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Abstract: The prediction of earth pressure balance (EPB) shield performance is an essential part
of project scheduling and cost estimation of tunneling projects. This paper establishes an efficient
multi-objective optimization model to predict the shield performance during the tunneling process.
This model integrates the adaptive neuro-fuzzy inference system (ANFIS) with the genetic algorithm
(GA). The hybrid model uses shield operational parameters as inputs and computes the advance rate
as output. GA enhances the accuracy of ANFIS for runtime parameters tuning by multi-objective
fitness function. Prior to modeling, datasets were established, and critical operating parameters were
identified through principal component analysis. Then, the tunneling case for Guangzhou metro line
number 9 was adopted to verify the applicability of the proposed model. Results were then compared
with those of the ANFIS model. The comparison showed that the multi-objective ANFIS-GA model is
more successful than the ANFIS model in predicting the advance rate with a high accuracy, which can
be used to guide the tunnel performance in the field.

Keywords: advance rate; shield performance; principal component analysis; ANFIS-GA; tunnel

1. Introduction

With the rapid development in many urban areas, tunnel boring machines (TBMs) are frequently
used in excavation of long infrastructural tunneling projects. TBMs have become the dominant method
of tunneling in many projects such as subways [1–4], railways [5–8], and hydraulic pipelines [9–14].
Therefore, proper estimation of TBM performance is an essential component of tunnel design and for
the selection of appropriate excavation machine. Earth pressure balance (EPB) shield machine is a type
of TBM that could be adopted in unstable ground [15]. Thus, the accurate prediction model of EPB
shield performance could be adopted to solve key problems such as project planning, cost forecast,
and optimization of operating parameters.

Over the past few decades, several theoretical and empirical models have been developed for
estimating TBM performance [16–26]. Input parameters in these theoretical and empirical models
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can be classified into two categories: (1) geological parameters (e.g., intact rock properties, geological
strength index, etc.), and (2) operational parameters (e.g., cutter head torque, screw rate, etc.). Due to
large complexity in geological conditions and TBM performance prediction, theoretical and empirical
models cannot effectively present the dynamic and nonlinear nature of TBM performance. Therefore,
artificial intelligence (AI) models can overcome these limitations by using a sufficient amount of field
data. These models can create non-linear relationships between inputs and system output. AI models
have been widely applied by many researchers in several tunneling projects [27–32]. Typical AI
models include artificial neural network (ANN) [33–35], fuzzy logic (FL) model [36], Genetic algorithm
(GA) [37,38], and adaptive neuro-fuzzy inference system (ANFIS) [39,40]. Minh et al. [41] developed
the fuzzy logic model as an alternative method that was more accurate in comparison with four
statistical regression models to predict the TBM performance. Their results indicated that the rock
properties can affect the penetration rate of TBM. Salimi et al. [42] illustrated that the ANFIS can be
successfully applied to model the nonlinear relation between different parameters involved in the
tunneling project. However, AI models still suffer from local minima and poor generalization. Thus,
there is a need for prevailing optimization algorithms to overcome such limitations. The genetic
algorithm (GA) is an influential population-based technique that able to solve the discrete and
enhance the generalization performance of the AI methods. As a result, several hybrid methods
have been developed by integrating the optimization algorithms with AI techniques. For instance,
Murlidhar et al. [43] developed a hybrid model of GA with ANN for predicting the interlocking of
shale rock samples, with better prediction accuracies than the simple ANN technique. However,
further developments for AI models are still required. Moreover, the seeking for optimization
technique is essential to achieve the best design with minimizing the fitness function by varying
design variables while satisfying design constraints. To overcome inaccuracies and uncertainties that
exist in conventional models, multi-objective optimization models are more suitable.

In this study, a multi-objective ANFIS-GA model was proposed and applied to predict the EPB
shield performance. Principal component analysis (PCA) was performed to examine the effect of
various shield parameters on the advance rate of shield machine. In order to assess the performance of
the hybrid ANFIS-GA model, its prediction results were compared with those from the ANFIS model.
The remainder of this paper is organized as follows. Section 2 describes the structure of the adaptive
model. Section 3 analyzes the real field database of shield performance. The simulation results are
presented in Section 4. Finally, conclusions are summarized in Section 5.

2. Methodology

2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Fuzzy logic (FL) model is an algorithm that has gained popularity in different engineering
fields. The advantages of FL are the ability to make a decision, despite the dominant uncertainty
and inaccuracy of several field problems. However, this method does not offer preferable results
in unforeseen situations [32]. Many extensions of the fuzzy logic model have been developed to
overcome this limitation. Additionally, the ANN technique can adapt its abilities of learning and
is effective to model a variety of real applications; however, it still has some limitations. When the
input data is subject to a high level of uncertainty or ambiguity, ANFIS techniques perform better [44].
ANFIS is a soft computing technique developed by Jang [44] to solve the complicated and nonlinear
issues. This technique combines the fuzzy logic model with adaptive neural networks (ANN) learning
technique. ANFIS can analyze and simulate the mapping relation between the input and output dataset
over a hybrid system to determine the optimal distribution of membership functions. ANFIS normally
involves five layers: fuzzification layer, implication layer, normalization layer, defuzzification layer,
and summation layer. These layers comprise several nodes that are defined by the node function.
Nodes in each layer have the same function. The network output mainly depends on the adaptable
parameters in the nodes. The network learning rules update these parameters in order to minimize
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the error. The ANFIS architecture with two inputs and one output is shown in Figure 1. To clarify
the structure of ANFIS, two if-then rules based on a Takagi-Sugeno type fuzzy inference system
are considered:

Rule 1: If x is A1 and y is B1, then f 1 = p1x + q1y + r1 (1)

Rule 2: If x is A2 and y is B2, then f 2 = p2x + q2y + r2 (2)
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In the expressed rules, A1,2 and B1,2 are fuzzy sets of input premise parameters x and y; p1,2 q1,2,
r1,2 are the consequent parameters and f is the output of the ANFIS model.

The ANFIS structure consists of five different layers (Figure 1) and each layer is briefly described
as follows.

Layer 1: this layer is called fuzzification layer; every node in this layer creates a membership
grade of a linguistic variable and the output of each node is estimated as follows:

Q1
i = µAi(x) =

1

1 +
[(

x−vi
σi

)2
]bi

(3)

where, x is the input value of the node i; Ai is the linguistic variable associated with this node; σi, νi
and bi are the function parameters. The parameters in this layer are defined as the premise parameters.

Layer 2: this layer is called implication layer; each node in this layer calculates the “firing strength”
of each rule by multiplying the incoming signals as follows:

Q2
i = Wi = µAi(x).µBi(y), i = 1, 2 (4)

Layer 3: this layer is the normalization layer; each node in this layer calculates the ratio of the
ith rules firing strength to all rules firing strengths. The outputs of this layer are called normalized
firing strengths.

Q3
i = wi =

wi
w1 + w2

, i = 1, 2 (5)

Layer 4: this layer is the defuzzification layer; each node in this layer is the output operators for
each rule:

Q4
i = wi fi = wi(pix + qiy + ri), i = 1, 2 (6)

where wi is the output of layer 3; pi, qi, and ri are the consequent parameters that are confirmed in the
training process.
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Layer 5: this layer is the summation layer; the single node in this layer is a constant node that
computes the overall output as the summation of all input signals:

Q5
i = overall output = ∑

i
wi fi =

∑i wi fi

∑i wi
(7)

A hybrid algorithm combining the least squares approach and the gradient descent method is
preferred to adjust the ANFIS training problem.

2.2. Fuzzy C-means Clustering

To extract useful patterns/structures from large datasets, different clustering algorithms have
been developed and classified into two categories: distinct clustering and fuzzy clustering. In distinct
clustering, such as K-mean clustering, every data element is assigned to exactly one cluster [45].
However, the data elements on the boundary of multiple clusters may not belong to any of the multiple
clusters. To overcome the classification uncertainty, fuzzy clustering assigns every data element to
multiple clusters by combining every data element with a set of membership levels. With the cluster
information, a fuzzy inference system can be produced to model data behaviors with the least number
of rules.

Fuzzy C-means (FCM) clustering is a robust fuzzy clustering algorithm, appropriate for clustering
overlapped datasets. The degree of a data point in FCM is specified by a membership. The membership
assigns a large value for the data element close to the cluster center and a small value for the data
element away from the cluster center. FCM partitions a choice of n vector xi, (i = 1, 2, . . . , n) into fuzzy
sets and estimates the cluster center in each set by minimizing the objective function.

Firstly, there are n data points (x1, x2, x3, . . . , xn), with the cluster center ci, i = 1, 2, . . . , C randomly
selected. The membership matrix (U) is estimated using the following equation:

µij =
1

C
∑

k=1
(

dij
dkj

)
2

m−1
(8)

where, dij =||ci − xj|| is the Euclidean distance between the ith cluster center and the jth data point;
µij is the coefficients in the membership matrix; m is the index of fuzziness; c is the total number
of clusters.

Secondly, the objective function can be calculated according to the following equation:

J(U, c1, . . . , c2) =
c

∑
i=1

Ji =
c

∑
i=1

.
n

∑
j=1

µm
ij d2

ij (9)

Finally, a new c fuzzy cluster center Ci (i = 1, 2, . . . , C) can be estimated as follows:

Ci =

n
∑

j=1
µm

ij xj

n
∑

j=1
µm

ij

(10)

In ANFIS, the fuzzy inference system with initial structure has an obvious effect on the modeling
accuracy. Therefore, ANFIS has two limitations: slow computational convergence and potential of
being trapped in local minima. To overcome these limitations, the fuzzy inference system needs to be
optimized with heuristic optimization techniques, such as Genetic algorithm (GA).
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2.3. Genetic Algorithm (GA)

Genetic algorithm is one of the evolutionary algorithms inspired by Darwin’s theory of biological
evolution theory. GA has been applied for optimizing the parameters of the control system that are
difficult to solve by traditional optimization techniques [46]. This algorithm has the ability to search
efficiently very large solution spaces because GA uses the probabilistic transition rules instead of the
deterministic ones. GA repeatedly modifies a population of individual solutions through generations,
by randomly selecting individuals from the current generation as parents to produce the children of
the next generation, until the population evolves to an optimal solution. In each generation, a new
set of approximation is produced by selecting the best number according to the fitness level and
reproduction by operators from the natural genetic population. This process leads to an evolution of
members that have been adapted to the environment than the initial members, which are in fact their
original parents. GA involves three main stages (population initialization, GA operators, evaluation)
and illustrated as follows:

(a) Initialization: randomly create a population of n chromosomes and evaluate the effectiveness of
each chromosome using the fitness function.

(b) GA operators:

(i) Selection: select the best two chromosomes from the population based on its fitness;
using the selected chromosomes as parents for producing offspring, new child
chromosomes, and the next generation.

(ii) Crossover: the parent chromosomes intercross randomly with a certain probability and
produce the new child (offspring). If the intersection does not occur, the child will be the
same as the two parent chromosomes.

(iii) Mutation: this operator is used as a random modification for changing some of the genes
inside the chromosomes. By mutation, it is conceivable to adjust the diversity of the
population and improve the search capacity to avoid the convergence of the algorithm to
local optima.

(c) Evaluation: in this stage, the fitness function usually presents a specific form of the objective
function of the optimization problem.

2.4. Multi-Objective Fitness Function

In contrast to the single-objective optimization method, in multi-objective optimization, the fitness
function has to adjust all the objectives, which is done by using different assignment strategies [47].
Among the different strategies, one of the most famous scalarization methods for multi-objective
optimization techniques is the weighted-sum approach. The weighted-sum approach is adopted
by transforming several objectives function into a single objective by assigning weights. Ismail and
Yusof [48] stated that the weighted-sum approach is considered as one of the most common techniques
in achieving the optimal weights combination. The optimized technique is proposed by using
a multi-objective fitness function. This approach distinguishes with the straight forward fitness
formulation and computationally efficient. In this approach, the problem is adapted to a single
function F(x) with a scalar objective function as illustrated in the following equation:

F(x) =
m

∑
i=1

wi fi(x) = w1 f1(x) + w2 f2(x) + w3 f3(x) (11)

where, x = x1, x2, x3, . . . , xm and wi = w1, w2, w3, . . . , wm.



Appl. Sci. 2019, 9, 780 6 of 17

The weight (wi) for every fitness function (fi) is assigned for evaluating fitness. The appropriate
weights from the interval [0; 1] are adapted for all objectives as given below:

m

∑
i=1

wi = 1 and 0 ≤ wi ≤ 1 (12)

2.5. Integrating ANFIS with GA Model

In ANFIS, every input usually includes several membership functions (MFs) and every MF
becomes a maximum somewhere. This process needs to be performed with the experience that the
changes in the position of belonging functions can change the prediction accuracy. In order to optimize
the position of MFs and increase the ANFIS accuracy through training process, GA is used. The hybrid
model is used to determine more accuracy results for nonlinear problems and to improve the prediction
of tunneling performance. The data points can be categorized into two parts, the training set and
the testing set. The percentage of the training dataset can be used to create the ANFIS structure
model, whereas the testing set can be used to evaluate the model’s prediction. In the ANFIS model,
training began to use the arranged dataset. The training dataset process permits the system to regulate
the defined parameters as input or output in the system. The training set ends when the specified
conditions to terminate the program are accepted. The premise and consequent parameters of ANFIS
model are updated by the genetic algorithm. The premise parameters in the fuzzification layer denote
(σ, ν, b) in Equation (3) that belong to Gauss membership functions and the number of these parameters
is equal to the sum of the parameters in all MFs. Consequent parameters are the ones that defined in
the defuzzification layer (p, q, r) in Equation (6). For training ANFIS with (M) membership functions
and (n) inputs, there are Mn fuzzy rules based on Jang [44]. Figure 2 demonstrates the procedures of
the hybrid ANFIS-GA. The multi-objective fitness function has been selected as the evaluation criterion
of the training result. The dataflow is presented as:

Step 1. The first step of the dataflow is to prepare the input parameters (cutter head torque, rotational
speed of screw rate, cutter head rotation speed). Then, the corresponding output is set
(advance rate).

Step 2. Initializing the Genetic Algorithm. In this step, the population initialization and GA operators
are configured.

Step 3. In ANFIS configuration, the training and testing data are defined. The 80 percent of the
input database is used for the model’s training and the rest twenty percent is utilized for the
model validation.

Step 4. Define the number of membership functions and rules. The algorithm applies the combination
of least-squares and the backpropagation method to train the fuzzy inference system and
emulate the established dataset.

Step 5. Evaluate the objective function. If the optimum criteria have not been achieved, the selection,
crossover, and mutation are applied to define the new population that will be evaluated. If the
criteria have been met, the solution is obtained.
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3. Processing Database

3.1. Project Details

In this study, the applicability of the hybrid model through a real field tunnel section in
Guangzhou, China was analyzed. This tunnel is located at Ma-Lian section (Huadu area) for
Guangzhou Metro Line number 9. The location of the project site is described in Figure 3. An earth
pressure balanced TBM of 6.25 m in diameter was used to excavate the tunnel section. The shield
machine specifications are summarized in Table 1. The buried depth of the tunnel was varied from
7.0 to 10.0 m. The ring width was 1.6 m and each ring consisted of six segments and one tapered key.
The yield strength of the concrete segment (fc’) was 45 MPa. The advancement of shield machine
usually encountered a silty clay soil during the tunneling process in the studied section. The geological
profile of the encountered soil is displayed in Figure 4. This figure illustrates that the shield machine
encountered silty clay soil with water content varying between 25% and 45%. The variation range of
void ratio was between 0.7 and 0.85, and the optimum cohesion value was 40 kPa. More information
about the tunnel section and the geological conditions can be found in Elbaz et al. [49,50].
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Table 1. Summary of the main specifications for the earth pressure balance (EPB) shield.

Shield Type EPB

External diameter (m) 6.25
Inner diameter for lining (m) 5.40
Outer diameter for lining (m) 6.0

Shield length (m) 8.90
Cutterhead power (kW) 600

Number of cutters:
Disc cutter 40

Scraper 52
Ripper 20

Disc cutter diameter (mm) 432
Shield weight (kN) Approximately 3000

3.2. Shield Performance Database

All parameters of operational and geological conditions for establishing prediction models in
later computations were collected from the testing and monitoring results along the studied section.
The shield machine specifications were collected from the documents provided by the manufacturer,
as summarized in Table 1. The input shield parameters were extracted directly from a built-in data
acquisition system. Among several parameters, preliminary analysis has led to select seven parameters
that seem to be the most effective on the advance rate of shield machine [49,51]. These parameters
including thrust force (TF), cutter head torque (CT), soil pressure (SP), rotational speed of screw rate
(SC), cutter head rotation speed (CR), grouting pressure (GP), burial depth (H), and advance rate (AR).
Some basic statistical details of the model inputs and output are illustrated in Table 2. Schematic stages
of the present work for the prediction of TBM performance is displayed in Figure 5.
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Table 2. Statistics of the database in this study.

Parameter Unit Category Min. Max. Mean

Thrust force (TF) kN Input 5600 11,405 8821.18
Cutter head torque (CT) MN.m Input 1 4 1.588

Rotational speed of screw rate (SC) RPM Input 5 15.5 9.768
Cutter head rotation speed (CR) RPM Input 0.9 1.5 1.211

Grouting pressure (GP) kPa Input 100 300 188.95
Soil pressure (SP) kPa Input 113.33 223.33 151.4
Burial depth (H) m Input 7.1 9.38 8.19

Advance rate (AR) mm/min Output 20 63 42.25
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3.3. Principal Component Analysis (PCA)

PCA is a traditional multivariate statistical method that can be utilized to reduce the complex
dataset of predictive variables to a lower dimension. PCA provides a few linear combinations of
the variables that can be utilized to summarize the data without losing much information during
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the analysis. For more information about the structure and implementation of PCA, some other
references [39,52] can be considered.

In this study, PCA was performed on a set of input and output parameters and the variance
ratio of the first component to the total variance is calculated. Analyses of different parameters were
performed to identify the most critical parameters of the shield machine performance. The results
of PCA are displayed in Figure 6. It can be seen that the factor containing three input parameters
(CT, SC, and CR) is shown to be the most critical parameters, with the greatest variance ratio of 93%.
The advance rate of shield machine can be considered as a function of these three inputs. As a result,
these three parameters were selected as input parameters for the predictive models.
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4. Results and Discussion

4.1. ANFIS Model

The ANFIS model has been applied to predict the advance rate of shield machine during the
tunneling process. To apply this model, three effective parameters (CT, SC, and CR) were set as inputs
and AR is set as output. In ANFIS modeling, there are two main stages: the generation of pattern vector
and the pattern formation with an input vector and its corresponding target vector. The data range
of both input and output is significant and cannot be neglected in different parameters of operating
ranges. Thus, all datasets were normalized in the range of (0, 1) to simplify the design procedures
using the following equation [53]:

Xn =
(X− Xmin)

(Xmax − Xmin)
(13)

where X and Xn are the measured and normalized values, respectively, and Xmin and Xmax denote the
minimum and maximum values of X, respectively.

In this study, the 200 datasets have been categorized into two subsets randomly. 80% of the whole
dataset utilizing to create ANFIS structure are selected as training set and the other 20% utilizing for
verifying the models are chosen as testing set, following the recommendation of Swingler [54]. Figure 7
displays the architecture of ANFIS with three input parameters and one output. For ANFIS model,
the number and kind of the membership functions (MFs) and epoch number should be provided.
As mentioned in the previous literature, there are no explicit methods or formulas to predict the
necessary membership functions [55–57]. Thus, the MFs were estimated by way of trial and error.
The best estimates were acquired from the Gaussian type (Table 3). The Takagi-Sugeno method was
applied because of its higher reliability and computational efficiency for developing a systematic
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technique to construct fuzzy rules from the input-output dataset. The initial fuzzy inference system
(FIS) was generated using fuzzy c-mean clustering method. MATLAB software was applied with the
Genfis3 function to adjust the initial fuzzy inference system of the model. Figure 8 shows the correlation
coefficient for the training and testing dataset. This figure illustrates that the relation between the
measured and the predicted AR are more applicable in training dataset than in testing dataset.
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Table 3. ANFIS-GA model’s analytical details.

ANFIS Parameter Type Characteristic/Value

Membership function (MF) type Gaussian
Fuzzy structure Takagi-Sugeno-type

Output MF Linear
Number of fuzzy rules 8

Number of Epoch in ANFIS 200
Minimum Improvement 1 × 10−5

Type of initial fuzzy inference system Genfis 3
Initial step size 0.01

Step size decrease rate 0.9
Step size increase rate 1.1

Number of training data pairs 160
Number of testing data pairs 40

Training method GA
Maximum number of generations 1000
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4.2. ANFIS-GA Model

To predict the advance rate of shield machine with high accuracy, a hybrid ANFIS-GA was applied
in this study. The ANFIS provided the search space and utilized GA for finding the best solution by
tuning the membership functions required to reach the lower error. The idea of hybrid technique was
proposed to predict the EPB shield performance that creates a non-linear relationship between the
input variables and targets to estimate the outputs. As a result, machine performance parameters,
such as cutter head torque (CT), rotational speed of screw rate (SC), and cutter head rotation speed
(CR), were set as input parameters, and advance rate (AR) was set as the output parameter. The hybrid
model was programmed in MATLAB software. ANFIS-GA model was applied in the form of Takaji
Sugeno model to integrate the best features of fuzzy inference systems and neural networks. The MFs
were considered by Gaussian shapes and the GA parameters were adjusted by the trial and error
method. In the study, several attempts were performed to select the various parameter values that are
required for GA. As a result of these attempts, population size was selected as 50, crossover rate was
chosen as 0.8 and mutation rate was chosen as 0.02. More discussions regarding the hybrid model were
presented in Table 3. To evaluate the hybrid model for predicting the advance rate, the multi-objective
fitness function is minimized with the following statistical parameters:

RMSE =

√
∑ (xmea − xpre)

2

n
(14)

R2 = 1−

n
∑

i=1
(xmea − xpre)

2

n
∑

i=1
(xmea − xm)2

(15)

VA =

[
1−

var(xmea − xpre)

var(xmea)

]
(16)

where xmea, xpre, xm, and n were the measured, predicted, mean of the x values, and the total number
of datasets, respectively. Theoretically, a predictive model with high accuracy is desired when route
mean square error (RMSE) is equal to 0 and correlation coefficient (R2) and variance account (VA) are
equal to 1.
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In the proposed model, the goal of the optimization process was to find the best design variables
to maximize correlation coefficient (R2), variance account (VA), and decrease route mean square error
(RMSE) at the same time, as displayed in the following Equation:

Minimize Fit(RMSE, R2, VA) = (−w1 × RMSE + w2 × R2 + w3 ×VA) (17)

where w1, w2, w3 ∈ (0, 1), satisfying w1 + w2 + w3 = 1. In this model, the values of w1, w2, and w3 were
determined as 0.8, 0.1, and 0.1, respectively.

Figure 9 shows the relationship between the measured and predicted values acquired from
ANFIS-GA predictive model for the training and testing dataset. It can be deduced that the predicted
values of AR are less scattered and close to the measured values signified by its closeness to the line
of equality (dashed line). To further clarify, the error deviations of outputs of ANFIS-GA model are
depicted in Table 4. The relative deviations of the hybrid model were mostly in the range of ±15%,
demonstrating the more reliability of the proposed model.Appl. Sci. 2019, 9, 780 13 of 17 
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Table 4. The relative deviation of the hybrid ANFIS-GA model.

Model Number of Data Relative Deviation

Training data 160 ±15%
Testing data 40 ±15%

To illustrate the performance of the EPB shield machine during the tunneling process, the values
of measured advance rate from field and the predicted values through ANFIS-GA model were plotted
for all datasets, as shown in Figure 10. It can be concluded that the measured and predicted data agreed
well with each other. Figure 11 shows the assessment results of the hybrid ANFIS-GA compared with
ANFIS model. The criterion for the accuracy of hybrid model was the root mean square error (RMSE),
correlation coefficient (R2), and Variance account (VA) within the measured and predicted advance rate
of the shield machine [58–60]. According to the testing sets, the hybrid ANFIS-GA model had RMSE
= 0.11, R2 = 0.85, and VA = 0.77, while the ANFIS model had RMSE = 0.15, R2 = 0.79, and VA = 0.74.
Because of smaller RMSE and greater values of R2 and VA, the ANFIS-GA model performed better
than the ANFIS model.
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5. Conclusions

An effective multi-objective optimization based on integrating adaptive neuro-fuzzy inference
system with genetic algorithm was established for predicting the advance rate of the EPB shield
machine. The main achievements of this study are outlined as follows:

(1) Results of principal component statistical analyses illustrated that there was a reasonable
relationship between advance rate and three main shield construction parameters including
cutterhead torque (CT), rotational speed of screw rate (SC), and cutterhead rotation speed (CR).

(2) The Multi-objective optimization model was able to successfully predict the shield performance
in terms of advance rate, demonstrating a good agreement with the measured field data for both
training set and testing set. The ANFIS-GA model showed better prediction accuracy than the
ANFIS model.

(3) The error deviations of the outputs of ANFIS-GA model was in acceptable range±15%, indicating
the more reliability of the proposed model in the prediction of advance rate. Therefore, the hybrid
model of shield performances can facilitate decision-makers to accurately predict the project
duration and the construction cost, thus supporting the development of efficient construction
management plans.

(4) The genetic algorithm was integrated into the process of ANFIS to achieve the optimal solution
for ANFIS technique. This was achieved by simultaneously optimizing the ANFIS performance



Appl. Sci. 2019, 9, 780 15 of 17

based on the multi-objective fitness function. The findings illustrated that the hybrid ANFIS–GA
provides the promised accuracy with an acceptable interpretation in classification problems.
It was difficult to find simpler structures based on satisfactory accuracy and a single optimal
algorithm offering the best accuracy for all datasets. However, the algorithm that can lead to a fall
balance in accuracy and portability will be more adaptable to real applications. Thus, problems
based on this approach are the subject of further work.

Author Contributions: This paper represents a result of collaborative teamwork. Conceptualization, S.-L.S. and
K.E.; Methodology, K.E.; Supervision, S.-L.S. and D.-J.Y.; Developed the concept and wrote the manuscript, K.E.;
Review and editing, A.Z.; Visualization, A.Z.; Y.-S.X.; Significant comments, Y.-S.X., D.-J.Y. All authors have read
and approved the final manuscript.

Funding: The research work described herein was funded by the National Basic Research Program of China
(973 Program: 2015CB057806).

Acknowledgments: The research work described herein was funded by the National Basic Research Program of
China. This financial support is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, X.X.; Shen, S.L.; Xu, Y.S.; Yin, Z.Y. Analytical approach for time-dependent groundwater inflow into
shield tunnel face in confined aquifer. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 655–673. [CrossRef]

2. Liu, X.X.; Shen, S.L.; Zhou, A.N.; Xu, Y.S. Evaluation of foam conditioning effect on groundwater inflow at
tunnel cutting face. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 463–481. [CrossRef]

3. Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a
GIS-based modeling approach. Sci. Total Environ. 2018, 626, 1012–1025. [CrossRef] [PubMed]

4. Lyu, H.M.; Shen, S.L.; Zhou, A.N.; Yang, J. Perspectives for flood risk assessment and management for
mega-city metro system. Tunn. Undergr. Space Technol. 2019, 84, 31–44. [CrossRef]

5. Bilgin, N. An appraisal of TBM performances in Turkey in difficult ground conditions and some
recommendations. Tunn. Undergr. Space Technol. 2016, 57, 265–276. [CrossRef]

6. Lyu, H.M.; Wang, G.F.; Cheng, W.C.; Shen, S.L. Tornado hazards on June 23rd in Jiangsu Province, China:
Preliminary investigation and analysis. Nat. Hazard 2017, 85, 597–604. [CrossRef]

7. Lyu, H.M.; Shen, S.L.; Arulrajah, A. Assessment of geohazards and preventive countermeasures using AHP
incorporated with GIS in Lanzhou, China. Sustainability 2018, 10, 304. [CrossRef]

8. Zhang, Z.; Aqeel, M.; Li, C.; Sun, F. Theoretical prediction of wear of disc cutters in tunnel boring machine
and its application. J. Rock Mech. Geotech. Eng. 2019, 11, 111–120. [CrossRef]

9. Elbaz, K.; Shen, S.L.; Arulrajah, A.; Horpibulsuk, S. Geohazards induced by anthropic activities of
geoconstruction: A review of recent failure cases. Arab. J. Geosci. 2016, 9, 708. [CrossRef]

10. Shen, S.L.; Wu, Y.X.; Misra, A. Calculation of head difference at two sides of a cut-off barrier during
excavation dewatering. Comput. Geotech. 2017, 91, 192–202. [CrossRef]

11. Tan, Y.; Lu, Y. Responses of shallowly buried pipelines to adjacent deep excavations in Shanghai soft ground.
J. Pipeline Syst. Eng. Pract. 2018, 9, 05018002. [CrossRef]

12. Xu, Y.S.; Shen, S.L.; Lai, Y.; Zhou, A.N. Design of Sponge City: Lessons learnt from an ancient drainage
system in Ganzhou, China. J. Hydrol. 2018, 563, 900–908. [CrossRef]

13. Xu, Y.S.; Shen, J.S.; Wu, H.N.; Zhang, N. Risk and impacts on the environment of free-phase biogas in
Quaternary deposits along the coastal region of Shanghai. Ocean Eng. 2017, 137, 129–137. [CrossRef]

14. Xu, Y.S.; Shen, S.L.; Ma, L.; Sun, W.J.; Yin, Z.Y. Evaluation of the blocking effect of retaining walls on
groundwater seepage in aquifers with different insertion depths. Eng. Geol. 2014, 183, 254–264. [CrossRef]

15. Wu, Y.X.; Shen, J.S.; Cheng, W.C.; Hino, T. Semi-analytical solution to pumping test data with barrier,
wellbore storage, and partial penetration effects. Eng. Geol. 2017, 226, 44–51. [CrossRef]

16. Shen, S.L.; Wu, H.N.; Cui, Y.J.; Yin, Z.Y. Long-term settlement behavior of metro tunnels in the soft deposits
of Shanghai. Tunn. Undergr. Space Technol. 2014, 40, 309–323. [CrossRef]

17. Shen, S.L.; Cui, Q.L.; Ho, C.E.; Xu, Y.S. Ground response to multiple parallel microtunneling operations in
cemented silty clay and sand. J. Geotech. Geoenviron. Eng. 2016, 142, 04016001. [CrossRef]

http://dx.doi.org/10.1002/nag.2760
http://dx.doi.org/10.1002/nag.2871
http://dx.doi.org/10.1016/j.scitotenv.2018.01.138
http://www.ncbi.nlm.nih.gov/pubmed/29898510
http://dx.doi.org/10.1016/j.tust.2018.10.019
http://dx.doi.org/10.1016/j.tust.2016.01.038
http://dx.doi.org/10.1007/s11069-016-2588-2
http://dx.doi.org/10.3390/su10020304
http://dx.doi.org/10.1016/j.jrmge.2018.05.006
http://dx.doi.org/10.1007/s12517-016-2740-z
http://dx.doi.org/10.1016/j.compgeo.2017.07.014
http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000310
http://dx.doi.org/10.1016/j.jhydrol.2018.06.075
http://dx.doi.org/10.1016/j.oceaneng.2017.03.051
http://dx.doi.org/10.1016/j.enggeo.2014.08.023
http://dx.doi.org/10.1016/j.enggeo.2017.05.011
http://dx.doi.org/10.1016/j.tust.2013.10.013
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001441


Appl. Sci. 2019, 9, 780 16 of 17

18. Wu, H.N.; Shen, S.L.; Liao, S.M.; Yin, Z.Y. Longitudinal structural modelling of shield tunnels considering
shearing dislocation between segmental rings. Tunn. Undergr. Space Technol. 2015, 50, 317–323. [CrossRef]

19. Wu, Y.X.; Shen, S.L.; Yuan, D.J. Characteristics of dewatering induced drawdown curve under blocking effect
of retaining wall in aquifer. J. Hydrol. 2016, 539, 554–566. [CrossRef]

20. Rostami, J. Performance prediction of hard rock tunnel boring machines (TBMs) in difficult grounds.
Tunn. Undergr. Space Technol. 2016, 56, 173–182. [CrossRef]

21. Khandelwal, M.; Shirani, R.; Masoud, F. Function development for appraising brittleness of intact rocks using
genetic programming and non-linear multiple regression models. Eng. Comput. 2017, 33, 13–21. [CrossRef]

22. Xie, X.; Wang, Q.; Huang, Z. Parametric analysis of mixshield tunnelling in mixed ground containing
mudstone and protection of adjacent buildings: Case study in Nanning metro containing mudstone and
protection of adjacent buildings. Eur. J. Environ. Civ. Eng. 2017, 22, s130–s148. [CrossRef]

23. Salimi, A.; Rostami, J.; Moormann, C. Evaluating the Suitability of Existing Rock Mass Classification Systems
for TBM Performance Prediction by using a Regression Tree. Procedia Eng. 2017, 191, 299–309. [CrossRef]

24. Amoun, S.; Sharifzadeh, M.; Shahriar, K.; Rostami, J.; Tarigh, S. Evaluation of tool wear in EPB tunnelling of
Tehran Metro, Line 7 Expansion. Tunn. Undergr. Space Technol. 2017, 61, 233–246. [CrossRef]

25. Ren, D.J.; Shen, S.L.; Arulrajah, A.; Wu, H.N. Evaluation of ground loss ratio with moving trajectories
induced in double-O-tube (DOT) tunnelling. Can. Geotech. J. 2018, 55, 894–902. [CrossRef]

26. Wu, Y.X.; Lyu, H.M.; Han, J.; Shen, S.L. Case study: Dewatering-induced building settlement around a deep
excavation in the soft deposit of Tianjin, China. J. Geotech. Geoenviron. Eng. ASCE 2019. [CrossRef]

27. Salimi, A.; Faradonbeh, R.S.; Monjezi, M.; Moormann, C. TBM performance estimation using a classification
and regression tree (CART) technique. Bull. Eng. Geol. Environ. 2016, 77, 429–440. [CrossRef]

28. Hasanipanah, M.; Shahnazar, A.; Arab, H.; Golzar, S.B.; Amiri, M. Developing a new hybrid-AI model to
predict blast-induced Backbreak. Eng. Comput. 2017, 33, 349–359. [CrossRef]

29. Jahed Armaghani, D.; Tonnizam, E.; Sundaram, M.; Narita, N.; Yagiz, S. Development of hybrid intelligent
models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63,
29–43. [CrossRef]

30. Yin, Z.Y.; Jin, Y.F.; Shen, J.S.; Hicher, P.Y. Optimization techniques for identifying soil parameters in
geotechnical engineering: Comparative study and enhancement. Int. J. Numer. Anal. Methods Geomech. 2018,
42, 70–94. [CrossRef]

31. Yin, Z.Y.; Wu, Z.Y.; Hicher, P.Y. Modeling the monotonic and cyclic behavior of granular materials by an
exponential constitutive function. J. Eng. Mech. ASCE 2018, 144, 04018014. [CrossRef]

32. Rini, D.P.; Shamsuddin, S.M.; Yuhaniz, S.S. Particle swarm optimization for ANFIS interpretability and
accuracy. Soft Comput. 2016, 20, 251–262. [CrossRef]

33. Kahraman, S. Estimating the penetration rate in diamond drilling in laboratory works using the regression
and artificial neural network analysis. Neural Process Lett. 2016, 43, 523–535. [CrossRef]

34. Ocak, I.; Evren, S.; Rostami, J. Performance prediction of impact hammer using ensemble machine learning
techniques. Tunn. Undergr. Space Technol. 2018, 80, 269–276. [CrossRef]

35. Stypulkowski, J.B.; Bernardeau, F.G.; Jakubowski, J. Descriptive statistical analysis of TBM performance at
Abu Hamour Tunnel Phase I. Arab. J. Geosci. 2018, 11, 191. [CrossRef]

36. Acaroglu, O. Prediction of thrust and torque requirements of TBMs with fuzzy logic models. Tunn. Undergr.
Space Technol. 2011, 26, 267–275. [CrossRef]

37. Liu, K.; Liu, B. Optimization of smooth blasting parameters for mountain tunnel construction with specified
control indices based on a GA and ISVR coupling algorithm. Tunn. Undergr. Space Technol. 2017, 70, 363–374.
[CrossRef]

38. Babak, S.; Anemangely, M.; Sabah, M. Application of hybrid artificial neural networks for predicting rate of
penetration (ROP): A case study from Marun oil field. J. Pet. Sci. Eng. 2019, 175, 604–623.

39. Bouayad, D.; Emeriault, F. Modeling the relationship between ground surface settlements induced by
shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method.
Tunn. Undergr. Space Technol. 2017, 68, 142–152. [CrossRef]

40. Mottahedi, A.; Sereshki, F.; Ataei, M. Development of over break prediction models in drill and blast
tunneling using soft computing methods. Eng. Comput. 2017, 34, 45–58. [CrossRef]

41. Minh, V.T.; Katushin, D.; Antonov, M.; Veinthal, R. Regression Models and Fuzzy Logic Prediction of TBM
Penetration Rate. Open Eng. 2017, 7, 60–68. [CrossRef]

http://dx.doi.org/10.1016/j.tust.2015.08.001
http://dx.doi.org/10.1016/j.jhydrol.2016.05.065
http://dx.doi.org/10.1016/j.tust.2016.01.009
http://dx.doi.org/10.1007/s00366-016-0452-3
http://dx.doi.org/10.1080/19648189.2017.1359113
http://dx.doi.org/10.1016/j.proeng.2017.05.185
http://dx.doi.org/10.1016/j.tust.2016.11.001
http://dx.doi.org/10.1139/cgj-2017-0355
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0002045
http://dx.doi.org/10.1007/s10064-016-0969-0
http://dx.doi.org/10.1007/s00366-016-0477-7
http://dx.doi.org/10.1016/j.tust.2016.12.009
http://dx.doi.org/10.1002/nag.2714
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001437
http://dx.doi.org/10.1007/s00500-014-1498-z
http://dx.doi.org/10.1007/s11063-015-9424-7
http://dx.doi.org/10.1016/j.tust.2018.07.030
http://dx.doi.org/10.1007/s12517-018-3537-z
http://dx.doi.org/10.1016/j.tust.2010.10.001
http://dx.doi.org/10.1016/j.tust.2017.09.007
http://dx.doi.org/10.1016/j.tust.2017.03.011
http://dx.doi.org/10.1007/s00366-017-0520-3
http://dx.doi.org/10.1515/eng-2017-0012


Appl. Sci. 2019, 9, 780 17 of 17

42. Salimi, A.; Rostami, J.; Moormann, C.; Delisio, A. Application of non-linear regression analysis and artificial
intelligence algorithms for performance prediction of hard rock TBMs. Tunn. Undergr. Space Technol. 2016, 58,
236–246. [CrossRef]

43. Murlidhar, B.R.; Ahmed, M.; Mavaluru, D.; Siddiqi, A.F.; Mohamad, E.T. Prediction of rock interlocking by
developing two hybrid models based on GA and fuzzy system. Eng. Comput. 2018. [CrossRef]

44. Jang, J.S.R. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 1993,
23, 665–685. [CrossRef]

45. Suganya, R.; Shanthi, R. Fuzzy C-means algorithm—A review. Int. J. Sci. Res. Publ. 2012, 2, 1–3.
46. Jalalkamali, A. Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters.

Earth Sci. Inf. 2015, 8, 885–894. [CrossRef]
47. Papon, A.; Riou, Y.; Dano, C.; Hicher, P.Y. Single-and multi-objective genetic algorithm optimization for

identifying soil parameters. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 597–618. [CrossRef]
48. Ismail, F.S.; Yusof, R. A new self organizing multi-objective optimization method. In Proceedings of

the IEEE International Conference on Systems Man & Cybernetics, Istanbul, Turkey, 10–13 October 2010;
pp. 1016–1021.

49. Elbaz, K.; Shen, S.L.; Cheng, W.C.; Arulrajah, A. Cutter-disc consumption during earth-pressure-balance
tunnelling in mixed strata. Proc. Inst. Civ. Eng. Geotech. Eng. 2018, 171, 363–376. [CrossRef]

50. Elbaz, K.; Shen, S.L.; Tan, Y.; Cheng, W.C. Investigation into performance of deep excavation in sand covered
karst: A case report. Soils Found. 2018, 58, 1042–1058. [CrossRef]

51. Ren, D.J.; Shen, S.L.; Arulrajah, A.; Cheng, W.C. Prediction model of TBM disc cutter wear during tunnelling
in heterogeneous ground. Rock Mech. Rock Eng. 2018, 51, 3599–3611. [CrossRef]

52. Salimi, A.; Rostami, J.; Moormann, C.; Hassanpour, J. Examining Feasibility of Developing a Rock Mass
Classification for Hard Rock TBM Application Using Non-linear Regression, Regression Tree and Generic
Programming. Geotech. Geol. Eng. 2018, 36, 1145–1159. [CrossRef]

53. Khamesi, H.; Torabi, S.; Mirzaei-Nasirabad, H.; Ghadiri, Z. Improving the performance of intelligent back
analysis for tunneling using optimized fuzzy systems: Case study of the Karaj Subway Line 2 in Iran.
J. Comput. Civ. Eng. 2015, 29, 05014010. [CrossRef]

54. Swingler, K. Applying Neural Networks: A Practical Guide; Academic: New York, NY, USA, 1996; p. 442.
55. Rezakazemi, M.; Ghafarinazari, A.; Shirazian, S.; Khoshsima, A. Numerical modeling and optimization of

wastewater treatment using porous polymeric membranes. Polym. Eng. Sci. 2013, 53, 1272–1278. [CrossRef]
56. Jin, Y.F.; Yin, Z.Y.; Zhou, W.H.; Huang, H.W. Engineering Applications of Artificial Intelligence

Multi-objective optimization-based updating of predictions during excavation. Eng. Appl. Artif. Intell.
2019, 78, 102–123. [CrossRef]

57. Cheng, W.C.; Ni, J.C.; Shen, S.L. Experimental and analytical modeling of shield segment under cyclic
loading. Int. J. Geomech. ASCE 2017, 17, 04016146. [CrossRef]

58. Zeng, C.F.; Zheng, G.; Xue, X.L.; Mei, G.X. Combined recharge: A method to prevent ground settlement
induced by redevelopment of recharge wells. J. Hydrol. 2019, 568, 1–11. [CrossRef]

59. Xu, Y.S.; Shen, S.L.; Ren, D.J.; Wu, H.N. Analysis of factors in land subsidence in Shanghai: A view based on
Strategic Environmental Assessment. Sustainability 2016, 8, 573. [CrossRef]

60. Zeng, C.F.; Xue, X.L.; Zheng, G.; Xue, T.Y.; Mei, G.X. Responses of retaining wall and surrounding ground
to pre-excavation dewatering in an alternated multi-aquifer-aquitard system. J. Hydrol. 2018, 559, 609–626.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tust.2016.05.009
http://dx.doi.org/10.1007/s00366-018-0672-9
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1007/s12145-015-0222-6
http://dx.doi.org/10.1002/nag.1019
http://dx.doi.org/10.1680/jgeen.17.00117
http://dx.doi.org/10.1016/j.sandf.2018.03.012
http://dx.doi.org/10.1007/s00603-018-1549-3
http://dx.doi.org/10.1007/s10706-017-0380-z
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000421
http://dx.doi.org/10.1002/pen.23375
http://dx.doi.org/10.1016/j.engappai.2018.11.002
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000810
http://dx.doi.org/10.1016/j.jhydrol.2018.10.051
http://dx.doi.org/10.3390/su8060573
http://dx.doi.org/10.1016/j.jhydrol.2018.02.069
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Adaptive Neuro-Fuzzy Inference System (ANFIS) 
	Fuzzy C-means Clustering 
	Genetic Algorithm (GA) 
	Multi-Objective Fitness Function 
	Integrating ANFIS with GA Model 

	Processing Database 
	Project Details 
	Shield Performance Database 
	Principal Component Analysis (PCA) 

	Results and Discussion 
	ANFIS Model 
	ANFIS-GA Model 

	Conclusions 
	References

