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Abstract: An efficient synthesis route was developed for the preparation of multiwalled carbon
nanotube (MWCNT) nanohybrids using azide-terminated poly(methyl methacrylate) (PMMA) via a
combination of reversible addition fragmentation chain transfer (RAFT) and the click reaction. A novel
azido-functionalized chain transfer agent (DMP-N3) was prepared and subsequently employed to
mediate the RAFT polymerizations of methyl methacrylate (MMA). The RAFT polymerizations
exhibited first-order kinetics and a linear molecular weight dependence with the conversion.
The kinetic results show that the grafting percentage of PMMA on the MWCNTs surface grows
along with the increase of the reaction time. Even at 50 ◦C, the grafting rate of azide-terminated
PMMA is comparatively fast in the course of the click reaction, with the alkyne groups adhered to
MWCNTs in less than 24 h. The successful functionalization of PMMA onto MWCNT was proved
by FTIR, while TGA was employed to calculate the grafting degree of PMMA chains (the highest
GP = 21.9%). Compared with the pristine MWCNTs, a thicker diameter of the MWCNTs-g-PMMA
was observed by TEM, which confirmed the grafted PMMA chain to the surface of nanotubes.
Therefore, the MWCNTs-g-PMMA could be dispersed and stably suspended in water.

Keywords: multi-wall carbon nanotube (MWCNT); azide-alkyne click chemistry; RAFT
polymerization; PMMA

1. Introduction

Nanoscience and nanotechnology have brought us the excellent development of many novel
categories of functional materials and have become remarkable fields of study [1,2]. Recently, carbon
nanotubes (CNTs) have acquired increasing importance and popularity in membrane science and
technology due to their high permeability and selectivity, which they owe to the rapid flux through the
hollow interior and nano-scale diameter of CNTs [3–7]. For instance, multiwalled carbon nanotubes
(MWCNTs) with outer diameters (2–100 nm) exhibit a significantly high permeability in membrane
process applications because of the large surface area [6]. The MWCNT hybrid nanostructure
and composite materials with the introduction of polymer chemistry have dramatically attracted
attention [8,9]. These nanocomposite materials complement the characteristics of functional polymers
and thus provide improved nano-scale dispersing, hydrophilicity, electric properties, etc. [10]. Some
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researchers have directly immobilized MWCNTs into a polymeric membrane by the blending method
due to its easy manipulation and mild conditions [11,12]. However, despite the outstanding properties
of MWCNT composite materials, the tendency to be polymerized caused by the big inherent van der
Waals forces of MWCNTs restricts its application to the fabrication of nanocomposites. [13].

Among the surface modification method, the “grafting to” technique is one of the most convenient
techniques to cap polymer chains which can adjust the dispersibility of nanoparticles in polymer
matrices [14]. In this approach, functional group-terminated polymer chains can graft onto the
surface of nanoparticles in a highly efficient reaction, resulting in the formation of tethered polymer
chains [15]. To achieve dense polymer layers attached to the MWCNT surface, strong interactions
between polymer chains and the MWCNT surface are required. Poly(methyl methacrylate) (PMMA)
is usually studied as a compatibilizer agent for polymer/nanoparticle composites [16]. Recently,
“click chemistry” has attracted more attention in surface modification for nanoparticles due to its
high yields without byproducts [17–20]. When combined with reversible addition-fragmentation
chain transfer (RAFT), the precise predesign of the molecular weight, structure, and functionality
of polymers can be controlled by living polymerizations [21]. For example, Singha and co-workers
synthesized a hydrophilic MWCNT based upon the Diels-Alder (DA) click reaction by one step [22].
Nonetheless, few have been reported in the field of PMMA-functioned MWCNTs, synthesized through
the click reaction.

In this work, by using azide/alkyne end groups, PMMA with an azide end
group can effectively graft onto the MWCNT surface. To do this, the RAFT agent
2-dodecylsulfanylthiocarbonylsulfanyl-2-methylpropionic acid 3-azidopropyl ester (DMP-N3)
was used in the polymerization of PMMA. Then, azide-terminated PMMA was attached to the
surface of alkyne-terminated MWCNTs via the “grafting to” approach. Due to the PMMA chain on
the MWCNT surface, the nanohybrids can be stably dispersed in water and have potential for the
preparation of MWCNT composite materials.

2. Materials and Methods

2.1. Materials

MWCNTs were obtained from Nanjing XFNANO Materials Tech Co., Ltd. (China). Methyl
methacrylate (MMA) was obtained from Shanghai Chemical Plant (China). The inhibitor was removed
by a basic alumina column, purified under lower pressure, and stored in an Ar atmosphere at
−5 ◦C. Sodium azide, 4-(N,N-dimethylamino)pyridine(DMAP), and 1-(3-Dimethylaminopropyl)-3-
ethylcarbodiimide were obtained from Aladdin Industrial Corporation (China). Azobisisobutyronitrile
(AIBN) was purchased from Jiangsu Qiangsheng Chemical Co., Ltd. (China). N,N-dimethylacetamide
(DMAc), propargyl alcohol, tetrahydrofuran (THF, analytical grade), and anisole (AR) were purchased
from Shanghai Lingfeng Chemical Reagent Co., Ltd. (China). Thionyl chloride (analytical grade) was
purchased from Sinopharm Chemical Reagent Co., Ltd. (China).

2.2. Synthesis of Azide-Terminated Poly(methyl methacrylate) (PMMA)

Before synthesizing azide-terminated PMMA, RAFT agent 2-
dodecylsulfanylthiocarbonylsulfanyl-2-methylpropionic acid 3-azidopropyl ester (DMP-N3)
was synthesized according to the reported method [23]. FTIR analysis was performed to confirm
successful azide-RAFT agent preparation, as shown in Figure 1a. FTIR (KBr) (wavenumber, cm−1):
2923 (C-Cs), 2100 (C-N=N=N), 1735 (C=O), 1064 (C=S), 1250 (C-S). Figure 1b shows the 1H NMR
spectra of DMP-N3. The peak at 1H-NMR (400 MHz, CDCl3, TMS) for DMP-N3 (δ, ppm): 0.88 (t, 3H,
-CH3), 1.25 (m, 20H, -CH2-), 1.72 (s, 6H, -CH3), 1.91 (m, 2H, -CH2-), 3.35 (t, 2H, -CH2-), 4.19 (t, 2H,
-CH2-).
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cycles). Then, a RAFT polymerization reaction was performed at 60 °C for 10 h. After polymerization, 96 
the azide-terminated PMMA was obtained when the unreacted MMA monomer was removed with 97 
THF for 24 h by Soxhlet apparatus. The resulting polymer was dried at 25 °C in a vacuum oven for 98 
12 h. Scheme 1 shows the route of synthesis of azide-terminated PMMA. The resulting polymer was 99 
dried at 25 °C in a vacuum oven for 12 h. Scheme 1 shows the route of synthesis of azide-terminated 100 
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treated MWCNTs (MWCNTs-COOH) were washed until the excess acid was completely removed.  108 

In total, 1 g of MWCNTs-COOH was dispersed in thionyl chloride (65 mL) for 30 min. Then, 2 109 
ml N,N-dimethylformamide (DMF) was added to this reaction mixture and stirred for 24 h at 70 °C. 110 
Thus, the MWCNT-COCl was obtained after being dried at 50 °C for 24 h. After that, 0.5 g MWCNT-111 
COCl and 2 ml anhydrous triethylamine were mixed in 20 mL of trichloromethane. Following this, 3 112 
ml of propargyl alcohol was added dropwise to the MWCNT-COCl mixture at 0 °C. The reaction 113 
between MWCNT-COCl and propargyl alcohol was carried out at room temperature for 10 h. 114 
Subsequently, the obtained MWCNTs-alkyne was purified by centrifugation and then dried at 50 °C 115 
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Figure 1. (a) FTIR spectra of the DMP-N3; (b) 1H spectra of the DMP-N3.

For the typical polymerization processing of PMMA, 5 g of monomer MMA, chain transfer
agent DMP-N3 (0.168 g), and AIBN (8.2 mg), which were dissolved in dried anisole (20 ml), was
added to a 50 ml Schlenk flask. The mixture solution was degassed with nitrogen using a three-way
tube (three cycles). Then, a RAFT polymerization reaction was performed at 60 ◦C for 10 h. After
polymerization, the azide-terminated PMMA was obtained when the unreacted MMA monomer was
removed with THF for 24 h by Soxhlet apparatus. The resulting polymer was dried at 25 ◦C in a
vacuum oven for 12 h. Scheme 1 shows the route of synthesis of azide-terminated PMMA. The resulting
polymer was dried at 25 ◦C in a vacuum oven for 12 h. Scheme 1 shows the route of synthesis of
azide-terminated PMMA.
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Scheme 1. The synthetic route for synthesis of azide-terminated poly(methyl methacrylate) PMMA via
RAFT polymerization.

2.3. Alkyne-Modification of MWCNT (MWCNTs-alkyne)

In total, 2 g of the MWCNTs was subjected to acid treatment with 60 ml of an HNO3:H2SO4 (1:3)
mixture using ultrasound at 60 ◦C for 4 h, and then refluxed at 80 ◦C for 12 h. After the reaction,
the treated MWCNTs (MWCNTs-COOH) were washed until the excess acid was completely removed.

In total, 1 g of MWCNTs-COOH was dispersed in thionyl chloride (65 mL) for 30 min. Then, 2 ml
N,N-dimethylformamide (DMF) was added to this reaction mixture and stirred for 24 h at 70 ◦C. Thus,
the MWCNT-COCl was obtained after being dried at 50 ◦C for 24 h. After that, 0.5 g MWCNT-COCl
and 2 ml anhydrous triethylamine were mixed in 20 mL of trichloromethane. Following this, 3 ml of
propargyl alcohol was added dropwise to the MWCNT-COCl mixture at 0 ◦C. The reaction between
MWCNT-COCl and propargyl alcohol was carried out at room temperature for 10 h. Subsequently,
the obtained MWCNTs-alkyne was purified by centrifugation and then dried at 50 ◦C in a vacuum
oven for 24 h.

2.4. Preparation of MWCNTs-g-PMMA

In total, 0.1 g of MWCNTs-alkyne and 1 g of azide-terminated PMMA were mixed with 15 mL of
DMF under ultrasonic treatment for 30 min. Then, a CuBr solution (0.0069 g dissolved 1 mL of water)
was added. The Schlenk flask was degassed and back-filled with nitrogen, and then put in an oil
bath at 50 ◦C. After the click reaction, MWCNTs-g-PMMA was purified by ethylenediaminetetraacetic
acid (EDTA), THF, and ethanol centrifugation. Unreacted PMMA was removed with THF for 24 h by
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Soxhlet apparatus and dried for 24 h in a vacuum oven at 50 ◦C. The synthesis steps from MWCNTs to
MWCNTs-g-PMMA are shown in Scheme 2.
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Scheme 2. Synthetic steps from multiwalled carbon nanotube (MWCNT) to MWCNT-g-PMMA.

2.5. Characterization

Fourier transform infrared spectroscopy (FTIR) spectra were performed on an Avatar 370
spectrometer (Nicolet, USA). The KBr pellet within an appropriate amount of MWCNTs was prepared.
Raman spectra of the MWCNTs were gauged using a DXR Raman spectrometer (Thermo Scientific,
USA) with the excitation wavelength of the laser at 532 nm. A laser intensity of 7.0 mW, an exposure
time of 3 s, and the exposure rate of 20 times were applied in each measurement. An HP-6890 gas
chromatograph (GC, Agilent, USA) measured the monomer conversion. Waters 515 gel permeation
chromatography (GPC) was equipped with three columns (average pore sizes of 104, 105, and 106 nm,
monodisperse polystyrene was used for the calibration standard sample). A Waters RI detector at
35 ◦C measured the molecular weight and molecular polydispersity of azide-terminated PMMA.
Thermogravimetric analysis (TGA) was performed on a 209 F3 thermogravimetric (TG) analyzer
(Netzsch Inc., Germany) under N2 protection with a flow rate of 50 mL/min. The sample was
heated from 50 ◦C to 700 ◦C at 10 ◦C/min. The grafting percentage (GP) for MWCNTs-g-PMMA
can be calculated as shown in our previous work [24]. Transmission electron microscopy (TEM) was
performed on a JEM-1200 EX/S transmission electron microscope (JEOL, Japan). Before observation,
the dried MWCNTs were pretreated in THF under ultrasonic vibration for 20 min and then deposited
on a covered copper grid.

3. Results and Discussions

3.1. RAFT Polymerization of Azide-Terminated PMMA

To investigate the efficiency of PMMA chain end transformation, polymerization kinetic studies
on the linear PMMA synthesis were executed. The polymerization progress was checked by taking
samples from the reaction mixture, which were measured by GPC and GC to estimate the evolution
of conversion, molecular weights, and polydispersity index (PDI) with time. As it can be seen from
Figure 2, Mn is increasing with conversion and PMMA has a small PDI, demonstrating a well-controlled
RAFT reaction when using the RAFT agent. At the same time, when the high molecular weight is
achieved at a high monomer conversion, the PDI values are still low (around 1.42). Compared with
previous work [24], the conversion reaches a higher level (~55%), and the Mn of azide-terminated
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PMMA increases more quickly with conversion, which suggests a much quicker reaction rate in
this work.
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Figure 2. Dependence of number-average molecular weight (Mn) and PDI (Mw/Mn) of the grafted
PMMA on the conversion for the PMMA RAFT polymerization at 60 ◦C with AIBN as initiator mediated
by DMP-N3 ([MMA]0:[RAFT]0:[AIBN]0=250:1:0.2).

The results on the RAFT polymerization of the azide-terminated PMMA show a linear increase
in ln(M0/Mt) with time (Figure 3), suggesting a constant radical concentration, i.e., the absence of
extensive termination reactions [25]. A conversion of 55% was obtained in 10 h, resulting in an
azide-terminated PMMA with Mn = 22000 g/mol and PDI = 1.50.
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Figure 3. First-order kinetic plot for the RAFT polymerization of PMMA at 60 ◦C with AIBN as initiator
mediated by DMP-N3 ([MMA]0:[RAFT]0:[AIBN]0=250:1:0.2).

In general, the MWCNTs-g-PMMA was obtained through the click coupling between
MWCNTs-alkyne and azide-terminated PMMA. The grafting PMMA molecular weight was controlled
by the prior synthesis of azide-terminated PMMA via RAFT polymerization. The grafting percentage
on the MWCNT surface can present the click reaction efficiency with the reaction time. In this work,
TGA measurement elucidated the grafting percentage that governed the alkyne/azide click reaction
on MWCNT surfaces, as shown in Figure 4. It is evident that the grafting rate of PMMA on the surface
of MWCNTs rises with the increase of reaction time. The grafting rate of MWCNTs-g-PMMA reaches
21.9% after a reaction of 24 h, and when the reaction continues to 30 h, the grafting rate is not changed
obviously. The saturation grafting rate after 24 h could be due to the steric demands of the clicked
PMMA chains rendering the remaining azido groups inaccessible for the click reaction [26].
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3.2. TGA Analysis for the MWCNTS-g-PMMA

The TGA curves of pristine MWCNTs, MWCNTs-alkyne, and MWCNTs-g-PMMA are presented
in Figure 5. Two stages of significant mass losses are observed in the curves of pristine MWCNTs.
The first weight loss of about 0.5% happens before 200 ◦C, which is due to the loss of adsorbed water.
The second step at a weight loss of approximately 1.4% is due to the impurities of pyrolysis. For the
MWCNTs- alkyne, because of the decomposition of organic groups on the surface, the final weight
loss was increased to 5.27%. For MWCNTs-g-PMMAs received at various polymerization times during
the click reactions, because the grafted PMMA chains decompose to different extents, the final weight
losses for the reaction time at 6 h, 12 h, and 18 h are 22.4%, 25.1%, and 26.9%, respectively (Figure 5c–e).
The curves for the MWCNT-g-PMMA show two main decomposition steps at 205 ◦C and 405 ◦C, which
correspond to the side chains and PMMA chains respectively. As measured, the grafting percentage
(GP) for a reaction time of 6 h, 12 h, and 18 h is 17.2%, 19.9%, and 22.0%, respectively.
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3.3. Surface Structure Analysis for MWCNTS

The MWCNTs-alkyne was obtained via two gentle reaction processes, including acylchlorination
and esterification, during which MWCNT-COOH was reacted with excess thionyl chloride to obtain a
high esterification reaction efficiency COCL group, and the COCL group was then reacted with excess
propargyl alcohol to get a complete surface coverage of the functional MWCNTs. FT-IR was performed
on original and functionalized MWCNTs, and their corresponding spectra are shown in Figure 6.
For the MWCNTs-COOH, the IR spectrum shows two absorption bands at 1740 cm−1 (corresponding
to stretching vibrations of carbonyl groups C=O) and 1635 cm−1 (assigned to conjugated C=C
stretching). MWCNTs-alkyne exhibits the same bands with the addition of an intensity band at
2100 cm−1 (the alkyne group) [27]. Azido-terminated PMMA presents a typical absorption band at
2100 cm−1 (-N3 group), which suggests that the subsequent click reaction can be performed. After the
click reaction, the new absorptions peak appeared at 1110 cm−1, and 1020 cm−1, which was the C-O-C
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group in the ester group of the PMMA grafted onto the surface of MWCNTs. The click combination
of the alkyne-functionalized MWCNTs and azide-functionalized PMMA provided a 1,2,3-triazole
ring. This suggests that the PMMA molecule is successfully grafted onto the surface of the MWCNTs.
Thus, the IR spectra of the MWCNTs-PMMA nanohybrid, featuring an alkyne peak of MWCNTs at
2100 cm−1, entirely disappeared, revealing the formation of 1,2,3-triazole after the click reaction.
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MWCNTs-g-PMMA (GP = 22.0%).

Figure 7 shows the Raman spectra of pristine MWCNTs, MWCNTs-COOH, MWCNTs-alkyne,
and MWCNTs-g-PMMA. The characteristic peaks at 1343 cm−1 and 1585 cm−1 correspond to the D
(tangential band) and G (disorder band) peaks of carbon nanotubes, respectively [22]. The D band is
due to a disordered graphite structure or sp3-hybridized carbons of the nanotubes, whereas the G band
refers to a splitting of the E2g stretching mode of graphite [28,29]. The peak intensity D and G band
ratios (ID/IG) for MWCNTs-COOH, MWCNTs-alkyne, and MWCNTs-g-PMMA are higher than those
of the pristine MWCNTs, which suggests that alkyne-decoration and the click reaction successfully
functionalize MWCNT.
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PMMA (GP = 22.0%).

Figure 8 depicts the TEM photographs of pristine MWCNTs, carboxyl functionalized, and
MWCNTs-g-PMMA. After the acid treatment, the closed end opening of the nanotube can be observed.
The pristine MWCNTs generally present closed caps and cylindrical walls, which are uncapped and
have rough “convex-concave” walls after the partial oxidation treatment [30]. These disfigurements
improve the specific surface area and pore volume of the oxidized MWCNTs [31]. On the other hand,
after the PMMA segments are grafted onto the surface of nanotubes by the click reaction, a thicker
diameter of the MWCNTs-g-PMMA is observed.
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= 22.0%).

Figure 9 shows the dispersion images of MWCNTs-g-PMMA in comparison with the pristine
MWCNTs in water. After the ultrasonic treatment of these two dispersing solutions, the pristine
MWCNTs could not disperse and stably suspended well in water because of the strong intrinsic
van der Waals forces between them [13]. After two hours of standing, the pristine MWCNTs are
obviously aggregated. However, the MWCNTs-g-PMMA can maintain its stable dispersion, even after
24 hours. This means that grafted PMMA has effectively reduced the apparent activation energy
of MWCNTs, which can prevent the aggregation phenomenon. In future work, we will study this
MWCNTs-g-PMMA dispersion in the polymeric membrane bulk.
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4. Conclusions

In this work, to avoid the aggregation of MWCNTs, well-defined PMMA functionalized
the combination of RAFT synthesized MWCNTs (MWCNTs-g-PMMA) and the clicked reaction.
The success of PMMA grafting onto MWCNTs was determined by GPC, Raman spectroscopy, FT-IR,
TGA, and TEM measurements. The kinetic reaction results show that the grafting percentage of
PMMA chains grafted onto the MWCNTs surface rises with the increase of reaction time. Even at a
low temperature (50 ◦C), the grafting rate of azide-terminated PMMA is comparatively fast during
the click reaction when combining the alkyne-MWCNTs and azide-terminated PMMA in less than
24 h. As calculated by TGA analysis, the highest grafting degree of PMMA chains reaches 21.9%.
Compared with the pristine MWCNTs, a thicker diameter of the MWCNTs-g-PMMA was observed
by TEM, which confirmed that the PMMA chain grafted onto the surface of nanotubes. Therefore,
the MWCNTs-g-PMMA could be dispersed and stably suspended in water, even for 24 h.
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