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Abstract: Volume grating is a key optical component due to its comprehensive applications. Other
than the common grating structures, volume grating is essentially a predesigned refractive index
distribution recorded in materials, which raises the challenges of metrology. Although we have
demonstrated the potential application of ellipsometry for volume grating characterization, it has
been limited due to the absence of general forward model reflecting the refractive index distribution.
Herein, we introduced a distributed dielectric constant based rigorous coupled-wave analysis (RCWA)
model to interpret the interaction between the incident light and volume grating, with which the
Mueller matrix can be calculated. Combining with a regression analysis with the objective to match the
measured Mueller matrices with minimum mean square error (MSE), the parameters of the dielectric
constant distribution function can be determined. The proposed method has been demonstrated using
a series of simulations of measuring the volume gratings with different dielectric constant distribution
functions. Further demonstration has been carried out by experimental measurements on volume
holographic gratings recorded in the composite of polymer and zinc sulfide (ZnS) nanoparticles.
By directly fitting the spatiotemporal concentration of the nanoparticles, the diffusion coefficient has
been further evaluated, which is consistent to the result reported in our previous investigations.

Keywords: ellipsometry; volume grating; nanostructure metrology; distributed dielectric constant
model; holography

1. Introduction

Volume gratings, which are formed by introducing a periodic refractive index modulation
within the volume of a bulk material, are of great importance and popularly used in optical physics
for data storage [1], optical elements [2], as well as optical communications [3]. Many kinds
of materials, such as crystals [4], fused silica [5,6], photo-thermo-refractive (PTR) glass [7–9],
and polymers [10,11], have been employed as the recording media. In order to achieve larger refractive
index modulation as well as higher data storage density in flexible devices with lightweight [12–14],
polymer nanocomposites, with doped nanoparticles [15–24], has attracted special attentions.

Other than common grating structures that can be easily observed using techniques such as
microscopy, volume grating does not exhibit structural characteristics such as grating groove and
ridge physically. Therefore, metrology of a volume grating is challenging. Sabel and Zschocher
avoided the limit of resolution and achieved the image of the volume phase gratings recorded in
polymer using an optical microscopy [25]. Braun and co-workers had tried to monitor the eventual
status of nanoparticle distribution in the holographic gratings using transmission electron microscopy
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(TEM) [26]. Although insightful information has been achieved, it is highly desirable to observe the
volume gratings non-destructively. In practice, diffraction efficiency has been used comprehensively by
many researchers to evaluate volume gratings [27,28]. However, since the spatial distribution is not the
only factor affecting the diffraction efficiency [29], it was not always a good predictor on nanoparticle
distribution. Chen et al. proposed a method based on angular selectivity curves to measure the
refractive index modulation (RIM, i.e., the refractive index difference between bright and dark regions)
of a volume grating recorded in photo-thermo-refractive glass and achieved high precision [9]. Butcher
et al. measured the thickness, RIM and duty ratio of a volume diffraction grating using a commercial
Fourier-transform spectrometer (FTS) combined with multi-incident angle measurement [30].

Recently, considering the advantages such as nondestructive to the samples, high sensitivity on
anisotropy, as well as the capability of dealing with depolarization, we introduced Mueller matrix
ellipsometry (MME) to characterize the volume holographic gratings recorded in a composite of
poly(acrylate-co-acrylamide) and 5-nm zinc sulfide (ZnS) nanoparticles, and further studied the
process of nanoparticle diffusion upon holography [31]. The time-dependent parameters had been
achieved, such as the bright and dark region width, refractive index and nanoparticle volume fractions,
which pave the way for the quantitative study of the nanoparticle diffusion process. However, due to
the absence of general refractive index distribution model, an assumption of rectangular cross-section
of the grating has been made, which may degrade the fidelity of the metrology, especially in the cases
when the distribution of refractive index is not sinusoidal [32,33] or significant absorption exists [34].

In this work, based on the rigorous coupled-wave analysis (RCWA) theory [35], we proposed
a distributed dielectric constant model to interpret the interaction between the incident light and
volume grating and calculate the Mueller matrices. In such a model, the dielectric constant of the
volume grating is described by a general periodic spatial function, and two-dimensional discretization
in one period have been carried out. By a regression analysis with the objective to best match the
measured Mueller matrices, the refractive index distribution function can be reconstructed, as well
as the thickness of the grating. The proposed method has been demonstrated using a series of
simulations of measuring the volume gratings with different dielectric constant distribution functions.
Measurement experiments have been carried out on the volume holographic gratings recorded in
a composite of polymer and 5-nm zinc sulfide (ZnS) particles with different recording time of 5 s, 10 s,
15 s, 20 s, 25 s, 30 s, 35 s and 40 s. The rational results demonstrate the validity of the proposed method.
By directly fitting the spatiotemporal concentration of ZnS nanoparticles, an apparent diffusion
coefficient of 2.18×10−15 m2 s−1 has been achieved, which agree with our previously reported results
of 2.0×10−15 m2 s−1 [31].

2. Methods

Ellipsometry is a typical model-based technology, which usually involves a multiparameter
forward model and the solution of an inverse problem. The former describes the interaction between
the probing light and the sample, while the objective of the latter is fitting the measured data with the
theoretical outputs of the forward model. Determining an appropriate model to accurately calculate
the polarization state change of the incident beam induced by the light-nanostructure interaction is the
premise of a successful metrology.

Different to common grating structures consists of ridge and groove that are typically
made of two different materials (such as air and grating material), the volume grating is
essentially a specific distribution of refractive indices in the material, which can be depicted as
Figure 1a. The fundamental principle of such distribution formation is based on the photoinduced
property changes like photopolymerization induced diffusion, or ultraviolet radiation and thermal
development, giving rise to expected refractive index distribution in the recording material, such as
polymer-nanoparticle composites as well as PTR glasses, etc. As in a polymer-nanoparticle system,
the photo-active monomer consumption occurs in bright regions during holography because of
photopolymerization, which results in the movement of monomers towards the bright regions.
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Consequently, the nanoparticles will be squeezed into the dark regions due to the chemical potential
effects. As a result, a sinusoidal refractive index distribution as shown in Figure 1a is expected in the
formed polymer nanocomposite. In order to accurately describe such a system, a distributed dielectric
constant-based RCWA is proposed as the forward model for volume grating characterization.
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Figure 1. Scheme of the (a) spatial refractive index distribution in a volume grating; and (b) the
corresponding distributed dielectric constant model used for rigorous coupled-wave analysis.

2.1. Distributed Dielectric Constant-Based RCWA

For a volume grating whose refractive index distributed in the volume grating can be defined by
an arbitrary periodic spatial function n(x) as shown Figure 1a, a RCWA model based on a distributed
refractive index model can be discretized as Figure 1b. The geometric domain is divided into three
regions, i.e. region I, II and the grating region, and the coordinate system is defined as shown in
Figure 1. Angle of incident θ and angle of azimuth ϕ are defined as shown in Figure 1a as well.
If a specific function of refractive index distribution can be predetermined, such as the sinusoidal
distribution shown in Figure 1a, the material optical properties can be quantified by some parameters,
such as the pitch Λ, the height of grating region H, the initial refractive index n0, and the amplitude of
the maximum refractive index variation nA. Regardless of magnetic material, the relationship between
refractive index n and relative dielectric constant ε (i.e. permittivity) is that ε = n2.

At first, the dielectric material in a period can be uniformly discretized into N units along x
axis. Without losing generality, supposing the distribution can be described by a sinusoidal function,
the refractive indices at an arbitrary position x can be achieved using interpolation. At the same time,
if the optical property variates along z direction, a commonly used layer-by-layer discretization along
z axis can be carried out as well. As shown in Figure 1b, the grating region is sliced into L layers in z
direction and N units in x direction. Then, the x-dependent relative dielectric constant at l-th layer can
be expanded as Fourier series

ε l(x) = ∑
g

ε l,g exp
(

j
2πg
Λ

x
)

, (1)

where εl,g is the g-th component of the Fourier expansion, which can be obtained as

ε l,g =


1
N

N
∑

n=1
ε ln g = 0

1
−j2πg

[
N−1
∑

n=1

(
ε ln − ε l(n+1)

)
exp

(
−j 2πng

N

)
+ ε lN − ε l1

]
g 6= 0

, (2)



Appl. Sci. 2019, 9, 698 4 of 15

where N is the number of units in one period. In the same way, the reciprocal of dielectric constant can
be expanded as

1
ε l(x)

= ∑
g
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1
ε
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l,g
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x
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The electrical field expressions of region I (z < 0) and II (z > H) can be achieved as Equations (5)
and (6) by Rayleigh expansion

EI = Einc + ∑
i
[Ri exp(−jkR,i•r)], (5)

EI I = ∑
i
{Ti exp[−jkT,i•(r− Hẑ)]}, (6)

where Einc is normalized incident electrical field; H is total height of the volume grating; Ri is the
amplitude of i-th diffractive wave; Ti is the amplitude of i-th transmit wave; r is the position vector of
an arbitrary point on the plane wave front; and kR,i is the wave vector of i-th transmit wave.

According to Floquet theorem, the following conditions should be satisfied,

kρ,i = kxix̂ + kyiŷ + kqz,iẑ; ρ = R, T, (7)

kxi = kinc,x − i
2π

Λ
, (8)

kyi = kinc,y, (9)

where i is the diffraction order, kρz,i is z component of the wave vector.
In the grating region (0 < z < H), the electric field El and magnetic field Hl can be written as

Floquet-Fourier series as

El = ∑
i

Sl,i(z) exp
[
−j
(
kxix + kyiy

)]
= ∑

i

{
Sl,xi(z)x̂ + Sl,yi(z)ŷ + Sl,zi(z)ẑ

}
exp

[
−j
(
kxix + kyiy

)] , (10)

Hl =
(

ε0
µ0

) 1
2
∑
i

Ul,i(z) exp
[
−j
(
kxix + kyiy

)]
=
(

ε0
µ0

) 1
2
∑
i

{
Ul,xi(z)x̂ + Ul,yi(z)ŷ + Ul,zi(z)ẑ

}
exp

[
−j
(
kxix + kyiy

)] , (11)

where Sl,i(z) and Ul,i(z) are the amplitudes of the electric and magnetic fields of the l-th layer in the
grating region. In the grating region, the electric and magnetic fields satisfy the Maxwell equations

∇× El = −jk0µH′l , (12)

∇×H′l = jk0ε(x)El , (13)

where k0 is the wave number in the free space, given by k0 = 2π/λ0 and λ0 is the wavelength of the
incident wave in free space; ε0 and µ0 are the electric permittivity and magnetic permeability in the
free space and

H′l =
√

µ0/ε0Hl . (14)
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Then submit Equations (10) and (11) to Maxwell equations Equations (12) and (13), the coupled wave
equation in matrix form can be achieved as

∂

∂z


Sl,x
Sl,y
Ul,x
Ul,y

 = jk0


0 0 KxE−1

l−tpKy I−KyE−1
l−tpKy

0 0 KxE−1
l−tpKx − I −KxE−1

l−tpKy

KxKy F−1
l −K2

y 0 0
K2

x − El−tp −KyKx 0 0




Sl,x
Sl,y
Ul,x
Ul,y

, (15)

where Kx and Ky are diagonal matrices, whose diagonal elements are kxi/k0 and kyi/k0; I is identity
matrix with the same dimension of K. El-tp is the Toeplitz matrix consists of the Fourier coefficients of
the relative dielectric constant at the l-th layer. Fl is the Toeplitz matrix corresponding to the reciprocal
of the relative dielectric constant.

Combined with the boundary conditions and enhanced transmit matrix, the distribution of the
electric field R and magnetic field T can be achieved by solving Equation (15). Further, the reflected and
transmit electric fields of s- and p- polarized light can be achieved. If the transmission is considered,
the amplitudes of the electric fields and the components of Jones matrix can be expressed as

tpp =
Etp

Eip
, (16)

tsp =
Ets

Eip
, (17)

tss =
Ets

Eis
, (18)

tps =
Etp

Eis
, (19)

And then, Mueller matrix can be calculated as

M=A
(

J⊗ J*
)

A−1. (20)

where

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 j −j 0

, (21)

J =

[
tpp tps

tsp tss

]
. (22)

2.2. Inverse Problem Solving

It is insufficient to successfully obtain the measurands only with the Mueller matrices measured
by MME and the Mueller matrices calculated using the forward model. An inverse problem solving
process needs to be applied to find out the appropriated values for the measurands, which are able to
fit the measured Mueller matrices with minimum MSE. A weighted least-squares regression analysis
method (Levenberg–Marquardt algorithm) [36] is performed and the weighted mean square error
function is defined as

χ2
r =

1
15Q− P

Q

∑
q=1

4

∑
u,v=1

[
mmeas

uv,k −mcalc
uv,q

σ(muv,q)

]2

, (23)

where q stands for the q-th spectral point in Q spectral points in total, subscript indices u and v represent
all the Mueller matrix elements normalized to m11 except m11, P is the measurands number, muv,q with
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superscript meas and calc denote the measured and calculated Mueller matrix elements, respectively,
and σ(muv,q) is the estimated standard deviation associated with muv,q.

In this work, the measurands could be the parameters need to be determined in refractive index
distribution function, the geometric parameters of the volume grating samples, the measurement
configuration conditions such as θ and ϕ, and the thickness H.

3. Simulation

In order to demonstrate the generality and validity of the proposed method, a series of volume
grating measurements are simulated, with different dielectric constant distribution functions. Without
losing generality, three typical distribution functions such as periodic binary distribution, periodic
linear distribution, as well as continuous sinusoidal distribution are selected. These functions are
selected because most of the complex functions can be easily assembled by the linear combinations of
these simple functions. For the convenience of comparing the effects of function type on the Mueller
matrix spectra, the nominal parameters of sample setting and measurement configuration are shared.
The angle of incidence θ is fixed as 25◦, and the angle of azimuth ϕ is set as 20◦. The substrates are
glasses. The pitch of the dielectric distribution Λ is fix as 800 nm. For each test case of different function
type, two thickness settings H are examined—3 µm and 5 µm, respectively. Considering the pitch Λ
can be usually well controlled by the process of grating fabrication, we fixed it as a constant. Since the
thickness H, angle of incidence θ, and the angle of azimuth ϕ are easily varied parameters, we need
reconstruct these parameters in the fitting process.

The general procedure of the simulation can be divided into three steps. At first, according to the
trues values of parameters, the theoretical Mueller matrices will be calculated. Then, random errors
with signal-noise-ratio SNR = 10000 will be injected into the theoretical Mueller matrices to generate
a set of measured Mueller matrices. At last, by a regression started with the initial values of parameters
will be carried with the objective to best fit the measured Mueller matrices. When the optimal solution
is achieved, we achieved the measured values of these parameters as well as corresponding fitted
Mueller matrices.

To avoid the unphysical refractive index spectra, we quoted the correlations between the
refractive index and nanoparticles weight fractions ω reported in Ref. [31], so that the appropriate
refractive index curve can be selected according to the value of nanoparticles weight fraction. Then,
the dielectric constant distribution function can be represented by the distribution function of the
nanoparticle concentration.

3.1. Periodic Binary Distribution

In the first case, binary distribution defined by Equation (24) is used.

ω =

{
ωa (0 < x < f Λ)

ωb ( f Λ < x < Λ)
, (24)

where ωa and ωb represent different nanoparticle concentration at different position in one pitch. f is
the duty cycle of such a binary grating, which is set as 0.5 in our simulation.

In this case, the parameters ωa and ωb are measurands we need to determine. As mentioned in
the previous paragraph, H, θ, and ϕ are the parameters needs to be verified. The measured and fitted
Mueller matrix spectra are shown in Figure 2, and the corresponding parameters are listed in Table 1.
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Figure 2. Measured Mueller matrix spectra (blue) and fitted Mueller matrix spectra (red) for the volume
gratings whose dielectric constant is a periodic binary distribution, with thicknesses of (a) 3 µm and
(b) 5 µm, respectively.

Table 1. Simulation results of case 1.

H (µm) ωa ωb H θ ϕ

3
Initial value 0.16 0.38 3.1 23.5 18

Measured value 0.28 0.44 2.99 24.79 19.14
True values 0.26 0.42 3 25 20

5
Initial value 0.16 0.38 5.1 23.5 18

Measured value 0.29 0.45 4.98 24.92 19.98
True values 0.26 0.42 5 25 20

As shown in Figure 2, although random noise has been injected into the “measured” Mueller
matrices, the fitting is good. In Figure 2a,b, nonzero Mueller matrix elements in the off-diagonal
elements are observed, clearly showing the anisotropy of the samples. As shown in Table 1, although
the initial values of measurands ωa and ωb are given with large relative deviations to their true value,
the measured values converge to their true values, which demonstrate the accuracy and robustness of
the proposed method. Although the setting parameters H, θ, and ϕ are fitted with the same algorithm,
their measured values vary in a quite small range and converge to their true values as well.

3.2. Periodic Linear Distribution

In the second test case, the fidelity of the proposed method for a periodic linear dielectric constant
distribution will be examined. The distribution function is defined as

ω = ωb + ωkx (0 < x < Λ), (25)

where ωb and ωk represent the intercept and the slope of the linear relationship in one pitch,
respectively.

In this case, the parameters ωb and ωk are measurands we need to determine. Due to the same
reason, H, θ, and ϕ are the parameters needs to be verified. The measured and fitted Mueller matrix
spectra are shown in Figure 3, and the corresponding parameters are listed in Table 2.
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Figure 3. Measured Mueller matrix spectra (blue) and fitted Mueller matrix spectra (red) for the volume
gratings whose dielectric constant is a periodic linear distribution, with thicknesses of (a) 3 µm and (b)
5 µm, respectively.

Table 2. Simulation results of case 2.

H (µm) ωb ωk H θ ϕ

3
Initial value 0.18 1.1 2.8 23.5 18

Measured value 0.20 1.02 2.85 23.56 18.97
True values 0.2 1 3 25 20

5
Initial value 0.18 1.1 4.8 23.5 18

Measured value 0.21 1.00 4.98 23.75 20.01
True values 0.2 1 5 25 20

Good-fitting results have been achieved as well, as shown in Figure 3. It is worth to note that the
anisotropy encoded in the Mueller matrix spectra shown in Figure 3 are much more significant than
the observations from Figure 2. This is because in the second case, the dielectric constant distributed in
one pitch is not symmetric. The results list in Table 2 show the accuracy of the proposed method when
the local optical constants are linear to the position.

3.3. Continuous Sinusoidal Distribution

In the last case study, we studied the possibility of determining a continuous dielectric constant
distribution using the proposed method, because in most of the existing volume holographic gratings,
the dielectric constants are considered sinusoidally distributed. The distribution function is defined as

ω = ω0 + ωA sin(x) (0 < x < Λ), (26)

where ω0 and ωA represent the average value and variation amplitude of nanoparticle concentration
in one pitch, respectively.

In this case, the parameters ω0 and ωA are measurands we need to determine. H, θ, and ϕ are
reconstructed as well. The measured and fitted Mueller matrix spectra are shown in Figure 4, and the
corresponding parameters are listed in Table 3.
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Figure 4. Measured Mueller matrix spectra (blue) and fitted Mueller matrix spectra (red) for the volume
gratings whose dielectric constant is a continuous sinusoidal distribution, with thicknesses of (a) 3 µm
and (b) 5 µm, respectively.

Table 3. Simulation results of case 3.

H (µm) ω0 ωA H θ ϕ

3
Initial value 0.3 0.1 3.1 23.5 18

Measured value 0.36 0.15 3.00 25.00 20.00
True values 0.36 0.15 3 25 20

5
Initial value 0.34 0.13 5.1 23.5 18

Measured value 0.39 0.15 5.01 24.99 20.00
True values 0.36 0.15 5 25 20

Since the nanoparticle distribution in one pitch is symmetric again, the achieved anisotropy in
the spectrum is not as significant as in the second case, where the values of the off-diagonal elements
shown in Figure 4 are at the similar level as in Figure 2. If further attention is paid to the results list
in Table 3, a significant improvement on the accuracy can be observed comparing to the precious
two cases. It may be attributed to the less singular points for the case of a continuous distribution,
which decreases the numerical errors.

The above simulations demonstrate the feasibility, effectiveness, robustness of the proposed
method. It is worth to point out, more complex distribution function with more parameters need to be
determined will not noticeably degrade the performance of the proposed method, since the number of
wavelength points in the spectrum usually is enough for obtaining the solution. If we compare the
Mueller matrix spectra reported in Figures 3–5, significant differences can be distinguished, although
the important parameters such as thickness, pitch, angle of incidence and azimuth, even similar
interval of the refractive index changes are shared. Such high sensitivity can be used to verify the
distribution function type selection, i.e., an inappropriate selection of function type is highly possible
to result in the failure of regression.

4. Experiment

4.1. Volume Gratings Preparation

The volume gratings were prepared following the procedures introduces in our previous work [31].
The ZnS nanoparticles are about 5 nm in diameter, and were synthesized using pot reaction in oil
bath followed by a purifying process [23,31]. Then the nanoparticles were dried in vacuum at room
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temperature for 2 hours. Homogeneous holographic mixtures were prepared by ultrasonication at
30 ◦C for 50 min with the concentration of ZnS nanoparticles as 22.6 vol% using the recipe given in [31].

To form the holographic gratings, the mixtures were inject into the cavity formed by two
parallel glasses, and the thickness of the sample is controlled by the silica spacers with a diameter
of ~ 8 µm. Volume gratings were recorded in the cell by two separate 442 nm He-Cd laser beams
with equal intensity of 5 mW/cm2 irradiating on the cells to form a sinusoidal hologram with period
of 800 nm [23,31]. Different samples were prepared by varying the duration of the irradiation of 5 s,
10 s, 15 s, 20 s, 25 s, 30 s, 35 s, and 40 s respectively. Postcure in UV with intensity of 20 mW/cm2 for
10 minutes was implemented at last to fix the grating structures.

4.2. Experimental Setup

A Mueller matrix ellipsometer (ME-L ellipsometer, Wuhan Eoptics Technology Co., China) [37]
will be used to measure the volume gratings. The MME has a dual rotating compensator configuration,
whose layout in order of light propagation is shown in Figure 5, where P and A are the polarizer
and analyzer, respectively; Cr1 and Cr2 refer to the first and second rotating compensators who are
rotating with a fixed ratio of angular velocity; and S represents the holographic grating. With this
instrument, the 16 Mueller matrix elements can be obtained in a single measurement. The spectral
range of the instrument covers from 200 to 1000 nm. Since the light reflections from the glass surface
and the sample are difficult to be differentiated by the detector in reflection mode, the transmission
mode, i.e. straight through mode, was selected in our experiments. The samples are placed on the stage
as shown in Figure 5. When the sample is rotated around the direction of light propagation, different
azimuthal angle can be achieved. If the stage is rotated, the incident angle θ can be arbitrary selected.
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4.3. Measurement Results and Discussions

Measurement experiments are carried out on the volume holographic gratings prepared in
Section 4.1. The angle of incidence θ for the probing light was fixed at approximate 25◦. Since the
manual manipulation cannot guarantee the exact value of angle of incidence, we set it as a measurand
with an initial value of 25◦. The azimuthal angle ϕ was set as 0◦, which indicates the incident plane is
perpendicular to the gratings. In this case, the off-diagonal elements in the measured Mueller matrices
should be zeros, which can be applied to check the azimuthal angle settings in measurements. Same as
angle of incidence, the azimuthal angle was set as a measurand with initial value of 0◦ to avoid the
error introduced by manual manipulation. In analysis, the spectral range was from 400 to 1000 nm
with an increment of 5 nm, and the distributed dielectric constant model based RCWA proposed in
Section 2.1 was used to calculate the Mueller matrices. The distributed refractive index is assumed
sinusoidal, which is defined as n(x) shown in Figure 1a. The number of retained orders in the truncated
Fourier series was 12. Since the preliminary study [31] on the sample revealed that no significant
refractive index variation along z direction had been observed because both the nanoparticles and the
polymers are not absorbing materials, we set the layer number L to be 1 to improve the calculation
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efficiency and the measurement accuracy. In this case, the amplitude of refractive index curve nA,
and the thickness of samples were measured simultaneously. Since the linear correlations between the
refractive index and ZnS nanoparticles volume fraction have been achieved in our previous work [31],
the distributed refractive indices can be directly converted into the volume fractions distributions.
Figure 6 shows the comparison of calculated and measured Mueller matrix spectra when recording
time t = 5 s, 10 s, and 40 s, as well as the achieved spatial volume fraction distributions corresponding
to t = 5 s, 10 s, 25 s, and 40 s in the nanocomposite. More detailed measurement results including
amplitude of concentration variation CA, thickness of samples H, the angle of incidence θ, the angle of
azimuth ϕ, as well as the MSE of fitting are listed in Table 4. It is worth to point out that the pitch of
the volume holographic grating is assumed 800 nm and the local nanoparticle concentration is ideally
sinusoidally distributed.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 15 
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Table 4. Measured results of volume gratings with different exposure time.

time(s) C0 CA H (µm) θ (o) ϕ (o) MSE

5

0.226

0.055 8.2052 30.5508 −3.6431 4.8585
10 0.086 9.2286 23.8851 −0.0558 4.6035
15 0.108 8.4533 26.7676 −1.22687 6.1378
20 0.113 9.375 28.3695 −0.7261 14.0584
25 0.109 9.8429 25.6022 1.7953 21.8013
30 0.104 8.2554 26.5644 −2.9308 2.9309
35 0.113 6.5781 25.2278 −0.9119 6.004
40 0.120 8.763 26.7677 0.3869 6.7657

As shown in Figure 6a–c, the measured Mueller matrix fits well with the calculated matrix. All the
Mueller matrices have similar characteristics, which indicates that the formed volume gratings are
consistent. If some of the specific Mueller matrix elements such as m12 are selected for a further
analysis, the depth of the dip become larger, which indicates that the characteristics of Bragg grating
become more and more obvious. This is rational because with the increase of the recording time,
the sinusoidal distribution of the refractive index is more obvious. Such a phenomenon is more
intuitively shown in Figure 6d. It can be clearly observed in Figure 6d that the volume fractions in the
dark regions are increasing, while the volume fractions in the bright regions are decreasing, with the
process of holographic recording. Since the nominal azimuthal angle is selected as 0◦, the Mueller
matrix elements observed in the off-diagonal blocks are close to 0. If we correlate the results shown
in Figure 6a–c with ϕ reported in Table 4, the relative lager oscillations observed in Figure 6a can be
attributed to the azimuthal angle setting error. Since the RIM is much larger when recording time t is
40s, even though the reconstructed azimuthal angle is as small as 0.3869◦, relative more significant
anisotropy, i.e. nonzero off-diagonal elements, can be observed.

In order to further demonstrate the fidelity of the proposed method, we further investigated
the time-dependent volume fraction changes during holography. With the benefit of the distribution
function of the refractive index, the spatiotemporal concentration function of ZnS nanoparticles
expressed in terms of position x and time t, C(x, t) defined as Equation (24) [23] can be fitted directly.

C(x, t) = C0 + (Cmax − C0) sin(
2π

λ
x)
(

1− e−(2π/λ)2Dt
)

, (27)

where Cmax and C0 are the maximum and average nanoparticles concentration, respectively. The fitted
curve can be achieved as shown in Figure 7.
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The apparent diffusion coefficient, Da, achieved from the curve fitting is 2.18×10−15 m2 s−1,
which agree to the previous results 2.0×10−15 m2 s−1 we reported. Such an apparent diffusion
coefficient achieved using a different model exhibits again that the apparent diffusion coefficient is
3 orders lower than the initial diffusion coefficient (3.4× 10−12 m2 s−1) predicted by the Stokes–Einstein
diffusion equation, which has been interpreted using the rapid increase of the mixture viscosity during
polymerization [31].

5. Conclusions

In order to appropriately reflect the distribution of refractive indices in the volume grating so that
the grating can be accurately characterized, a distributed dielectric constant-based RCWA is proposed
as a forward model that can be used for ellipsometry. A set of measurement experiments is carried
out on the volume gratings recorded in the composite of polymer and 5-nm ZnS nanoparticles with
a different holographic recording time for demonstration. With the proposed model, parameters
of the spatial refractive index distribution curve of a volume grating can be quantified, which also
enables the quantitative determination of the spatiotemporal concentration function. Good agreement
of the experimental results to the values we previously reported demonstrates the fidelity of the
proposed method.
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