculation of Movement Profile Times and Direction 

	Generation of Profile 
	Execution of Trajectory Profile Generation 
	Generation of Start Signal 
	Calculation of Execution Time 
	Generation of Motion Profile Step 

	Implementation of Trajectory Generator According to IEC 61131-3 
	Summary 
	References

