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Abstract: Unmanned aerial vehicle (UAV) images that can provide thematic information at much
higher spatial and temporal resolutions than satellite images have great potential in crop classification.
Due to the ultra-high spatial resolution of UAV images, spatial contextual information such as
texture is often used for crop classification. From a data availability viewpoint, it is not always
possible to acquire time-series UAV images due to limited accessibility to the study area. Thus, it is
necessary to improve classification performance for situations when a single or minimum number
of UAV images are available for crop classification. In this study, we investigate the potential
of gray-level co-occurrence matrix (GLCM)-based texture information for crop classification with
time-series UAV images and machine learning classifiers including random forest and support vector
machine. In particular, the impact of combining texture and spectral information on the classification
performance is evaluated for cases that use only one UAV image or multi-temporal images as input.
A case study of crop classification in Anbandegi of Korea was conducted for the above comparisons.
The best classification accuracy was achieved when multi-temporal UAV images which can fully
account for the growth cycles of crops were combined with GLCM-based texture features. However,
the impact of the utilization of texture information was not significant. In contrast, when one August
UAV image was used for crop classification, the utilization of texture information significantly
affected the classification performance. Classification using texture features extracted from GLCM
with larger kernel size significantly improved classification accuracy, an improvement of 7.72%p in
overall accuracy for the support vector machine classifier, compared with classification based solely
on spectral information. These results indicate the usefulness of texture information for classification
of ultra-high-spatial-resolution UAV images, particularly when acquisition of time-series UAV images
is difficult and only one UAV image is used for crop classification.
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1. Introduction

Agricultural environments are known to be sensitive to abnormal weather conditions and climatic
disasters such as drought and flood [1,2], thus rendering essential systematic monitoring of crop
conditions and crop yield forecasting [3,4]. Remote sensing technology received attention in the
agriculture community due to its ability to provide periodic and regional information for crop
monitoring and thematic mapping [5,6].

Crop type maps derived from classification of remote sensing images are important resources
for crop yield estimation and forecasting. Since any error in the crop type maps affects outputs
of crop yield and forecasting models, it is critical to generate reliable crop type maps [6]. The most
important elements of input remote sensing images for crop classification are their spatial and temporal
resolutions. Since each individual crop has its own growth cycle, time-series images are necessary to
fully account for variations of physical characteristics that accompany crop growth [7,8]. According to
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the scale of the target area of interest, satellite images with proper spatial resolution should be used as
input for crop classification. If coarse-resolution satellite images are used, mixed pixel problems are
likely and classification performance decreases [9,10]. This is a common issue in Korea, where various
types of crops are cultivated in small areas. The use of high-resolution satellite images and aerial
photos can contribute to resolving the mixed pixel issues [11,12]. Despite the increased discrimination
capability of high-resolution images, it is difficult to collect time-series datasets over the full growth
cycles of crops. Acquisition of optical satellite images depends heavily on atmospheric conditions;
thus, the images are often contaminated and masked by clouds. In addition, it is difficult to acquire
time-series aerial photos at desired times due to cost issues.

In recent years, there was a growing interest in imaging of unmanned aerial vehicles (UAV) [11–15].
The advantage of UAV images over satellite images is their ability to provide local thematic information
with much higher spatial and temporal resolutions [15]. UAV images with ultra-high spatial
resolution [16,17] can improve the discrimination capability of various surface objects, leading to
an increase in the number of detectable targets. Compared with satellite images, low-cost flexible
control of unmanned aerial systems (UAS) enables easier acquisition of images at the desired times
between sowing and harvesting of crops [12,15,16].

Despite the great potential of UAV imaging, the technique has several practical issues. Firstly,
the ultra-high spatial resolution of UAV images usually causes noise effects due to increased
detectable targets when conventional pixel-based approaches are applied for classification [11,18,19].
The common approach to mitigate noise effects is to either use spatial contextual information or apply
an object-oriented classification approach. For the spatial contextual information approach, texture
information is firstly extracted from a gray-level co-occurrence matrix (GLCM) [20] and then combined
with spectral information for classification [21–23]. The utilization of such texture information can
reduce the impacts of isolated pixels within the pixel-based approach. The object-oriented approach
first extracts meaningful objects via multi-resolution segmentation [24] and classification is then carried
out on object units [25–27]. These two approaches are known to achieve better classification accuracy
than the pixel-based approach based purely on spectral information [19,22]. The second issue is heavy
computational load related to data preprocessing and processing [11]. Most UAV images are acquired
using a narrow field-of-view, which requires mosaicking of many sub-images to obtain a complete
image set. If the sub-images are taken at different solar conditions and flight altitudes, radiometric
calibration should be employed during mosaicking. The ultra-high spatial resolution of UAV images
makes preprocessing complex and requires much processing time for classification [11].

Another important issue is that it is not always possible to construct a time-series UAV image set
for crop classification. Although the acquisition of UAV images is less affected by atmospheric
conditions than satellite images, it may be difficult to take UAV images in some season [12],
particularly the rainy season which coincides with the growing season of crops in Korea. From an
operational viewpoint, the acquisition of time-series UAV images for crop classification essentially
has a prerequisite that operators make several visits to the area of interest. From a practical point
of view, it is necessary to acquire optimal images at certain times, achieving classification accuracy
comparable to the use of a complete time-series image set. Crop classification using UAV images is
primarily conducted using a single UAV image [21,28], but accuracy comparisons with the case using
a time-series image set are yet to be considered fully.

In addition to data acquisition issues, selection of proper classification methodology is important
in order to generate reliable crop classification results. Since the 2000s, machine learning algorithms
such as random forest (RF) and support vector machine (SVM) were widely applied to crop
classification with remote sensing data [29–34].

Along with the aforementioned issues related to crop classification with UAV images and selection
of appropriate classification methodology, this paper focuses on the evaluation of the effectiveness
of texture information for crop classification with UAV images. In particular, the classification
performance using a single-date UAV image is compared with that of a time-series image set.



Appl. Sci. 2019, 9, 643 3 of 17

In this study, two machine learning algorithms, RF and SVM, are applied as classification models,
and the GLCM-based texture features [20] are used as additional features to reduce noise effects.
From a practical viewpoint, we also investigate how much the utilization of texture information can
improve classification accuracy when only a single-time UAV image is available. A case study of crop
classification with UAV images in Anbandegi, a highland Kimchi cabbage cultivation area in Korea,
was conducted to illustrate and discuss the two issues including the limited use of the UAV image and
the impact of GLCM-based texture features on classification performance.

2. Materials and Methods

2.1. Study Area

Anbandegi, in the Gangwon Province of Korea, a major highland Kimchi cabbage cultivation
area, was selected as the case study area (Figure 1). Summer Kimchi cabbage is usually cultivated in
highlands in Korea because high temperature and humidity causes physiological disorders, insect
pests, and diseases [35]. The altitude of the study area is about 1000 meters above mean sea level
and is relatively higher than the surrounding terrain, which is suitable for highland Kimchi cabbage
cultivation [35]. In the study area, cabbage and potatoes are also grown along with highland Kimchi
cabbage. The total area of all crop parcels in the study area is 42.5 ha and the average size of each crop
parcel is about 0.6 ha. The land-cover type of non-crop areas is mainly forest.
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Figure 1. Location of the study area and the unmanned aerial vehicle (UAV) image mosaic acquired in
the study area.

2.2. Datasets

2.2.1. UAV Images

We used six UAV image mosaics taken from June to September 2017, by considering the growth
cycle of highland Kimchi cabbage (Table 1). The preprocessed UAV image mosaics provided by the
National Institute of Agricultural Sciences (NAAS) were acquired from a fixed-wing unmanned aerial
system (UAS; eBee, Sensefly, Swiss) equipped with a Cannon S110 camera that includes green (550 nm),
red (625 nm), and near-infrared (NIR; 850 nm) spectral bands (hereafter referred to as VNIR). The UAV
image mosaics with a ground sampling distance of 12 cm were upscaled to 25 cm resolution to facilitate
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data processing without loss of information. Upscaling may result in loss of textural image information.
However, a significant change in the generation of texture features and classification results was not
observed in our preliminary experiment at subareas in the study area, which was attributed to the
size of crop parcels in the study area. Hence, the image mosaics with a 25 cm resolution were used as
inputs for classification. To examine the applicability of a single-date image with texture information,
the UAV image mosaic acquired on 25 August was selected due to the peak in vitality of highland
Kimchi cabbage. This selection is explained in detail in Section 3.

Table 1. List of unmanned aerial vehicle (UAV) image mosaics acquired in the study area in 2017.

No. Acquisition Date

1 29 June
2 12 July
3 27 July
4 25 August
5 13 September
6 21 September

2.2.2. Ground-Truth Data and Land-Cover Map

Ground-truth crop types were obtained by field surveys, which were also provided by NAAS.
These data were used to both extract training data and to evaluate the classification performance.
Table 2 presents crop classes for supervised classification and area information of each crop type.
To mimic a case with limited available training data, 20,000 pixels (about 0.3% of ground-truth
data) were randomly selected and used for training data for supervised learning. The remaining
6,710,210 pixels (99.7% of ground-truth data) were used as reference data. Note that a relatively small
training dataset and a large reference dataset are used for classification and evaluation, respectively.
Since the main targets of classification were crops in the study area, non-crop areas, including forests,
were masked out prior to classification using land-cover maps from the Ministry of Environment [36].

Table 2. Crop classes and their respective area information in the study area.

Classes Total Area (ha) Average Area per Parcel (ha)

Highland Kimchi Cabbage 22.38 0.59
Cabbage 8.35 0.59

Potato 8.65 0.86
Fallow 3.08 0.31

2.3. Classification Methods and Feature Extraction

2.3.1. Random Forest

The RF classifier developed by Breiman [37] performs classification by extending decision trees to
multiple trees rather than a single tree. Its classification performance is superior to a single decision tree
due to its ability to maximize diversity through tree ensembles. It also demonstrates greater stability
due to the synthesis of classification results from a large number of trees and the determination of final
class labels through majority voting. In addition, RF requires a few parameters (i.e., the number of
variables for node partitioning and the number of trees to be grown) to be set, unlike other machine
learning algorithms.

The RF classifier applies bootstrap aggregating (bagging) to tree learners. Bagging repeatedly
selects a random sample to replace the training data and fits trees to these samples. The remaining
training data, the out-of-bag (OOB) data, are used to validate trees [37]. The OOB error that is the
error rate of the OOB classifiers is often used as a measure of the generalization error on the training
data [37]. To avoid overfitting the training data, each node of the trees determines the partitioning
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condition, and each tree chooses the random predictor variable and divide node using a genie index,
as a measure of heterogeneity. An additional function of the RF classifier is to compute quantitative
measures for variable importance using mean decrease impurity (MDI) and mean decrease accuracy
(MDA) [28]. When constructing a large number of trees, MDI and MDA can be calculated by averaging
the weighted impurity of each tree and the degree of accuracy improvement, respectively, by randomly
changing the variable. In this study, the variable importance was used to quantify how useful texture
information is for crop classification.

2.3.2. Support Vector Machine

SVM is a machine learning algorithm for finding the optimal decision boundary of training data
located at the boundary of classes [38]. The SVM classifier is known to be effective for classification with
a limited amount of training data [39]. The main concept of SVM is to solve the optimization problem
which maximizes the margin between decision boundaries [40]. To solve non-linear optimization
problems, kernel functions such as radial basis function (RBF) are commonly used [39]. When the RBF
kernel is used, the parameters of cost and gamma should be optimally determined. Large values of
cost and gamma result in overfitting to the training data, yielding poor generalization ability of the
classifier [41]. In this study, these two hyper-parameters were determined using a grid search based on
10-fold cross-validation of training data [42].

2.3.3. Texture Information

To reduce the noise effects of isolated pixels in classification results, texture information is
considered as an auxiliary feature for classification. Image texture analysis methods can be divided
into four categories: statistical, geometric, model-based, and signal processing [43]. GLCM, developed
by Haralick et al. [20], is a widely applied statistical method for remote sensing data processing
such as vegetation structure modeling [44] and land-cover classification [45]. The original image is
first converted to gray-scale. Then, the spatial features of the gray-scale image are extracted using
the relationship of the brightness values between the center pixel and its neighborhood within the
predefined kernel. The relationship of the brightness values is represented by a matrix which consists
of the occurrence frequency of sequential pairs of pixel values existing simultaneously along the
defined direction. By using this relationship, the GLCM can generate different texture information
according to gray-scale level, kernel size, and direction. Fourteen texture features defined by Haralick
et al. [20] are correlated, indicating that using all possible texture features provides redundant spatial
contextual information which is not useful for classification. In this study, six texture features [46] were
considered: (1) mean (ME), (2) standard deviation (STD), (3) homogeneity (HOM), (4) dissimilarity
(DIS), (5) entropy (ENT), and (6) angular second moment (ASM), presented in Equations (1) to (6):

ME =
N−1

∑
i=0

N−1

∑
j=0

i× P(i, j), (1)

STD =

√√√√N−1

∑
i=0

N−1

∑
j=0

P(i, j)× (i−ME)2, (2)

HOM =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)
1 + (i− j)2 , (3)

DIS =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)× |i− j|, (4)

ENT =
N−1

∑
i=0

N−1

∑
j=0
−P(i, j)× ln(p(i, j)), (5)
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ASM =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)2, (6)

where N denotes gray-scale level, while P(i, j) is the normalized gray-scale value at positions i and j
within the kernel, and its sum is 1.

The above texture features were generated from omnidirectional 64-shade gray-scale images.
To test the impacts of the kernel size, we used three different kernel sizes: 3 × 3 (GK3), 15 × 15 (GK15),
and 31 × 31 (GK31).

2.4. Classification Procedures

The entire procedure for crop classification with UAV images is presented in Figure 2. For each
classifier, optimal parameters were first sought during a training phase. To investigate the impacts
of both the number of input images and texture features, we tested eight combination cases for each
classifier: UAV images (two cases: with the August image and with six multi-temporal images),
and texture features (four cases: with texture features from three different kernel sizes (GK3, GK15,
and GK31), and without texture features). These combinations were considered for comparison
purposes since the main objective of this study was to evaluate the effectiveness of using texture
information when a single-date UAV image is used for crop classification. The classification accuracy
was assessed using quantitative measures based on a confusion matrix such as overall accuracy (OA),
producer’s accuracy (PA), and user’s accuracy (UA).
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Figure 2. Schematic diagrams of all crop classification procedures applied in this study. GLCM:
gray-level co-occurrence matrix; RF: random forest; SVM: support vector machine.

2.5. Implementation

ENVI software version 4.8 was used for generation of GLCM-based features and visualization
of classification results. All procedures for classification and evaluation were done within the
R software environment [47]. SVM and RF models were built using the R packages e1071 [42] and
randomForest [48], respectively.
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3. Results and Discussion

3.1. Parameterization of RF and SVM Classifiers

For the RF classifier, two parameters, the number of variables required for node partitioning
and the number of trees to be grown, have to be selected. Firstly, the number of variables for node
partitioning was set to

√
n of the total number of variables. For example, for the case using the

August image with texture information, there were nine variables (three spectral bands and six texture
features); thus, the number of variables for node partitioning was set to 3. To determine the number
of trees to be grown, variations of OOB errors with respect to the number of trees were investigated.
From the variations of OOB errors, one can judge whether a sufficient number of trees were used for
the RF modeling. In general, the OOB errors tend to decrease as the number of trees increases, and
then converge to a certain value at the specific number of trees. When six multi-temporal UAV images
were used as inputs, no distinctive differences in OOB errors were observed, and the error values
were also very low for different texture feature cases. Figure 3 shows the variations of OOB errors
when using the August image without and with texture features. The four combination cases showed
different convergence values, but the variation patterns were very similar. As the number of trees
increased to about 50, the OOB errors of all four combination cases decreased sharply. Then, the OOB
errors reached the convergence values when the number of trees was about 150. By considering the
convergence of OOB errors and processing time, the number of trees to be grown was set to 150.
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Figure 3. Variations of out-of-bag (OOB) errors of RF models with respect to the number of trees for
the case using the August UAV image without and with texture features: (a) visible and near infrared
(VNIR) spectral bands only; (b) VNIR + 3 × 3 kernel (GK3); (c) VNIR + 15 × 15 kernel (GK15); and
(d) VNIR + 31 × 31 kernel (GK31).

Two parameters (cost and gamma) of the RBF kernel for the SVM classifier were tuned using
a grid search. The optimal combination of the two parameters was determined through 10-fold
cross-validation of training data. The optimal cost and gamma values were similar for combination
cases of different kernel sizes of GLCM and input UAV images. Figure 4 presents the grid search results
for the cases using the August image and six multi-temporal UAV images with texture feature GK31,
showing the different training accuracy values. The training accuracy obtained by the grid search
ranged between 52 and 82.4% for the case using the August image with texture features, while the
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maximum training accuracy for the case using six UAV images increased to 94%. It should be noted
that this accuracy was obtained during the training phase; hence, higher training accuracy may fail to
achieve higher prediction performance. It was found that the performance difference with respect to
variations of the model parameters for the SVM classifier was also great, compared to the RF classifier,
which indicates the importance of optimal parameter search for the SVM classifier.
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3.2. Visual Assessment of Classification Results

Once optimal parameters were determined, the RF and SVM classifiers were applied to the
different case combinations. Prior to quantitative accuracy assessment, the visual assessment of
classification results was first conducted. When the RF and SVM classification results were compared
for different combinations of input images and kernel sizes, the RF classifier showed misclassifications
at some parcels in the southeastern parts of the study area, but significant differences in classification
patterns were not observed. Figure 5 shows some classification results using the SVM classifier. When
three spectral bands of the August image were used for classification, misclassification and noise
effects by isolated pixels were the greatest in visual inspection of classification results. Confusion
between highland Kimchi cabbage and cabbage was most common, as shown in Figure 5b, mainly due
to their similar spectral characteristics in August (this is further discussed in Section 3.5). When texture
features were combined with spectral information for the case using the August image only, the
number of misclassified and isolated pixels decreased, but some misclassified pixels were still shown
(Figure 5c). Using multi-temporal images greatly reduced misclassified pixels within each parcel,
except for some around the parcel boundaries (Figure 5d). As expected, the use of texture features as
additional information with multi-temporal spectral information showed the best agreement with the
ground-truth data from visual inspection (Figure 5e), indicating the necessity of time-series images
and texture features for crop classification.

The impacts of texture features generated by different kernel sizes on the classification results
were also visually compared. The classified patterns were significantly affected by kernel size. When a
very small kernel size, such as GK3, was used to extract texture features, the classification result was
very similar to the case with spectral information only. As the kernel size increased, the noise effect was
greatly alleviated. When multi-temporal images were used for classification, however, the combination
of texture features with multi-temporal spectral information was less affected by the change in kernel
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size. The increase in kernel size resulted in the reduction of isolated noise patterns, but the difference
was subtle compared to the case using the August UAV image.
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Figure 6 shows variations in OA of classification results without texture features (VNIR) and with
texture features generated from different kernel sizes (GK3, GK15, and GK31) using the August image
and multi-temporal images. Although a very small portion of ground-truth data were used as training
data, the OA values for the two classifiers were notably high (i.e. over 97%) when multi-temporal
images were used for classification. Regardless of the number of input images and the classifier type,
the combination of texture features and spectral information led to an increase in OA. The OA also
increased with kernel size; however, only a slight improvement of OA was achieved for classification
with multi-temporal images as kernel size increased. This result can be explained by the fact that
most useful information for the discrimination of crops was already provided by time-series spectral
information; hence, the contribution of texture features was minimal. In contrast, the improvement
in OA by accounting for texture features was much more significant in the classification result using
the August image only than using the multi-temporal images. Furthermore, the kernel size of GLCM
greatly affected the OA using the August image. As kernel size increased, OA increased for both SVM
and RF classifiers, and the use of GK31 texture features showed the best classification accuracy.

When comparing classification performance of both classifiers, the SVM classifier exhibited better
OA than the RF classifier for the classification with the August image, indicating the superiority of
the SVM classifier for the classification of crops in this study area. The difference in OA between
SVM and RF classifiers was significant at the 5% significance level from the McNemar test [49],
regardless of kernel sizes. It is noteworthy that the small difference in OA between two classifiers
was significant at the 5% significance level even for all classification results based on multi-temporal
images. Despite the similar OA values between two classifiers in the classification of multi-temporal
images, this statistically significant difference was mainly due to evaluation with a very large amount
of reference data (6,710,210 pixels). Even though parameter tuning is more demanding in the SVM
classifier than the RF classifier, the optimal two parameters of the SVM classifier which were determined
during a training stage with a relatively small training dataset could avoid overfitting the training
data, leading to generalization ability for the large amount of reference data in this study.

Some confusion matrices for typical combination cases of the SVM classifier (one image versus
multi-temporal images and with or without texture features) are listed in Table 3. Considering only
the August image, combining texture features (GK31) with spectral information led to an increase of
7.72%p in OA, compared with the classification result with spectral information only (from 83.13%
to 90.85%). The increase of class-wise accuracies was also achieved, as well as the improvement in
OA. As discussed in the visual analysis of classification results, the confusion among four classes
in Table 3 (particularly between highland Kimchi cabbage and cabbage) was significantly reduced,
yielding increases in both PA and UA for all classes. When the August image with VNIR only was
considered for classification, the similar vegetation vitality of highland Kimchi cabbage, cabbage, and
weeds within the fallow class resulted in severe confusion. By accounting for texture features with
spectral information, the confusion could be reduced. However, PA and UA of cabbage were relatively
lower than that of other crops, indicating a persistent misclassification of cabbage to highland Kimchi
cabbage. When multi-temporal images were used for classification, the accuracy values of all classes
increased, particularly with cabbage. Texture features with multi-temporal spectral information proved
most useful in the cabbage class because it alleviated the misclassification of cabbage to highland
Kimchi cabbage.

Based on all evaluation results in Figure 6 and Table 3, it can be concluded that texture information
extracted by the proper kernel size can improve classification performance, and the impact of using
texture features is most significant when using a single image for crop classification. The latter
finding implies the usefulness of texture information when only one UAV image is available for crop
classification, due to difficulty acquiring time-series UAV images in the area of interest.
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Table 3. Confusion matrices and accuracy statistics of some combination cases for the support vector
machine (SVM) classifier. VNIR: visible and near infrared; UA: user’s accuracy; PA: producer’s
accuracy; OA: overall accuracy; GK31: kernel size of 31 × 31.

August Image: VNIR Spectral Information

Classification
Reference Highland Kimchi

Cabbage Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,074,131 342,355 49,838 84,726 86.57
Cabbage 230,661 869,250 65,288 6627 74.18

Potato 107,897 124,020 1,259,483 31,883 82.68
Fallow 67,045 12,343 9497 375,166 80.85
PA (%) 88.34 64.49 91.00 75.27
OA (%) 83.13

August Image: VNIR Spectral Information and GK31 Texture Features

Classification
Reference Highland Kimchi

Cabbage Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,317,807 237,669 22,404 44,455 91.59
Cabbage 128,847 1,050,991 57,648 2636 84.75

Potato 16,522 54,544 1,294,756 18,465 93.53
Fallow 16,558 4764 9298 432,846 93.39
PA (%) 95.35 77.97 93.54 86.85
OA (%) 90.85

Multi-Temporal Images: VNIR Spectral Information

Classification
Reference Highland Kimchi

Cabbage Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,421,871 46,150 11,031 41,618 97.19
Cabbage 15,143 1,294,009 10,189 4185 97.77

Potato 2092 4562 1,360,566 200 99.50
Fallow 40,628 3247 2320 452,399 90.73
PA (%) 98.34 96.00 98.30 90.77 97.30
OA (%) 97.30

Multi-Temporal Images: VNIR Spectral Information and GK31 Texture Features

Classification
Reference Highland Kimchi

Cabbage Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,461,811 35,558 5349 16,199 98.38
Cabbage 7159 1,309,847 5323 2337 98.88

Potato 1346 792 1,372,686 186 99.83
Fallow 9418 1771 748 479,680 97.57
PA (%) 99.48 97.17 99.17 96.24 98.72
OA (%) 98.72

3.4. Comparison of Spectral and Texture Information

To examine which variable was most influential for classification performance, quantitative
measures for variable importance were computed using the MDA in the RF classifier. MDA values of
input variables with respect to different kernel sizes of GLCM are shown in Figure 7. Since 54 input
variables were used for the classification of six multi-temporal images, only the top nine variables
with the highest MDA values are presented for illustration purposes. Regardless of input images and
the kernel size of GLCM, NIR and green bands were the most influential variables of the RF classifier.
In particular, the NIR bands from July to September were included as important variables for the
classification of multi-temporal images. Note that spectral information was more useful than texture
information, and only one texture feature, such as ME, was helpful for multi-temporal images. ME,
which is an estimate of the intensity of all pixels in spatial relationships that contribute to the GLCM,
was the most important variable among the six texture features, irrespective of input images.



Appl. Sci. 2019, 9, 643 12 of 17

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 17 

multi-temporal images. ME, which is an estimate of the intensity of all pixels in spatial relationships 
that contribute to the GLCM, was the most important variable among the six texture features, 
irrespective of input images.  

 
Figure 7. Mean decrease accuracy (MDA) values of input spectral and texture variables with respect 
to kernel size: (a) August image; and (b) multi-temporal images. ME: mean; ENT: entropy; ASM: 
angular second moment; STD: standard deviation; HOM: homogeneity; DIS: dissimilarity. 

The MDA values of input variables were quite different according to the input images. When 
six multi-temporal images were used for classification, the MDA value for each variable was 
relatively small due to contributions of many input variables, but information content provided by 
many input variables led to very high classification accuracy, as shown in Table 3. Although 
multi-temporal spectral bands were considered the most informative, the influence of ME increased 
with kernel size (see the MDA value of ME for GK31 in Figure 7). With classification using only the 
August image, ME was the second most important variable for GK15 and GK31, indicating that the 
ME feature is very useful for the classification of crops in the study area. The contribution of other 
texture features increased with kernel size. For GK3, MDA values of texture features were much 
smaller than those of spectral bands. With increasing kernel size, gains in MDA values were most 
significant for texture features, including DIS and ENT. Texture information extracted from the 
GLCM with the proper kernel size can fill gaps in multi-spectral information, leading to an 
improvement in classification accuracy, as shown in Figure 6 and Table 3. 

 
Figure 8. Some texture features (GK31) in subareas of the August image. 

Figure 7. Mean decrease accuracy (MDA) values of input spectral and texture variables with respect to
kernel size: (a) August image; and (b) multi-temporal images. ME: mean; ENT: entropy; ASM: angular
second moment; STD: standard deviation; HOM: homogeneity; DIS: dissimilarity.

The MDA values of input variables were quite different according to the input images. When six
multi-temporal images were used for classification, the MDA value for each variable was relatively
small due to contributions of many input variables, but information content provided by many input
variables led to very high classification accuracy, as shown in Table 3. Although multi-temporal
spectral bands were considered the most informative, the influence of ME increased with kernel size
(see the MDA value of ME for GK31 in Figure 7). With classification using only the August image,
ME was the second most important variable for GK15 and GK31, indicating that the ME feature is
very useful for the classification of crops in the study area. The contribution of other texture features
increased with kernel size. For GK3, MDA values of texture features were much smaller than those of
spectral bands. With increasing kernel size, gains in MDA values were most significant for texture
features, including DIS and ENT. Texture information extracted from the GLCM with the proper kernel
size can fill gaps in multi-spectral information, leading to an improvement in classification accuracy,
as shown in Figure 6 and Table 3.
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For further qualitative inspection of texture features, some texture features in four subareas of
GK31 are provided in Figure 8. Brighter colors represent larger values in each texture feature. ME,
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which is regarded as the GLCM mean, provides low-pass filtered spatial information that is useful
to mitigate noise effects in the ultra-high-resolution UAV image. As an index for measuring the
randomness of contrast distributions, ENT increased with greater change of brightness values between
the center pixel and its neighboring pixels. ENT values for different classes appear in Figure 8. ASM,
which measures uniformity of contrast, also changed with the four classes. This visual inspection of
texture features further confirmed the usefulness of texture information.

When considering the spatial resolution of the UAV image used for crop classification (i.e., 25 cm),
GK3 and GK31 texture information represents 0.75 m and 7.75 m on the ground, respectively. The GK31
texture features are likely to represent the serial line patterns of crop cultivation well, consequently
leading to superior OA. However, this is the particular result in the study area. If the spatial resolution
of input images and the crop types change, the optimal kernel size of GLCM should be determined
by considering spatial resolution, as well as cultivation patterns and crop characteristics such as size
and shape.

3.5. Time-Series Analysis of Normalized Difference Vegetation Index for Selection of Optimal UAV Image

Spectral characteristics of crops depend on crop type and health conditions, but different crops
may exhibit similar spectral response [35,50]. Accordingly, time-series images acquired during growth
cycles of crops are often used to examine how well these images account for temporal variations
of spectral response. For example, if temporal patterns in spectral responses of crops in the study
area are significantly different, classification based on multi-temporal images can achieve satisfactory
classification accuracy. Conversely, discrimination of crops with similar temporal variations of spectral
responses may be difficult, even when multi-temporal images are used.
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Figure 9 shows temporal variations in the average of normalized difference vegetation index
(NDVI) values at pixels belonging to each crop. NDVI is a standardized index that quantifies greenness
by using the difference in reflectance between NIR and red bands [51]. The average NDVI value of
highland Kimchi cabbage was significantly lower than other crops on 12 July, and peaked in late
August. In late July, cabbage had the highest NDVI value, followed by potatoes. The difference in
average NDVI values between highland Kimchi cabbage and cabbage was not great in the August
image (Figure 9), which led to difficulty in discerning the two crops. Although the difference was
greater on 27 July, as shown in Figure 9, the lowest NDVI value of highland Kimchi may have resulted
in the confusion with fallow and other small vegetation in the classification result using the 27 July
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image. If only one UAV image should be acquired, the image needs to be acquired when the vegetation
vitality of the crop of interest reaches its maximum. Since highland Kimchi cabbage reached its
maximum NDVI value in the 25 August image, we selected that image as the optimal single image.
Actually, the classification accuracy using either the 12 July or the 27 July image was either similar
to or lower than that using the August image. Despite the risk of misclassification using only the
August image, similar spectral responses of different crops highlight the necessity of using additional
information such as texture features, as applied in this study. Since the time to reach the maximum
peak in NDVI may differ every year depending on weather conditions, however, the selection of
the most appropriate acquisition date should be made by considering conditions and types of crops.
Therefore, more extensive experiments should be carried out in other areas with different crop types.
In addition, if phenological characteristics can be estimated from the entire time-series image set [52,53],
a single-image acquisition date can be determined more optimally.

3.6. Classification Methods

In this study, two machine learning algorithms including RF and SVM were applied to crop
classification. Recently, deep learning algorithms including convolutional neural network (CNN) were
widely applied to remote sensing data classification [54–56]. Despite the promising performance of
CNN, Kim et al. [57] reported that the training sample size has greater effects on the accuracy of CNN
than that of SVM in crop classification, indicating a need for numerous training samples for improved
CNN classification performance. Furthermore, Yu et al. [58] also reported that SVM with adjacent
region features showed better accuracy than CNN for moderate-resolution land-cover classification.
Therefore, deep learning is not always superior for all cases, and conventional machine learning
algorithms can achieve classification performance comparable to, or even better than deep learning
algorithms if proper spatial contextual features are combined with spectral information. To further
evaluate the usefulness of texture features for crop classification, comparison with a patch-based CNN
classifier will be conducted.

4. Conclusions

This study investigated the potential of GLCM-based texture information for crop classification
with time-series UAV images and machine learning algorithms. The main focus was on the evaluation
of the benefit of utilization of texture features along with spectral information when using a single UAV
image. A case study of crop classification in the highland Kimchi cabbage cultivation area demonstrated
the most accurate classification of multi-temporal UAV images with GLCM-based texture features.
However, the utilization of texture features with spectral information from multi-temporal images
did not lead to a significant improvement in classification accuracy. In contrast, when only a single
UAV image was used, the utilization of texture features could significantly improve the classification
accuracy. Therefore, when only one UAV image should be used for crop classification due to a difficulty
in constructing a time-series UAV dataset, the information deficiency in spectral information can be
complemented by structural information from texture features. Furthermore, the impact of texture
information on classification accuracy was dependent on the kernel size of GLCM. Texture information
extracted from the GLCM with larger kernel size improved classification performance in the study
area. Therefore, proper kernel size selection is critical for the extraction of GLCM-based texture
features. This indicates that both spatial resolution of input UAV images and shape characteristics
of individual crops of interest should be considered in selection of optimal kernel size. However,
these findings may be specific to this study area with particular crop types and not applicable to
other areas. Therefore, more experiments on other areas with different combinations of crops should
be carried out to strengthen the potential benefit of texture information from UAV images for crop
classification. Experiments regarding determination of the minimum number of UAV images in crop
classification with texture features, and comparison with deep learning algorithms will also be carried
out in the future to extend key findings and recommendations presented herein.
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