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Featured Application: This article describes the evaluation of the automatic classification system
for computed tomography (CT) images using a deep learning technique. Additional learning for
automatic training will help to create various classification models in the medical fields. The results
in this study will be useful for creating new classification models.

Abstract: A large number of images that are usually registered images in a training dataset are
required for creating classification models because training of images using a convolutional neural
network is done using supervised learning. It takes a significant amount of time and effort to create
a registered dataset because recently computed tomography (CT) and magnetic resonance imaging
devices produce hundreds of images per examination. This study aims to evaluate the overall
accuracy of the additional learning and automatic classification systems for CT images. The study
involved 700 patients, who were subjected to contrast or non-contrast CT examination of brain,
neck, chest, abdomen, or pelvis. The images were divided into 500 images per class. The 10-class
dataset was prepared with 10 datasets including with 5000–50,000 images. The overall accuracy
was calculated using a confusion matrix for evaluating the created models. The highest overall
reference accuracy was 0.9033 when the model was trained with a dataset containing 50,000 images.
The additional learning for manual training was effective when datasets with a large number of
images were used. The additional learning for automatic training requires models with an inherent
higher accuracy for the classification.

Keywords: deep learning; medical image classification; additional learning; CT image; automatic
training; GoogLeNet

1. Introduction

Deep learning techniques [1–3], including deep convolutional neural networks (CNNs), are
being employed widely in the field of image processing to conduct image classification [4–6], object
detection [7,8], and image segmentation [9–12] tasks. Recently, many studies [4–17] have investigated
the applications of deep learning techniques in medical imaging, which now serve as an expansion to
this field.

Image diagnosis using computed tomography (CT) and magnetic resonance imaging (MRI) is
currently becoming indispensable in the medical field. Although a large number of CT and MRI images
are being generated from daily medical examinations, these images are referred to as a follow-up for
only a few specific patients. There are many existing models [4–7,13] for the classification of medical
images; however, these models are not usually updated since they are created only when needed.
Thus, it is not possible to improve such models because they lack procedures and feasibility to retrain
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the additional medical images. Additionally, creating models requires a large number of images that
usually are registered images in a training dataset because training images for CNN are processed
using supervised learning algorithms. Herein, we focus on additional learning and automatic learning
for CT images because a current CT scanner has the ability to generate a large number of images per
examination. Although there is an existing report [13] on the classification of CT images including
contrast enhancement data, there are no reports on the classification of medical images based on
the evaluation of the additional learning and automatic image learning system. This study aims to
evaluate the overall accuracy of the additional learning and the automatic classification systems for
CT images.

2. Materials and Methods

2.1. Subjects and CT Images

The study included 700 patients (male: 371, female: 329; mean age ± standard deviation (SD):
59.2 ± 19.5 years), who were subjected to either a contrast or non-contrast CT examination of the brain,
neck, chest, abdomen, or pelvis in January, 2016. This study was approved by the ethics committee of
the Hokkaido University Hospital. The CT images were obtained on a 320-detector-row CT scanner
(Aquilion ONE; Canon Medical Systems, Otawara, Japan), an 80-detector-row CT scanner (Aquilion
PRIME; Canon Medical Systems, Otawara, Japan), and a 64-detector-row Light Speed VCT (GE Medical
Systems, Milwaukee, WI, USA).

2.2. Datasets

The dataset of CT images for creating models for classification was divided in 10 classes for
brain, neck, chest, abdomen, and pelvis with contrast-enhanced (CE) and non-contrast-enhanced
examination, defined as plain (P). The number of images in each class was 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, and 5000 images from the earliest date that they were acquired from the
700 patients; the names of the corresponding datasets were defined as 5 K, 10 K, 15 K, 20 K, 25 K, 30 K,
35 K, 40 K, 45 K, and 50 K, respectively, where the letter K represents one thousand; e.g., the 5 K dataset
includes a total of 5000 images, 500 images each of the 10 classes in that dataset. For the validation
dataset, another three different datasets (A, B, and C) of 1000 images for each class were prepared
(a total of 30,000 images), which were exclusive from the above datasets. The names and details of
each dataset are listed in Table 1.

Table 1. Names of datasets and the number of images in each label.

Class Name Dataset Validation Dataset

5 K 10 K 15 K 20 K 25 K 30 K 35 K 40 K 45 K 50 K A B C

Brain (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Brain (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Neck (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Neck (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Chest (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Chest (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Abdomen (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Abdomen (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Pelvis (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Pelvis (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Total number of

images 5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 10,000 10,000 10,000

P: plain, CE: contrast enhanced.

The image range of each class was defined as follows. Brain: slice from the anterior tip of the
parietal bone to the foramen magnum; neck: slice from the foramen magnum to the pulmonary apex;
chest: slice from the pulmonary apex to the diaphragm; abdomen: slice from the diaphragm to the top
of an iliac crest; pelvis: slice from the top of an iliac crest to the distal end of the ischium (Figure 1). The
range of each class was the same as that of a previous report [13] for the classification of CT images.
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Figure 1. Slice position and sample CT images of the 10 classes.

CE examination involved the intravascular injection of contrast media before examination.
The timing of the scan from injection was not considered. Exclusion criteria of CT images for the
datasets were images with excessive magnification, images with the reconstruction kernel of bone
or lung, images with nothing above the anterior tip of the parietal bone, and images with only arms
or legs.

2.3. Preprocessing of Images for Creating the Models

The CT images were retrieved from the picture archiving and communication system. To convert
the images for use by the training database, the CT images were converted from digital imaging and
communications in medicine (DICOM) format to joint photographic experts group (JPEG) format
using a dedicated DICOM software (XTREK view, J-MAC SYSTEM Inc., Sapporo, Japan). The window
width and level of DICOM image were used to preset values in the DICOM tag. The DICOM images
were converted to JPEG images with a size of 512 × 512 pixels. JPEG files were sorted into folders
according to the class that each image belonged to.

2.4. Manual Training of the Images for Creating the Models

The outline of the training performed for creating the models is shown in Figure 2. The authoring
software for deep learning was performed via in-house MATLAB (The Mathworks Inc., Natick,
MA, USA) software, and a deep learning optimized machine with two GTX1080 Ti GPUs with
11.34 TFlops of single precision, 484 GB/s of memory bandwidth, and 11 GB of memory per board
were used. Herein, GoogLeNet [3] with 22 layers was used as the CNN architecture (Figure 3).
The hyper-parameters of the training models are as follows: Maximum training epochs were 10 and
an initial learning rate was 0.0001. The learning rate was fixed throughout the training. The overall
accuracy was calculated using the confusion matrix in the software. The results were evaluated
using the validation datasets. Each dataset for training was sorted by a radiological technologist with
17 years of experience. Datasets were divided into 500 images per class for every 5000 images and
1000 images per class for every 10,000 images to create a model for each dataset. Additional learning
processes, which were repeated up to the 50 K dataset, were performed to evaluate the accuracy after
additional effects.
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2.5. Automatic Training for Creating Models

The outline of the training for creating the models is shown in Figure 3. The authoring software,
machine, CNN architecture, and hyper-parameters of training models were the same as those discussed
in Section 2.4. The automatic training system was developed with MATLAB software because
supervised learning usually requires images that were classified by humans. Differing from manual
training, the following functions were added to the software. (i) The created models with each dataset
were used to automatically classify new images into the classes to which they should belong. (ii) The
classified JPEG files were sorted into each folder according to their image classes. (iii) The classified
images were used for the training to create new models. (iv) The automatic classification and creation
of a model was repeated up to the 50 K dataset (Figure 4). The new images provided were divided
into 500 images per class for every 5000 images and 1000 images per class for every 10,000 images.
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Figure 4. Details of the additional learning process for automatic training (Example case using
5 K datasets).

2.6. Evaluation of the Created Models

The confusion matrix obtained using each dataset, shown in Figure 5, is an indicator of the
performance of the created models. The training performed with 10 image classes is shown as
a 10 × 10 table and all performances were based on numbers obtained by applying the classifier to the
validation dataset. The overall accuracy was obtained as a ratio of the number of correctly classified
images in all validation images to the total number of images. The overall accuracies in each dataset
were calculated as reference accuracy. Accuracies of the manual and automatic training were calculated
for each dataset. Furthermore, the overall accuracies were evaluated three times with each validation
dataset and presented at mean regardless of the dataset.



Appl. Sci. 2019, 9, 682 6 of 9Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 9 

 
Figure 5. Confusion matrix for evaluating the overall accuracy, which was calculated using the 
validation dataset A with 50 K dataset. 

3. Results and Discussions 

3.1. Reference Accuracy 

Table 2 shows the overall accuracy for each dataset. With an increase in the size of image 
datasets, the overall accuracy became higher. The highest overall accuracy for the datasets used was 
0.9033 and the model was trained using the 50 K dataset. 

Table 2. Overall accuracy for each dataset. 

Dataset Type Group Dataset 
  5 K 10 K 15 K 20 K 25 K 30 K 35 K 40 K 45 K 50 K 

Validation 
dataset 

A 0.6028 0.6532 0.7293 0.7914 0.8334 0.8369 0.8615 0.8947 0.8986 0.9033 
B 0.4833 0.5352 0.5713 0.6166 0.6789 0.7056 0.7693 0.7877 0.7884 0.8422 
C 0.4927 0.5101 0.5899 0.613 0.7121 0.7397 0.8208 0.8472 0.8633 0.8974 

 mean 0.5263 0.5662 0.6302 0.6737 0.7415 0.7607 0.8172 0.8432 0.8501 0.881 

3.2. Manual Training 

Figure 6 shows the relation between datasets and the overall accuracy of the created model for 
manual training. For the additional learning of every 5000 images, the overall accuracy when 
additional learning started from 5 K to 20 K increased continuously up to 25 K. However, after 
exceeding the 30 K dataset, the overall accuracy fluctuated. For the additional learning of every 10,000 
images, the overall accuracy increased continuously up to 40 K. However, the overall accuracy of the 
dataset of 40 K slightly declined compared to that of 30 K. 

 

Figure 5. Confusion matrix for evaluating the overall accuracy, which was calculated using the
validation dataset A with 50 K dataset.

3. Results and Discussions

3.1. Reference Accuracy

Table 2 shows the overall accuracy for each dataset. With an increase in the size of image datasets,
the overall accuracy became higher. The highest overall accuracy for the datasets used was 0.9033 and
the model was trained using the 50 K dataset.

Table 2. Overall accuracy for each dataset.

Dataset Type Group Dataset

5 K 10 K 15 K 20 K 25 K 30 K 35 K 40 K 45 K 50 K

Validation
dataset

A 0.6028 0.6532 0.7293 0.7914 0.8334 0.8369 0.8615 0.8947 0.8986 0.9033
B 0.4833 0.5352 0.5713 0.6166 0.6789 0.7056 0.7693 0.7877 0.7884 0.8422
C 0.4927 0.5101 0.5899 0.613 0.7121 0.7397 0.8208 0.8472 0.8633 0.8974

mean 0.5263 0.5662 0.6302 0.6737 0.7415 0.7607 0.8172 0.8432 0.8501 0.881

3.2. Manual Training

Figure 6 shows the relation between datasets and the overall accuracy of the created model for
manual training. For the additional learning of every 5000 images, the overall accuracy when additional
learning started from 5 K to 20 K increased continuously up to 25 K. However, after exceeding the 30 K
dataset, the overall accuracy fluctuated. For the additional learning of every 10,000 images, the overall
accuracy increased continuously up to 40 K. However, the overall accuracy of the dataset of 40 K
slightly declined compared to that of 30 K.
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Figure 6. Relation between datasets and overall accuracy for manual training. (A) Additional learning
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3.3. Automatic Training

Figure 7 shows the relation between datasets and the overall accuracy of the created model for
automatic training. For the additional learning of every 5000 images, there was little increase in
the overall accuracy when the additional learning started from 5 K to 20 K. There was a gradual
decrease in the overall accuracy when the additional learning started from 25 K to 35 K and over 40 K
dataset. There were no subsequent data when the additional learning started from 5 K to 20 K because
some created models could not classify new images up to 10 classes because they had incomplete
classification models. For the additional learning for every 10,000 images, there was little increase in
the overall accuracy. However, when the additional learning started from 40 K, the overall accuracy
was maintained at a high value.
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This study evaluated the overall accuracy of the additional learning and automatic classification
system for CT images. From the viewpoint of additional learning, there was a significant improvement
of the overall accuracy for the manual training. However, the additional dataset to be added should
be prepared with a large number of images because the training for every 5000 images might be
affected by specific feature amount. One of the reasons for the fluctuating accuracy, as shown in
Figure 6A, might be insufficient feature information in the dataset. For the additional learning of every
5000 images, the number of images for the additional training was small perhaps because, as shown
by a previous report [13], the number of CT images affected the accuracy of training the dataset. If the
additional dataset included specific patients’ data (for instance, the patient who suffered serious traffic
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accident), the feature amount through the training may be changed dramatically. Therefore, additional
images with a variety of features should be prepared by using a high enough number of images
for additional learning. On the contrary, automatic training showed no improvement in the overall
accuracy, one reason being that the inherent accuracy is not affected by the created models. As the
reference overall accuracy, the datasets between 5 K and 20 K were under 0.8 of the overall accuracy.
Inaccurate classification affected the models created for automatic training. As a result, there was no
further improvement in the overall accuracy. However, when additional learning started from the 40 K
and larger datasets, the reference accuracy around 0.9 maintained the overall accuracy at this value.
This means that automatic training with a model of higher inherent accuracy might be effective in
performing accurate classifications.

The limitations of this study are as follows. First, the hyper-parameters of the training models
used are fixed parameters. Although a previous study [13] showed that the hyper-parameters and
CNN architecture affected the overall accuracy, the CNN architecture of GoogLeNet is suitable for
performing classification in many fields owing to its high accuracy; thus, we used fixed parameters.
Second, the process of training accuracy and loss were not showed in this study because the ability
to generalize was most important for the intended application [18] in the training process; thus, we
only focused on the overall accuracy. However, the overfitting would hardly cause problems during
training in this study because GoogLeNet adopted the inception module [19] and global average
pooling [20] for preventing overfitting. Third, the additional image data was fixed at 500 images per
class. Actual human CT images are often taken from a specific region such as from the lung or liver.
The number of images in each class was unstable and imbalanced, as observed during the daily routine
examinations. Therefore, the standard of the additional images was required to be set to the number of
images and not patients because the additional learning needs to be evaluated in the same situation.
In the future, we plan to investigate the effects of an imbalanced number of images when creating an
additional model. As for the images, the CT images were converted from DICOM to JPEG images in
this study. The CT images have Hounsfield Units (HUs, CT-specific numbers); by definition, water
is zero HU and air is −1000 HU. A previous study [21] showed the strong correlation between HUs
and grayscales though the JPEG images have no information of absolute values. We supposed the
classification of the slice position might not be affected in this study.

4. Conclusions

Herein, we evaluated the overall accuracy of the additional learning and the automatic
classification system for CT images. It was found that additional learning for manual training was
effective when a large number of images were used. The additional learning for automatic training
requires models with the inherent higher accuracy for the classification.
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