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Featured Application: Fault diagnosis of industrial machines.

Abstract: This paper proposes an extended-state ARX-Laguerre proportional integral observer (PIO)
for fault detection and diagnosis (FDD) in bearings. The proposed FDD technique improves fault
estimation using a nonlinear function while generating a robust residual signal using the sliding
mode technique, which can indirectly improve the performance of FDD. Experimental results indicate
that the system modeling error in a healthy condition is less than 2.5 × 10−10 N.m. In the next step,
the ARX-Laguerre PIO is designed to define the state and output of the system observer. The high
gain extended-state observer is designed in the third step to estimate the mechanical (bearing) faults
based on the nonlinear function. In the last step, robust residual signals are generated based on the
sliding mode algorithm for accurate fault identification. This approach improves the performance of
an ARX-Laguerre linear PIO method. Employing the proposed method, we demonstrate that in the
presence of uncertainties and disturbances, the ball, inner, outer, inner-ball, outer-ball, inner-outer,
and inner-outer-ball failures with various motor torque speeds (300 RPM, 400 RPM, 450 RPM,
and 500 RPM) and crack sizes (3 mm and 6 mm) are detected, identified, and estimated efficiently.
The effectiveness of the proposed technique is compared with an ARX-Laguerre proportional integral
observation (ALPIO). Experimental results indicate that the proposed technique outperforms the
ALPIO technique, yielding 17.82% and 16.625% performance improvements for crack sizes of 3 mm
and 6 mm, respectively.

Keywords: fault diagnosis; extended-state observation technique; proportional integral observer;
ARX-Laguerre algorithm; bearings; sliding mode algorithm

1. Introduction

Induction motors have been used in diverse industries, such as the machine tool and oil industries.
The dynamic behavior of an induction motor is entirely nonlinear, which can cause various challenges
in control and fault diagnosis. High-temperature environments, heavy-duty cycles, poor installation,
overloading, and aging of components cause a diverse range of electrical and mechanical defects
in motors. Diverse faults have been defined in induction motors, such as motor failures, air-gap
faults, bearing and cage faults, and stator failures. The two main types of induction motor defects are
mechanical and electrical failures. Various types of induction motor faults are mostly associated with
mechanical defects (79%), such as bearing defects (69%) and rotor faults (10%). The other types of
induction motor faults are electrical failures (21%), such as open circuits and short circuits in stator
windings [1].

The most common defect in induction motors are mechanical failures. These faults are classified
as bearing faults and rotor faults. Across industries, bearing defects are the most common critical effect
increasing failure in induction motors [1]. The four main types of bearing defects are inner raceway
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faults, outer raceway faults, ball failures, and cage faults [2,3]. To analyze the condition of bearings,
different types of condition monitoring techniques, such as acoustic emission (AE), stator current, shaft
voltage, bearing circuit, and vibration analysis, have been reported in the literature [4]. Vibration and
AE measurement techniques are the most widely used for monitoring the bearing conditions [4]. Since
AE signals are strongly correlated with actual faults, this research utilizes acoustic emission sensors for
data collection.

Two main fault detection and diagnosis methods are hardware-based fault detection and diagnosis
(FDD) and functional-based FDD [5]. Fault detection and identification based on the hardware method
is a stable, reliable, and preventive maintenance technique, but it is also expensive. To address this
issue, functional-based FDD has been presented [6–18]. The four foremost types of functional-based
fault detection and diagnosis are signal-based FDD [6–11], knowledge-based FDD [12,13], model-based
FDD [14–16], and hybrid-based FDD [17,18]. Several signal-based techniques, such as motor current
signature analysis (MCSA), vibration analysis, the noise monitoring technique, and torque monitoring
analysis, have been introduced. A common signal-based technique for FDD in the induction motor
is the MCSA technique. This technique is more common for broken rotor bar (BRB) faults, air-gap
eccentricity faults, and stator electric current faults. To diagnose faults in the mechanical parts of an
induction motor, such as a bearing, vibration and acoustic emission analysis are more common [7].
The main drawbacks of signal-based FDD are reliability and robustness. Knowledge-based FDD has
various advantages, but this technique needs massive quantities of data for training [19]. Model-based
FDD has been considered a robust and reliable FDD technique.

The main concept of model-based FDD is system modeling, which has been acknowledged
by several researchers in the field [19]. The main techniques for model-reference FDD use output
observers, system identification and parameter estimation, and the parity equation [20,21]. Various
researchers have used observational methods for FDD, such as a proportional integral (PI) observer [22],
proportional multiple integral (PMI) observer [23] and sliding mode observer (SMO) [24]. The fault
diagnosis in noisy conditions and state-estimation in the highly nonlinear systems are the main
drawbacks in the PI and PMI observers. The sliding mode observer has been considered to solve
the linear observer’s drawback [24]. Apart from several advantages of the sliding mode observer,
chattering phenomenon is the main drawback. The higher order sliding mode observer (HOSMO)
was presented to solve the chattering phenomenon in the sliding mode observer [25]. This observer
works based on the system’s dynamic behavior, and thus the observer performance can be significant
if most system dynamic parameters are known. To address the challenges of proportional integral
observer (PIO) and SMO, the sliding mode extended-state ARX-Laguerre PI observer technique is
introduced in this research. This technique is designed with the following steps. In the first step,
the ARX-Laguerre technique is used for the system (induction motor) modeling. In the second step,
the first observer (ARX-Laguerre PI observer) is designed for system and fault estimation. Apart from
the numerous positive attributes of the ARX-Laguerre PI observer, this technique has an issue of fault
estimation accuracy. To improve fault estimation based on the ARX-Laguerre PI observer, in the next
step, an extended-state ARX-Laguerre PI observer is used. Based on this method, the performance
of fault estimation increased sharply. The residual generation plays a vital role in the observer-based
fault diagnosis. To generate a robust residual signal, in the fourth step, the sliding mode technique is
utilized. This method is robust and effective for motor fault diagnosis at variable speeds. To process the
threshold value, in the fifth step, a robust sliding mode technique is used. After processing the robust
residual signal and the threshold value, in the sixth step, the proposed extended-state ARX-Laguerre PI
observer generated two different scenarios for fault diagnosis: (a) variable crack sizes and (b) variable
motor speeds. This paper presents three different problems and the solutions to solve these problems.
The problems and solutions are briefly described as follows:

Problem 1: System (induction motor) modeling is a significant issue, especially to the design
model-reference technique for FDD.

Solution 1: The robust system estimation technique based on the ARX-Laguerre technique is
employed for system estimation (please see Section 4.1).
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Problem 2: Fault detection based on the proposed method in the presence of unknown parameters.
Solution 2: After designing the proposed method, robust sliding mode residual generation is

introduced to find the robust residual signal and generate it. Based on the comparison between the
band of uncertainty and threshold value, the abnormal condition can be detected, as seen in Section 4.3.

Problem 3: Fault identification and estimation are the third issue of this research.
Solution 3: For fault estimation and identification, the proposed extended-state observer is used

to improve the performance of the proposed ARX-Laguerre PIO and reduce the effect of uncertainty
(Section 4.4).

The rest of this paper is organized as follows: Section 2 gives the dataset. Section 3 presents the
problem statements and the proposed method objectives. Section 4 introduces the proposed nonlinear
extended-state ARX-Laguerre PI observer method and the effectiveness of the proposed method for
fault detection and diagnosis. Section 5 shows the results and discussions, and Section 6 concludes
this paper.

2. Dataset

Figure 1 demonstrates an experimental system for the fault simulator of bearings. To transfer
the torque to the no-drive-end shaft (NDES) through the gearbox, the three-phase induction motor
is connected to the drive-end shaft (DES) [26]. Figure 2 illustrates the experimental data acquisition
system to extract the normal and faulty signals.
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Figure 1. Block diagram of the fault simulator.
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Figure 2. (a) Experimental setup to record fault data and (b) PCI-2 AE (Peripheral Component
Interconnect-2 Acoustic Emission) (data acquisition)
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Faults with crack sizes of 3 mm and 6 mm in diameter are seeded on the drive-end bearings as
the outer raceway fault (O), inner raceway fault (I), ball raceway fault (B), inner-outer raceway fault
(IO), inner-ball raceway fault (IB), outer-ball raceway fault (OB), and inner-outer-ball raceway fault
(IOB) (see Figure 3). The data are recorded at 250 kHz sampling rate and the rotational speeds are 300,
400, 450, and 500 RPM. The details of the data are given in Table 1.
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Figure 3. Different fault conditions in a bearing: (a) outer raceway fault, (b) inner raceway fault, (c) ball
raceway fault, (d) inner-outer raceway fault, (e) inner-ball raceway fault, (f) outer-ball raceway fault,
and (g) inner-outer-ball raceway fault.

Table 1. Detailed information of the datasets.

Dataset Fault Types Rotational Speed (RPM) Fault Crack Size (mm)

Dataset 1

Normal States 300

3 and 6

IR Fault 300
OR Fault 300
Ball Fault 300

Inner-Outer Fault 300
Inner-Ball Fault 300
Outer-Ball Fault 300

Inner-Outer-Ball Fault 300

Dataset 2

Normal States 400

3 and 6

IR Fault 400
OR Fault 400
Ball Fault 400

Inner-Outer Fault 400
Inner-Ball Fault 400
Outer-Ball Fault 400

Inner-Outer-Ball Fault 400

Dataset 3

Normal States 450

3 and 6

IR Fault 450
OR Fault 450
Ball Fault 450

Inner-Outer Fault 450
Inner-Ball Fault 450
Outer-Ball Fault 450

Inner-Outer-Ball Fault 450

Dataset 4

Normal States 500

3 and 6

IR Fault 500
OR Fault 500
Ball Fault 500

Inner-Outer Fault 500
Inner-Ball Fault 500
Outer-Ball Fault 500

Inner-Outer-Ball Fault 500

3. Problem Statements and Proposed Method Objectives

The principal target of this paper is to detect and estimate an induction motor’s mechanical
faults based on the extended-state ARX-Laguerre PI observer. The foremost issue of the induction
motor is mathematical modeling in the presence of uncertainties and faults. Thus, this paper
utilizes a state-of-the-art induction motor experiment for modeling based on system identification.
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The three-phase space vector of induction motor formulation based on the stator and rotor voltage,
current, and flux are presented below [1,27]:{ [

Vstator] = [Zstator]× [istator] + [
.
ϕstator

][
Vrotor] = [Zrotor]× [irotor] + [

.
ϕrotor

] , (1)

where Vstator, Vrotor, [Zstator], [Zrotor], istator, irotor,
.
ϕstator and

.
ϕrotor are the three phase stator voltage,

three phase rotor voltage, stator impedance, rotor impedance, three phase stator current, three phase
rotor current, change of stator flux, and change of rotor flux, respectively. The flux linkage can be
written as follows: {

[ϕstator] = [Lstator]× [istator] + [Mstator.rotor]× [irotor]

[ϕrotor] = [Lrotor]× [irotor] + [Mstator.rotor]× [istator]
(2)

Here, ϕstator, ϕrotor, Lstator, Lrotor and Mstator.rotor are the stator flux, rotor flux, stator inductance
matrix, rotor inductance matrix, and stator-rotor mutual inductance, respectively. Based on (1) and (2),
the stator and rotor currents are calculated as follows:

d
dt

[
istator

irotor

]
=

[
Lstator Mstator.rotor

Mstator.rotor Lrotor

]−1

×([
Vstator

Vrotor

]
−
[

Zstator ωr
d
dt Mstator.rotor

ωr
d
dt Mstator.rotor

T Zrotor

][
istator

irotor

]) (3)

where ωr is rotor rectangular velocity. Based on the dynamic formulation of an induction motor,
mathematical modeling of the induction motors is incredibly complicated and uncertain, and thus,
the task of modeling is significantly important. To address this issue, this research utilizes an
ARX-Laguerre system estimation technique for system modeling. This technique reduces the
complexity and improves the robustness [28]. After modeling healthy and faulty conditions,
the extended-state ARX-Laguerre PI observer can be designed for fault detection and diagnosis.
A block diagram of the proposed method is depicted in Figure 4.
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4. Proposed Fault Detection and Diagnosis

An induction motor is a significant system in various industries. Reliable induction motor
fault detection and diagnosis is significant for maintaining machine operations in safety conditions.
A problem arises in most of the industrial systems in using model-free techniques (knowledge-based
and signal-based) to detect, estimate, and identify faults, especially under uncertain and noisy
conditions. To address this issue, an extended-state ARX-Laguerre PI observer is proposed in
the following section. Figure 5 illustrates the proposed mechanism for bearing fault diagnosis.
ARX-Laguerre system modeling is the first step for model-reference fault diagnosis.
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Figure 5. Block diagram of the sliding mode extended-state ARX-Laguerre PI observer for fault
diagnosis in an induction motor.

4.1. ARX-Laguerre System Modeling

As shown in Figure 5, the first step to design a model-reference observer is system modeling.
This step is important to design an accurate observer for fault diagnosis. Based on the proposed
method, this system is modeled by the ARX-Laguerre technique. The proposed method is robust in
the presence of motor speed variation. When the motor speed changes, the system’s model is changed,
and the proposed observer detects the model’s change. The filter network ARX-Laguerre orthonormal
technique for modeling an induction motor is presented based on the system input and output, Fourier
coefficients, and Laguerre-based orthonormal function as follows [28]:

O(k) =
Nα−1

∑
0

Kn,α(
∞
∑

j=1

√
1−ζα

2

Z−ζα
( 1−ζα ,z

Z−ζα
)

n
∗O(k)).Sn,O(k)+

Nβ−1

∑
0

Kn,β(
∞
∑

j=1

√
1−ζβ

2

Z−ζβ
(

1−ζβ ,z
Z−ζβ

)
n
∗ I(k)).Sn,I(k)

(4)

where O(k), (Kn,a&Kn,b), (Na, Nb),
((√

1−ζα
2

Z−ζα

1−ζα ,z
Z−ζα

)
&
(√

1−ζβ
2

Z−ζβ

1−ζβ ,z
Z−ζβ

))
,
(
ζα&ζβ

)
, ∗, I(k), Sn,O(k),

and Sn,I(k) are the system output, coefficients of Fourier, order of system, functions of the
Laguerre-based orthonormal, Laguerre poles, convolution product, system input, output signal
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filtered, and filtered input signal, respectively. To calculate the state-space equation, the following
variables are defined in Equations (5) and (6).

Lα
n =

√
1−ζα

2

Z−ζα
( 1−ζα ,z

Z−ζα
)

n

Lβ
n =

√
1−ζβ

2

Z−ζβ
(

1−ζβ ,z
Z−ζβ

)
n (5)

{
χn,o(k, ζα) = ∑ Lα

n ∗O(k)

χn,I
(
k, ζβ

)
= ∑ Lβ

n ∗ I(k)
(6)

Based on Equations (4)–(6) the ARX-Laguerre technique is represented as

O(k) =
Nα−1

∑
0

Kn,αχn,O(k)Sn,O(k) +
Nβ−1

∑
0

Kn,βχn,I(k)Sn,I(k) =

A
(
z−1)Sn,O(z) + B

(
z−1)Sn,I(z)

(7)

Here, A
(
z−1) and B

(
z−1) are two polynomials with degrees Nα and Nβ, respectively. Based on

Equation (7) the transfer function is represented as follows:

H(z) =
Sn,O

Sn,I
=

B
(
z−1)

1− A(z−1)
(8)

The identification between Equations (6) and (7) provides (9).

A
(
z−1) = Nα−1

∑
0

Kn,αχn,O(k), B
(
z−1) = Nβ−1

∑
0

Kn,βχn,I(k) (9)

Based on Equations (5), (6), (7), and (9) the optimization problem is defined as follows [28]:

min
ζα

‖A
(
z−1)− Nα−1

∑
0

Kn,αχn,O(k)‖2, min
ζβ

‖B
(
z−1)− Nβ−1

∑
0

Kn,βχn,I(k)‖2 (10)

From the relations Equations (5), (6), and (9), the minimization technique Equation (10) is used
to decompose the polynomials A

(
z−1) and B

(
z−1) on the Laguerre orthonormal bases, and the ζα

and ζβ are optimized. A block diagram of the ARX-Laguerre technique is illustrated in Figure 6.
The ARX-Laguerre state-space equation is written as follows:{

X(k + 1) =
[
AX(k) + byy(k) + buu(k)

]
+ Fd(k) + δ(k)

Y(k + 1) = (K)TX(k + 1)
(11)

where X(k),
(

A, by, bu
)
, Y(k), u(k), Fd(k), δ(k) and (K)T are the system state, coefficient matrices,

measured output, control input, uncertainty and disturbance, faults, and the Fourier coefficient,
respectively. Based on Figure 3, seven types of faults are defined as inner fault δi(k), outer fault
δo(k), ball fault δb(k), inner-outer fault δio(k), inner-ball fault δib(k), outer-ball fault δob(k), and
inner-outer-ball fault δiob(k). A, by, bu, and K are presented in Equations (12), (13), (14), (15) and
(16), respectively.

A =

[
Ao ONa ,Nb

ONb ,Na Ai

]
, (12)
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Here, A0 and Ai are defined in Equations (13) and (14), respectively

Ai =



ζα 0 ... 0
1− ζα

2 ζa ... 0
−ζα

(
1− ζα

2) 1− ζα
2 ... 0

...

...
(−ζα)

Na−1(1− ζα
2)

...

...

...

...

...

...

0
0
ζα


and (13)

Ai =



ζβ 0 ... 0
1− ζβ

2 ζa ... 0
−ζβ

(
1− ζβ

2) 1− ζb
2 ... 0

...

...
(−ζβ)

Nb−1(1− ζβ
2)

...

...

...

...

...

...

0
0
ζβ


(14)

where ONa ,Nb and ONb ,Na are null matrices of the dimensions Na × Nb and Nb × Na. by and bu are
defined as follows:

(by =
√

1− ζ2
α



1
−ζα

(−ζα)
2

..

..
(−ζα)

Nα−1


), and (bu =

√
1− ζ2

β



1
−ζβ

(−ζβ)
2

..

..
(−ζβ)

Nβ−1


) (15)
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Here, a1 =
√

1−ζa
Z−ζa

, a2 = 1−ζa ,z
Z−ζa

, an = 1−ζa ,z
Z−ζa

, b1 =
√

1−ζb
Z−ζb

, b2 = 1−ζb ,z
Z−ζb

, b2 = 1−ζb ,z
Z−ζb

, and

K =
[
C0,α, ..., CNα−1,α, C0,β, ..., CNβ−1,β

]
. (K)T is optimized via a gradient descent (GD) optimization

method using the following equations:

(
K̂
)
=
(
K̂
)
−
[

P(k− 1)− P(k− 1)X(k)XT(k)P(k− 1)
1 + XT(k)P(k− 1)X(k)

]
[Y(k)−

(
K̂)T(k− 1)X(k)

]
(16)
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Here, [P(k− 1)− P(k−1)X(k)XT(k)P(k−1)
1+XT(k)P(k−1)X(k) ] is the covariance matrix and [Y(k)−

(
K̂)T(k− 1)X(k)

]
is the error prediction. Figures 7 and 8 illustrate the estimation accuracy for the healthy and faulty
conditions using the ARX-Laguerre method. For the healthy state in Figure 7, the sensitivity of the
torque estimation is exceptionally high, and the rate of error is close to zero. In the faulty condition,
the error rate increases, which causes an increase in the residual signal which is generated by the
sliding mode technique. Figure 8 illustrates the power of the estimated signal and error rate in the
faulty condition.
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condition: (a) desired and estimated torque and (b) error.

4.2. Extended-State ARX-Laguerre PI Observer

The proposed methodology comprises of six major parts, as shown in Figure 5: (a) system
modeling using the ARX-Laguerre technique, (b) proportional-integral (PI) observer, (c) observer
evaluator, (d) residual generator, (e) threshold process, and (f) residual bank and logic decision.
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The classical ARX-Laguerre PI observer offers a linear approach to find an optimized estimation of
the system and fault. This technique is stable, but it has an issue regarding accurate fault estimation
and robustness. To evaluate the ARX-Laguerre PI observer, a sliding mode extended-state observer
is considered. This technique improves the robustness and precision of fault estimation. Using
ARX-Laguerre state space system modeling, the ARX-Laguerre PI observer method is defined to
estimate the system modeling output and fault. Therefore, the block of the PI observer is defined as
the following equation.{

X̂(k + 1) = AX̂(k) + byŶ(k) + buu(k) + Fd(k) + δ̂(k) + Kp
(
Y(k)− Ŷ(k)

)
Ŷ(k + 1) = (K)TX̂(k + 1)

(17)

where X̂(k), Ŷ(k), δ̂(k) and Kp are the state estimated, output estimated, faults estimated, and the
proportional coefficient, respectively. Based on bearing conditions, the fault estimation can be estimated
in seven different conditions such as inner fault δ̂i(k), outer fault δ̂o(k), ball fault δ̂b(k), inner-outer fault
δ̂io(k), inner-ball fault δ̂ib(k), outer-ball fault δ̂ob(k), and inner-outer-ball fault δ̂iob(k). The future state
of PIO is a function of the current state, current output, current input, faults, disturbance, and current
error of the signal. For fault estimation using the ARX-Laguerre PIO technique, the integral term is
used to reduce the fault estimation error. The integral term of fault estimation in the ARX-Laguerre PI
observer is given in Equation (12).

δ̂(k + 1) = δ̂(k) + KI
(
Y(k)− Ŷ(k)

)
(18)

Here, KI is the integral term coefficient. Using Equation (18), the inner, outer, ball, inner-outer,
inner-ball, outer-ball, and inner-outer-ball faults are estimated based on the integral term. Using this
technique, the future faults are estimated by the current fault and error of the signal. This technique
has been used in several applications [28], but it has a drawback in the presence of uncertain and
noisy conditions. To address this issue, an observer evaluator is considered, as shown in Figure 5.
The extended-state ARX-Laguerre PI observer is designed to improve the performance of faults
estimation. Therefore, the observer evaluator block, as shown in Figure 5, is defined as the following
two Equations, (13) and (14):{

X̂(k + 1) = AX̂(k) + byŶ(k) + buu(k) + Fd(k) + δ̂(k) + Kp
(
Y(k)− Ŷ(k)

)
Ŷ(k) = (K)TX̂(k)

(19)

δ̂(k + 1) = 2×
(
δ̂(k) + KIa

(
Y(k)− Ŷ(k)

))
+ 2× (δ̂(k) + KIb

(
Y(k)− Ŷ(k)

)
)

2
(20)

Here, KIa and KIb are the extended-state coefficients. Based on bearing conditions, the fault
estimation can be estimated in seven different conditions such as inner fault δ̂i(k), outer fault δ̂o(k), ball
fault δ̂b(k), inner-outer fault δ̂io(k), inner-ball fault δ̂ib(k), outer-ball fault δ̂ob(k), and inner-outer-ball
fault δ̂iob(k). According to Equations (19) and (20), the system’s output and faults are estimated using
the extended-state ARX-Laguerre PI observer. This technique is more accurate and robust than the
ARX-Laguerre PI observer technique. The stability and convergence are proven in the Appendix A [29].
After designing the proposed extended-state ARX-Laguerre PI observer method, the residual generator
is designed. The residual generation block has two inputs: (a) the system’s output and (b) the system’s
estimation output. The robust sliding mode technique is used to generate reliable residual signals [30].
This technique is defined as the following equation.{

e(k) = Y(k)− Ŷ(k)
r(k) = Kssgn(e(k))

(21)
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Here, e(k), sgn(.), Ks and r(k) are the output’s error, switching function, sliding gain, and residual
signal, respectively. After designing the proposed extended-state ARX-Laguerre PI observer and
residual generator, in the next step, the sliding mode threshold process evaluation is proposed [29].
As shown in Figure 5, this block has two inputs: (a) the system’s modeling output and (b) the system’s
estimation output, which is represented by the proposed method. Using the robust sliding mode
method, the threshold value for different conditions (e.g., normal state and faulty conditions) is
calculated by the following equation [30]:

∆ = Kεsgn(Sε)

Sε = λεe +
.
e

e = Y(k)− Ŷ(k)
(22)

where Sε,
.
e, λε, Kε and ∆ are sliding surface, output’s change of error, sliding surface slope, sliding gain,

and threshold value, respectively. As shown in Figure 5, the last block for fault detection and fault
diagnosis using the proposed method is residual bank and logic decision. This block is divided into
two main parts: (a) fault detection and (b) fault diagnosis.

4.3. Fault Detection

As shown in Figure 5, the residual bank and logic decision block has two inputs from the residual
generator and threshold process. Using Equations (21) and (22) for fault detection, we have two
different conditions: (a) healthy condition (δ(k) = 0) and (b) faulty condition (δ(k) 6= 0). The threshold
level for normal condition is defined by (Γ). When the system works in a healthy condition (δ(k) = 0),
the normal residual signal is

r(k) ≤ Γ→ r(k) = rn(k) (23)

When the system works in a faulty condition (δ(k) 6= 0), the faulty residual signal is

r(k) > Γ→ r(k) = r f (k) (24)

Using Equations (23) and (24), faults can be detected.

4.4. Fault Identification

The main part of fault identification is fault estimation. The residual bank is evaluated using
the fault estimation. The two blocks for fault estimation include (a) the PI observer block and (b) the
observer evaluate block. In the first step, the ARX-Laguerre PI observer is designed, (17). In this step,
a fault is estimated by an integral linear function, (18). To evaluate the accuracy of fault estimation,
the extended-state ARX-Laguerre PI observer is considered, (21). After accurate fault estimation,
the next step is fault identification. As shown in Figure 5, for fault identification, three important
blocks are: (a) the threshold process block, (b) the residual generator, and (c) residual bank and
logic decision. The main idea of the threshold process is generated in (22). Regarding (20) and (21),
seven different faulty conditions have been defined in this research, i.e., ball, inner, outer, inner-ball,
outer-ball, inner-outer, and inner-outer-ball faults. Based on Equation (22) to detect the level of faults,
the following equations are represented [30]:

∆b = Kbsgn(sb)

sb = λbeb +
.
eb.

(25)

∆i = Kisgn(si)

si = λiei +
.
ei.

(26)

∆o = Kosgn(so)

so = λoeo +
.
eo.

(27)
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∆ib = Kibsgn(sib)

sib = λibeb +
.
eib

(28)

∆ob = Kobsgn(sob)

sob = λobeob +
.
eob.

(29)

∆io = Kiosgn(sio)

sio = λioeio +
.
eio.

(30)

∆iob = Kiobsgn(siob)

siob = λiobeiob +
.
eiob

(31)

Here, ∆o, ∆i, ∆b, ∆ob, ∆ib, ∆oi, ∆oib, (Ki, Ko, Kb, Kib, Kob, Kio, Kiob) and (λi, λo, λb, λib, λob, λio, λiob)

are defined as the outer fault threshold, inner fault threshold, ball fault threshold, outer-ball fault
threshold, inner-ball fault threshold, outer-inner fault threshold, outer-inner-ball fault threshold,
coefficients, and surface slope coefficients, respectively. The last step for fault diagnosis is logic
decision, as shown in Figure 5. This block is used for fault identification and isolation. This block has
two inputs: (a) residual generation and (b) threshold process. The residual signals and threshold levels
are calculated by (21) and (22), respectively. The following equation is used for the condition decision.

i f : r > Γ, r < ∆b, r < ∆i, r < ∆o, r < ∆ib, r < ∆ob, r < ∆io, r < ∆iob → r = rb
i f : r > Γ, r > ∆b, r < ∆i, r < ∆o, r < ∆ib, r < ∆ob, r < ∆io, r < ∆iob → r = ri
i f : r > Γ, r > ∆b, r > ∆i, r < ∆o, r < ∆ib, r < ∆ob, r < ∆io, r < ∆iob → r = ro

i f : r > Γ, r > ∆b, r > ∆i, r > ∆o, r < ∆ib, r < ∆ob, r < ∆io, r < ∆iob → r = rib
i f : r > Γ, r > ∆b, r > ∆i, r > ∆o, r > ∆ib, r < ∆ob, r < ∆io, r < ∆iob → r = rob
i f : r > Γ, r > ∆b, r > ∆i, r > ∆o, r > ∆ib, r > ∆ob, r < ∆io, r < ∆iob → r = rio

i f : r > Γ, r > ∆b, r > ∆i, r > ∆o, r > ∆ib, r > ∆ob, r > ∆io, r < ∆iob → r = riob.

(32)

Here, rb, ri, ro, rib, rob, rio and riob are the ball fault residual signal, inner residual, outer residual,
inner-ball residual, outer-ball residual, inner-outer fault residual, and inner-outer-ball residual,
respectively. Based on Equation (32), faults are isolated whenever the residuals (rb, ri, ro, rib, rob, rio, riob)

overshoot their corresponding thresholds (Γ, ∆o, ∆i, ∆b, ∆ob, ∆ib, ∆oi). Algorithm 1 illustrates the
extended-state ARX-Laguerre PI observer for fault diagnosis of an induction motor. The block diagram
of mechanical fault detection and diagnosis illustrates in Figure 9. In this technique, the abnormal
signal is highly sensitive to the residual signals in normal or faulty conditions, and it is robust to the
other faults and noises.

Algorithm 1. Extended-state ARX-Laguerre PI observer for fault diagnosis of an induction motor

1: Perform system modeling based on the ARX-Laguerre technique (4,11)
2: Run the ARX-Laguerre PI observer (17)
3: Run the observer evaluator based on the extended-state method (20)
4: Run the proposed method for fault estimation (19,20)
5: Run the residual generator based on the sliding mode technique (21)
6: Run the threshold value based on the sliding mode technique (22)
7: Run the decision logic for fault detection (23,24)
8: Run the decision logic for fault identification (32)
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5. Results and Analysis

The effectiveness of the proposed extended-state ARX-Laguerre PI observer for the identification
of various conditions (e.g., normal, inner, outer, ball, inner-ball, outer-ball, inner-outer, and
inner-outer-ball) is compared to the ARX-Laguerre PI observer. The raw signal for different faulty
conditions is illustrated in Figure 10. Regarding (32), the absolute of threshold values for dataset 4
for normal, ball, inner, outer, inner-ball, outer-ball, and inner-outer conditions are 0.5, 1, 2, 3, 4, 6, and
8, respectively. The absolute of residual signal for dataset 4 for normal, ball, inner, outer, inner-ball,
outer-ball, inner-outer, and inner-outer-ball conditions are |rn| < 0.5, 0.5 < |rb| < 1, 1 < |ri| < 2, 2 <

|ro| < 3, 3 < |rib| < 4, 4 < |rob| < 6, 6 < |roi|〈8, and |riob|〉8, respectively. Figure 11 illustrates
the accuracy of the fault detection using dataset 4. As shown in Figure 11, the faulty signal can be
detected easily.
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Figure 11. Residual signal for the normal condition, faulty condition, and the normal threshold value
for fault detection.

Figures 12–19 illustrate fault diagnosis for various conditions. Figure 12 illustrates the normal
signal identification for dataset 4. Figure 13 shows ball fault identification for dataset 4. In this figure,
the ball residual signal is lower than the ball threshold value. Figures 14–19 illustrate the fault diagnosis
for outer, inner-ball, outer-ball, inner-outer, and inner-outer-ball, respectively. As shown in Figure 14,
in some samples, the inner residual signal level is higher than the ball threshold value, which can
be used for fault diagnosis and fault isolation. In the experiment, we have 120,000 samples for each
condition for all datasets. Dataset 4 is used as a training dataset to adjust the threshold. The other
datasets (dataset 1, dataset 2, and dataset 3) are used as a test. Figure 12 shows normal condition,
and level of the residual signal is less than the normal threshold value. It means that in this state, the
proposed method accurately detects the normal condition. For the faulty ball condition, the level of
a residual signal is more prominent than the normal threshold and lower than ball fault threshold.
Therefore, for the faulty ball condition, the residual signal should be between normal threshold and
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ball threshold. In this technique, 100 windows are defined for testing for various types of datasets,
where 1200 samples are used in the window. Figure 15 illustrates the residual signal and threshold
value of the outer defect for fault diagnosis using the proposed method. Whenever the level of the
outer signal is higher than the inner threshold value, fault can be isolated. Figures 16–19 illustrate the
fault diagnosis for the inner-ball, outer-ball, inner-outer, and inner-outer-ball for dataset 4.
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Figure 17. Residual signal for the outer-ball faulty condition, normal, ball, inner, outer, inner-ball, and
outer-ball thresholds with a crack width of 6 mm.
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outer-ball, and inner-outer thresholds with a crack width of 6 mm.
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Figure 19. Residual signal for the inner-outer-ball faulty condition, normal, ball, inner, outer, inner-ball,
outer-ball, and inner-outer thresholds with a crack width of 6 mm.

Tables 2–5 illustrate the accuracy of fault diagnosis using the proposed extended-state
ARX-Laguerre PI observer and ARX-Laguerre PI observer for the normal condition, faulty ball state,
inner fault, outer fault, inner-outer fault, inner-ball fault, outer-ball fault, and inner-outer-ball fault,
respectively. The diagnostic accuracy is reported as a percentage of correct fault identification in
all data.

Table 2. Fault diagnosis results using dataset 1 with the proposed method and ARX-Laguerre
proportional integral observation (ALPIO) when the torque speed is 300 RPM.

Algorithms Proposed Method ALPIO

Crack Diameters (mm) 3 6 3 6
Normal Stat 100% 100% 80% 80%

IR Fault 95% 96% 67% 73%
OR Fault 95% 97% 72% 80%
Ball Fault 96% 100% 78% 74%

IR-Ball Fault 93% 98% 80% 81%
OR-Ball Fault 97% 97% 82% 82%
IR-OR Fault 98% 98% 78% 82%

IR-OR-Ball Fault 97% 97% 78% 81%
Average 96.1% 97.9% 77.6% 79.4%

As shown in Tables 2–5, the average rate of failure identification is 98.8% for the proposed
extended-state ARX-Laguerre PIO and 80.5% for the ARX-Laguerre PI observer.

Table 3. Fault diagnosis results using dataset 2 with the proposed method and ARX-Laguerre
proportional integral observation (ALPIO) when the torque speed is 400 RPM.

Algorithms Proposed Method ALPIO

Crack Diameters (mm) 3 6 3 6
Normal Stat 100% 100% 86% 86%

IR Fault 95% 96% 70% 73%
OR Fault 96% 97% 72% 82%
Ball Fault 97% 99% 78% 79%

IR-Ball Fault 94% 98% 80% 84%
OR-Ball Fault 97% 97% 83% 83%
IR-OR Fault 98% 100% 78% 82%

IR-OR-Ball Fault 97% 98% 79% 80%
Average 96.8% 98.2% 78.3% 81.1%

The proposed extended-state ARX-Laguerre PI observer fault diagnosis method outperforms the
state-of-the-art ARX-Laguerre PI observer method, yielding an average performance improvement of
17.82%, and 16.625% for 3 mm and 6 mm cracks, respectively. Overall, the proposed extended-state
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ARX-Laguerre PI observer fault diagnosis method efficiently identifies single and composite faults in
an induction motor.

Table 4. Fault diagnosis results using dataset 3 with the proposed method and ARX-Laguerre
proportional integral observation (ALPIO) when the torque speed is 450 RPM.

Algorithms Proposed Method ALPIO

Crack Diameters (mm) 3 6 3 6
Normal Stat 100% 100% 88% 88%

IR Fault 97% 97% 75% 78%
OR Fault 97% 98% 76% 82%
Ball Fault 97% 99% 82% 82%

IR-Ball Fault 95% 98% 83% 84%
OR-Ball Fault 97% 98% 84% 84%
IR-OR Fault 98% 99% 80% 82%

IR-OR-Ball Fault 97% 97% 79% 81%
Average 97.3% 98.8% 79.6% 82.4%

Table 5. Fault diagnosis results of dataset 4 using the proposed method and ARX-Laguerre proportional
integral observation (ALPIO) when the torque speed is 500 RPM.

Algorithms Proposed Method ALPIO

Crack Diameters (mm) 3 6 3 6
Normal Stat 100% 100% 90% 90%

IR Fault 97% 97% 81% 83%
OR Fault 98% 98% 78% 82%
Ball Fault 97% 99% 82% 84%

IR-Ball Fault 97% 97% 83% 85%
OR-Ball Fault 98% 99% 85% 85%
IR-OR Fault 98% 99% 82% 82%

IR-OR-Ball Fault 97% 98% 82% 83%
Average 99.9% 99.1% 81.2% 84.6%

To analyze the false alarm in the proposed algorithm, the confusion matrix using dataset 2 is
illustrated in Tables 6 and 7. Based on Table 6, for normal condition, apart from the precision is 100%
but recall is 97.1% because proposed method cannot predict all normal case correctly. The main target
to design the classifier is improving the performance of recall and precision, as well. Regarding Tables 6
and 7, the overall accuracy for 3 mm crack size is 95.07% and for 6mm crack size is 98.13%. In this
experiment, the bearing data are collected under four different motor speeds, as shown in Table 1.
Using the proposed method, this system is modeled by the ARX-Laguerre method. The proposed
method is robust even if the motor speed changes. When the motor speed changes, the system model
is changed, and the proposed observer detects the model change. This technique is robust, and the
speed variation is defined as an uncertainty condition.
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Table 6. Confusion matrix using dataset 2 with the proposed method when the torque speed is 400 RPM
and the crack size is 3 mm.

Actual Class
Predict Class Normal Ball IR OR IR-Ball OR-Ball IR-OR IR-OR-Ball Precision

Normal 100% 0 0 0 0 0 0 0 100%
0%

Ball 1% 97% 0 0 1% 1% 0 0 97%
3%

IR 0 1% 95% 2% 1% 0 1% 0 95%
5%

OR 0 0 1% 96% 3% 0 0 0 96%
4%

IR-Ball 0 0 0 4% 94% 1% 1% 0 94%
6%

OR-Ball 1% 1% 0 1% 0 97% 0 0 97%
3%

IR-OR 1% 0 0 0 1% 0 98% 0 98%
2%

IR-OR-Ball 0 0 0 0 0 0 3% 97% 97%
3%

Recall 97.1%
2.9%

97.9%
2.1%

99%
1%

93.2%
6.8%

94%
6%

97.9%
2.1%

95.1%
4.9%

100%
0%

95.07%
4.93%

Table 7. Confusion matrix using dataset 2 with the proposed method when the torque speed is 400 RPM
and the crack size is 6 mm.

Actual Class
Predict Class Normal Ball IR OR IR-Ball OR-Ball IR-OR IR-OR-Ball Precision

Normal 100% 0 0 0 0 0 0 0 100%
0%

Ball 0 99% 0 1% 0 0 0 0 99%
1%

IR 0 0 96% 3% 0 0 1% 0 96%
4%

OR 0 0 2% 97% 1% 0 0 0 97%
3%

IR-Ball 0 2% 0 0 98% 0 0 0 98%
2%

OR-Ball 1% 2% 0 0 0 97% 0 0 97%
3%

IR-OR 0 0 0 0 0 0 100% 0 100%
0%

IR-OR-Ball 0 0 1% 0 0 0 1% 98% 98%
2%

Recall 99%
1%

96.1%
3.9%

97%
3%

96%
4%

99%
1%

100%
0%

98%
2%

100%
0%

98.13%
1.87%

Tables 8 and 9 present the fault diagnosis accuracy for variable motor speeds (e.g., 300 RPM,
400 RPM, 450 RPM, and 500 RPM) in different crack sizes (e.g., 3 mm and 6 mm), various conditions
(normal, ball fault, inner fault, outer fault, inner-outer fault, inner-ball fault, outer-ball fault, and
inner-outer-ball fault) of the proposed method and PIO. Dataset 4 is used to calculate the threshold
value for different types of faults and two crack sizes.
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Table 8. Fault diagnosis results for various motor speeds using the proposed method and ALPIO
(crack size = 3 mm).

Algorithms Proposed Method ALPIO

Motor Speed (RPM) 300 400 450 500 300 400 450 500
Normal Stat 100% 100% 100% 100% 80% 86% 88% 90%

IR Fault 95% 95% 97% 97% 67% 70% 75% 83%
OR Fault 95% 96% 97% 98% 72% 72% 76% 82%
Ball Fault 96% 97% 97% 97% 77% 78% 82% 84%

IR-Ball Fault 93% 94% 95% 97% 80% 80% 83% 85%
OR-Ball Fault 97% 97% 97% 98% 79% 83% 84% 80%
IR-OR Fault 98% 98% 98% 98% 78% 82% 72% 82%

IR-OR-Ball Fault 97% 97% 97% 98% 79% 76% 79% 83%
Average 96.4% 96.8% 97.2% 97.9% 76.5% 78.4% 79.9% 83.6%

Table 9. Fault diagnosis results for various motor speeds using the proposed method and ALPIO
(crack size=6 mm).

Algorithms Proposed Method ALPIO

Motor Speed (RPM) 300 400 450 500 300 400 450 500
Normal Stat 100% 100% 100% 100% 80% 86% 88% 90%

IR Fault 96% 96% 97% 97% 73% 73% 78% 83%
OR Fault 97% 97% 98% 98% 80% 76% 82% 82%
Ball Fault 100% 99% 99% 99% 74% 78% 82% 84%

IR-Ball Fault 98% 98% 98% 97% 81% 84% 84% 85%
OR-Ball Fault 97% 97% 98% 99% 82% 83% 84% 85%
IR-OR Fault 98% 100% 99% 99% 82% 82% 79% 82%

IR-OR-Ball Fault 97% 98% 97% 98% 78% 80% 82% 83%
Average 97.9% 98.1% 98.2% 98.4% 78.8% 80.2% 82.4% 84.3%

6. Conclusions

In this paper, the proposed extended-state ARX-Laguerre PI observation technique was evaluated
to detect, estimate, and classify several faults in a bearing including ball, inner, outer, inner-ball,
outer-ball, inner-outer, and inner-outer-ball faults. In the first step, the ARX-Laguerre method was
introduced for system modeling and estimation. To increase the accuracy of fault detection and
diagnosis, the proposed extended-state ARX-Laguerre PI observer was designed in the next step.
Experimental results showed that average performance improvements using the proposed method are
17.62% and 16.626%, as compared with the ARX-Laguerre PI observer technique for 3 mm and 6 mm
bearing crack damage, respectively.
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Nomenclature

Vstator Stator voltage matrix Lstator Stator inductance matrix
Vrotor Rotor voltage matrix Lrotor Rotor inductance matrix

Zstator Stator impedance matrix Mstator.rotor
Stator and rotor mutual
inductance

Zrotor Rotor impedance matrix ωr Rotor rectangular velocity

ϕstator,
.
ϕstator

Flux and Flux derivation for
stator

O(k) System’s output
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ϕrotor,
.
ϕrotor

Flux and Flux derivation for
rotor

(Kn,α&Kn,β) Fourier coefficients

istator Stator current (Nα&Nβ) System’s order

irotor Rotor current ((

√
1−ξ2

α

z−ξα
. 1−ξ2

α ,zn

z−ξα
), (

√
1−ξ2

β

z−ξβ
.
1−ξ2

β ,zn

z−ξβ
)) Laguerre-based orthonormal

ξi Laguerre pole * Convolution product
I(k) Systems input Sn,O(k), Sn,I(k) Input and Filter output signal
Xn,I(k) Filter input signal S(k) System’s state
Fd(k) Uncertainty and disturbance δ(k) Faults
(A, by, bu) Coefficient matrices (K)T Fourier coefficient
(ONa ,Nb &ONb ,Na ) Null matrices (α̂n,i)

T Estimation vector
δi(k) Inner fault δo(k) Outer fault
δb(k) Ball fault δib(k) Inner-ball fault
δio(k) Inner-outer fault δob(k) Outer-ball fault
δiob(k) Inner-outer-ball fault (Kp, KI , KIa, KIb) Coefficients
(λε, Kε, Ks) Sliding Mode Coefficients e(k) Error
(K∗)T Fourier coefficient ∆ Threshold Value
r(k) Residual signal rn(k) Normal residual signal
r f (k) Faulty residual signal (Γ) Normal threshold level

X̂(k)
Estimation of the system’s
state

Ŷ(k)
Estimation of the system’s
output

(rb, ri, ro, rib, rob, rio, riob)
Residual signal in various
states

(∆o, ∆i, ∆b, ∆ob, ∆ib, ∆oi, ∆oib)
Threshold value in various
states

(sε, sδ(k)) Sliding surface (λε, λδ(k))
Sliding surface slope
coefficients

Uhgo Fault estimation function δPIO(k + 1)
Fault estimator by PIO
(proportional integral
observer)

Tconv Convergence time ω Positive constant

Appendix A

The stability and convergence of the proposed extended-state ARX-Laguerre PI observer technique is proven
in the following part.

Proof: if the extended-state observer is defined by the following Equation:

Uhgo = Kc−new
(
δ̂PIO(k + 1) + |S∂|κδ̂PIO(k + 1)

)
, Kc−new > 0, (A-1)

S∂ = δ̂(k) + K
(
Y(k)− Ŷ(k)

)
(A-2)

In the normal condition (δ(k) = 0), the convergence reaching time is calculated based on (A-3).

Tconv = 2
Kc−new

(
S` + |S`|κ+1

)
, 1 < κ < 2

S` = K
(
Y(k)− Ŷ(k)

) (A-3)

Based on [29], in the first step, we defined the convergence time in the normal condition, Equation (A-4).
Based on Equation (A-4), the residual signal is converged to zero in a finite time. In the abnormal condition,
the compensate variable is defined by

.
Uhgo = δPIO(k + 1)−

(
Kc−new

(
δ̂PIO(k + 1) + |S∂|κδ̂PIO(k + 1)

))
, S∂(0) = S∂0, (A-4)

Based on [29], to have stability and finite time convergence, the coefficient is bounded as follows:

Kc−new > 2× (δPIO(k + 1))− δ̂PIO(k + 1)) (A-5)

Based on the Lyapunov theorem, the Lyapunov of the proposed observer is defined by the following
Equation:

Vproposed(x) = 2Kc−new|S∂|+
1
2
δ̂PIO(k + 1)2 +

1
2
(Kc−new|S|κ − δ̂PIO(k + 1))2 (A-6)
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The derivative of the Lyapunov function is defined by Equation (A-7).

.
Vproposed(x) = 1

|S∂ |κ
[

S∂
κ δ̂PIO(k + 1)

]Kc−new
2

[
Kc−new

2 −Kc−new
−Kc−new 1

][
S∂

κ

δ̂PIO(k + 1)

]
+

δPIO(k+1)−δ̂PIO(k+1)
|S∂ |κ

[
Kc−new

2

2
−Kc−new

2

][ S∂
κ

δ̂PIO(k + 1)

] (A-7)

The band of the fault estimation based on the proposed method is defined by the following assumption:∣∣δPIO(k + 1)− δ̂PIO(k + 1)
∣∣ ≤ ω|S∂|κ (A-8)

Based on Equation (A-7) and Equation (A-8),

.
Vproposed(x) ≤ −1

|S∂ |κ
[

S∂
κ δ̂PIO(k + 1)

] Kc−new
2[

Kc−new
2 −

(
1

Kc−new
+ Kc−new

)(
δPIO(k + 1)− δ̂PIO(k + 1)

)
−Kc−new

−(Kc−new + 2
(
δPIO(k + 1)− δ̂PIO(k + 1)

)
1

][
S∂

κ

δ̂PIO(k + 1)

] (A-9)

So, if

[
Kc−new

2 −
(

1
Kc−new

+ Kc−new

)(
δPIO(k + 1)− δ̂PIO(k + 1)

)
−Kc−new

−(Kc−new + 2
(
δPIO(k + 1)− δ̂PIO(k + 1)

)
1

]
> 0,

.
Vproposed(x) < 0.

Based on [29], when
.

Vproposed(x) < 0, the residual signals converge to zero in a finite time.
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