
applied  
sciences

Article

PV Tracking Design Methodology Based on an
Orientation Efficiency Chart

José Ruelas * , Flavio Muñoz , Baldomero Lucero and Juan Palomares

Departamento de Ingeniería Mecánica, Instituto Tecnológico Superior de Cajeme, Cd. Obregón 85024, Mexico;
fmunoz@itesca.edu.mx (F.M.); blv@itesca.edu.mx (B.L.); jepalomares@itesca.edu.mx (J.P.)
* Correspondence: eruelas@itesca.edu.mx; Tel.: +55-644-418-8650

Received: 12 January 2019; Accepted: 25 February 2019; Published: 2 March 2019
����������
�������

Abstract: This work describes a new photovoltaic (PV) sun tracker design methodology that utilizes
the advantages that the orientation and efficiency of the PV panel offer due to the latitude of the
installation zone. Furthermore, the proposed design methodology is validated experimentally via the
implementation of a solar tracker with dual axes at a specific location (27.5◦ latitude). In this case,
the methodology enables the incorporation of a high-availability, low-accuracy, and low-cost tracking
mechanism. Based on the results, the feasibility of this type of solar tracker for latitudes close to 30◦

is demonstrated, as this tracking system costs 27% less than the traditional commercial systems that
use slew drives. This system increases the collection efficiency by 24% with respect to a fixed device.
The proposed methodology, which is based on an orientation efficiency chart, can be applied to the
construction or control of other types of solar tracker systems.

Keywords: design methodology; two-axis PV tracker; technician feasibility; high efficiency

1. Introduction

Different variants of photovoltaic (PV) systems, such as PV concentration [1], maximum power
point tracking (MPPT) [2], and/or solar tracking systems, are frequently studied to increase the
collection efficiency of PV systems. These systems are divided into two types—passive and active
tracking systems. Passive tracking systems exhibit low resistance to wind action, feature low
installation and maintenance costs, and increase collection efficiency by up to 23% [3]. Active tracking
systems can be single- or dual-axis systems. Single-axis systems can increase the collection efficiency
by 12–25% by following the solar trajectory along one axis, i.e., horizontal, vertical, polar, or tilted [4].
Active dual-axis solar trackers have been reported to increase the collection efficiency by 17.1–31.1% [5].
In general, dual-axis sun tracking systems can rotate around either the polar and solar declination
axes or the azimuthal and elevation axes. To achieve this design, ring-rail-type structures, which are
constructed to support very large PV systems subjected to strong winds [6], can be mounted on
pedestals or central support structures that incorporate linear actuators for polar tracking and a
slew drive for azimuthal tracking [7,8]. In addition, prototypes of other dual-axis solar tracker
variants have been presented. For example, solar trackers that incorporate robotic actuators have
been proposed [9–11], and a solar tracker that incorporates a complex four-bar mechanism for solar
tracking has been presented [12]. To improve the accuracy and performance of dual-axis solar trackers,
electronic monitoring systems for MPPT in tandem with solar tracking [13] have been incorporated.
Other approaches have incorporated different control variants, such as tracking algorithms and
techniques based on sensors, astronomical equations, diffuse logic, neural networks, time-based
tracking systems, and Petri networks, according to recent state-of-the-art reviews presented in [14,15].

The incorporation of low-cost control methods simplifies the tracking systems. Possible methods
include those presented in [16,17] and strategies for tracking systems by defining three points spaced

Appl. Sci. 2019, 9, 894; doi:10.3390/app9050894 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0493-6899
https://orcid.org/0000-0002-6884-8417
https://orcid.org/0000-0002-3410-4954
http://www.mdpi.com/2076-3417/9/5/894?type=check_update&version=1
http://dx.doi.org/10.3390/app9050894
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 894 2 of 15

according to the sun’s trajectory, either daily or annually [18–21], or hourly tracking [22]; however,
these systems do not guarantee that an adequately high range of efficiency will be maintained.
Therefore, the present work proposes a new methodology for the development of a solar tracking
system that exploits the advantage offered by knowing the degree of latitude of the installation site to
allow the incorporation of low-accuracy, low-cost control mechanisms that keep the PV modules in
adequate ranges of efficiency as a function of orientation (EFO).

2. Materials and Methods

The goal of this investigation is to propose a methodology that maintains the PV value within
an adequate range of EFO by developing a strategy for designing a low-precision, high-efficiency
PV tracking system mechanism and facilitating the instrumentation and control required for this
prototype. This proposed methodology is based on the effect of misalignment error with respect to PV
efficiency [23] and the Norton design methodology [24]; complementary modifications of the process,
directions for the developer, as well as instrumentation and control requirements that are based on the
knowledge of and devices available to the developer are made using the sequential steps presented in
Figure 1.
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The detailed description of the flow diagram shown in Figure 1 is presented below, starting with
the input parameter section.

2.1. Input Parameters

This step defines the parameters and design rules, including the latitude of installation established
according to a global positioning system (GPS) or maps, available technology, and equipment resources,
for a new solar tracker. This information was obtained from manufacturers, suppliers, commercial
equipment sellers, and developers. The EFO solar tracker prototype is installed at a site located at
27.5◦ latitude and 109◦ longitude. In addition, the prototype must meet the following design criteria:
low cost, low maintenance, high collection efficiency, and improved performance against wind action.
The specific parameter values are presented in Table 1.

Table 1. Solar tracker design parameters.

Design Parameters Value

Latitude 27.5◦

Efficiency as a function of the orientation (EFO) 95–100%
Maximum wind speed 33.3 m/s

Capacity 1 kW
Cost Lowest available

2.2. EFO Chart of Installation Latitude

For a specific latitude, it is necessary to evaluate whether designing a new solar tracker with low
precision but high efficiency is possible or whether this strategy must be replaced with another design
method, as described in [14]. For this purpose, determining the PV efficiency loss due to misalignment
error is necessary, using an EFO chart for the specific latitude (ϕ). Equations (1) and (2) are used to
determine the EFO in relation to the inclination (β) and azimuth (α) alignments [25] to ultimately
determine the efficiency loss due to misalignment.

EFO = 100 − 100 ×
[
1.2 × 10−4(β − ϕ + 10)2 + 3.5 × 10−5α2

]
f or 15o < β < 90o (1)

EFO = 100 − 100 ×
[
1.2 × 10−4(β − ϕ + 10)2

]
f or β ≤ 15o and α = 0

o
(2)

An EFO graphic representation for 27.5◦ latitude is shown in Figure 2. For this case, the proposed
EFO facilitates the incorporation of mechanisms with low resolution that can maintain the tracking
errors along the azimuthal axis within the range of ±30◦ and the tracking errors for the tilt axis within
the range of 25◦ while maintaining the collection efficiencies within the range of 95–100% EFO.
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2.3. Points and Trajectory for Solar Tracking

This section establishes the minimum number of tracking points that can be managed each
day according to the EFO range established in the previous step, as well as the verified azimuth
and elevation angle ranges based on the solar trajectory at the installation site throughout the year,
according to the flow diagram shown in Figure 1. Assuming that the sun advances at 15◦ per hour,
according to the EFO chart, the azimuth tracking can have a range of ±30◦ of the defacement. In hourly
solar tracking from 6:00 to 18:00, the tracking can be divided into three fixed positions with evenly
spaced angular points and time locations, as listed in Table 2. Regarding the adjustment of the solar
tiles, a follow-up via daily adjustments based on the declination is proposed; this method considers
that the declination value is 16◦, that it can be maintained within 25◦ (per the solar chart for a latitude
of 27.5◦ north), and that the mechanism has a low cost.

Table 2. Azimuth schedule of tracking.

Position Schedule of Tracking (Hours) Azimuth (◦)

P1 06:01 and 10:00 30
P2 10:01 and 14:00 90
P3 14:01 and 18:00 120

2.4. Operation Specifications

The results of this step are documents and/or pictures that describe in detail the events and
actions that occur over time in the prototype solar tracker operation; the details may include labels of
possible sensors and actuators needed for the instrumentation and control of the new solar tracker.
The solar tracking system follows the trajectory of the sun using a three-point motion for azimuthal
tracking with a clockwise open-loop control system that operates from 6:00 to 18:00 each day (Figure 3),
and a linear actuator is used for tracking the declination over the year.
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2.5. Selection and Design of the Mechanisms for Dual-Axis Tracking

This step consists primarily of the selection of the mechanism, in accordance with the capacities
required for the solar tracker prototype, using comparison matrices that facilitate the selection of
devices according to the evaluation criteria. Here, “H” is assigned to high values, “M” to medium
values, and “L” to low values. In addition, calculations including arithmetic, finite element analysis
(FEA), and computer-aided design (CAD) tool computations are performed on the structures and
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mechanisms required to develop the prototype. The first component of the design for the solar tracker
is the PV system support structure, which corresponds to a 1 kW PV system composed of four panels
with dimensions of 0.95 × 1.05 m and a power of 250 W. This supporting structure is designed using
CAD software and FEA. FEA to determine which structure exhibits better resistance against wind
action is performed using a wind speed of 33.3 m/s, which was chosen based on the maximum wind
speed records at the installation location [26]. According to the FEA, the most appropriate structure
uses structural steel (PTR-14, PTR-20) and 1

2 ” tubing. Moreover, the authors of [8] analyzed and
established a better location of the azimuth as shown in Figure 4.
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Next, the tracking mechanism is selected based on the decision matrix presented in Table 3.
The most viable option is a direct current (DC) gear motor adapted to a transmission because of its low
cost and high availability.

Table 3. Actuator selection for mechanism tracking.

Mechanism Cost Availability Maintenance

Gear motor and linear actuator L H M
Two slew drives M M L

Two indexed motors H L H

The transmission is designed (Figure 5) to achieve the proposed resolution without affecting the
previously proposed structure. A bevel gear transmission with a total gear ratio of 8:1 that is composed
of a gear-motor coupling dart (1), an upper panel support (2), and bevel gears for transverse coupling
(3 and 4) is proposed. The transmission uses A36 steel due to its mechanical resistance.
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According to the calculations for a gear motor and linear actuator (such as the example shown in
Figure 6, which is a worm-rack type system with a torque of 80 N-m coupled to a transmission with a
step ratio of 12 and is 0.2 m in diameter), it is possible to withstand the torsion moments caused by
wind action over the PV system area.
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2.6. Selection of the Control Technique and Device Programming

The control technique (e.g., Grafcet, Petri Nets, Neural Networks, or Diffuse Logic) is selected
based on the process to be performed, while considering the detailed description of the solar tracker
prototype operation (Step 4) and the control device. The latter could be a field programmable gate
array (FPGA), programmable logic controller (PLC), microcontroller, or industrial personal computer
(PC), based on the previously selected technique. Finally, a program is developed for the algorithm and
control technique previously established in Steps 4 and 5. According to the data previously obtained
to fulfil the design requirements of minimizing the amount of movement and utilizing ±30◦ windows
for maximum efficiency, a general time tracking system with an open-loop control with both automatic
and manual control is proposed (Figure 7).
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The device that will be installed on the solar tracker to perform the proposed control of A1 and
A2 (DC gear motor) must be selected. A controller with the capacity to manage dates and hours and
perform some arithmetic operations is required. An FPGA, a PLC, a microcontroller, and an industrial
PC are considered and compared in Table 4.
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Table 4. Control device selection matrix.

Device Cost Availability Maintenance

Diligent field programmable gate array (FPGA) for Linux L H L
Arduino microcontroller L H L

Festo (programmable logic controller (PLC)) compact unit control M M H
Industrial personal computer (PC) with output interfaces H L L

One feasible option for the development of the control system is a system based on a
microcontroller combined with an H bridge due to its low cost and high availability; however,
FPGA boards are equally feasible. The selected control system is used to perform basic arithmetic
operations and to facilitate the incorporation of a manual alignment system for the installation of the
solar tracker, based on the schematic diagram shown in Figure 8.
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According to the design methodology, it is necessary to program the microcontroller with an
adequate technique. As detailed in Table 5, before developing the controller circuit, the control
technique must be selected based on its characteristics and operation of the solar tracker prototype
mentioned in the previous step.

Table 5. Selection of the control algorithm technique.

Technique Complexity Knowledge

Grafcet M H
Petri nets H L

Flow diagrams L H

The Grafcet technique is selected, as it facilitates programming sequences of transitions defined
by a change of states and its simplicity allows the expansion of the program code for a solar tracker.
In addition, the developer has a large amount of knowledge in applying this technique. Figure 9
illustrates the Grafcet technique used to develop the program of an algorithm that follows the trajectory
of the sun along three points separated by 60◦ along the azimuth axis (Figure 5) using the low-cost
microcontroller selected in the previous step that has limited digital I/O and the capacity to perform
basic arithmetic operations and manage the date and time.
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The tracking begins at point P1, located 30◦ above the azimuth axis, and the tracker remains at
this point until 10:00. One minute later, the tracker moves to point P2, which is located 90◦ above the
azimuth axis from the previous point, due to the activation of actuator A1, and the tracker remains
at this point until 14:00. At 14:01, the tracker moves to point P3, which is located 60◦ from the
previous point, due to the activation of actuator A1, and it remains at this point until 18:00. Finally,
one minute after 18:00, the tracker returns to point P1 by activating the actuator A1 to turn 120◦ in the
opposite direction.

2.7. Documentation, Implementation, and Testing

In this step, the documents required for the instrumentation, control, and construction of
the prototype are collected. These are typically electrical, pneumatic, and/or hydraulic diagrams,
component and prototype construction plans, instrument specifications, and program source code.

Once the plans and diagrams of the new solar tracker prototype are developed, construction of
the prototype and tests are performed to determine whether the upgrade fulfils the expectations of the
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EFO solar tracker prototype. If the results are inadequate, it is necessary to return to Step 5 to consider
possible modifications until the results of the new solar tracker prototype are satisfactory.

2.7.1. Documentation

To proceed with the development of the solar tracker prototype, it is necessary to generate the
following documentation: the specification of the actuators (Figure 6), the microcontroller electronic
circuit diagram (Figure 8), the source code of the solar tracker control program (Figure 9), and the
structural plans of the tracking system (Figure 10) in which parts P-1 and P-7 were constructed with
structural steel PTR-14, P-2 to P-8 with structural steel PTR-20, and P-7 to P-10 with structural steel
PTR-14 and 1

2 ” tubes.
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2.7.2. Implementation and Cost Reduction

The final implementation of the EFO solar tracker prototype is shown in Figure 11, which indicates
the locations of the control system and actuators A1 and A2. The close-up view shows the details of
the structure, tracker mechanisms, and control system of the solar tracker.

In this case, the application of an EFO chart to develop a solar tracker resulted in a 27% decrease
in the total cost of the solar tracker compared to a dual-axis solar tracker with a mono-post and similar
dimensions to the one proposed. In this investigation, the solar tracker may cost 1573 euros [27],
which includes the fact that developers usually incorporate a slew drive mechanism for azimuthal
tracking at a cost of 423 euros [28], while these mechanisms can be replaced by a machined system of
low resolution and precision at an estimated cost of 170 euros [29].
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Based on another study [30], a general dual-axis solar tracking system has an additional cost of
1.53 euros/watt with payback in 3.5–5 years. In this case, the dual-axis tracking system represents an
additional cost of 1.4 euros/watt, which can be a significant cost reduction for large PV systems with a
large number of solar trackers, e.g., the Nufri PV solar plant located in Lleida Spain with approximately
210 solar trackers [31].

2.7.3. Testing

The resistance of the solar tracker prototype to wind was tested for a specific location
(27.5◦ latitude and 109◦ longitude) in 2017. During this period, the tracker remained operational
and withstood maximum wind speed (v) gusts of 23.3 m/s according to data obtained from the
weather station installed at the same location.

The estimated maximum torsion moment [32] caused by wind action over the PV system area (A)
of 4 m2 is 1306 N-m, which assumes a density of air (δ) at sea level of 1.2 kg/m3 at a distance (d) of
1 m and is based on Equation (3):

T =
1
2
· δ · v2 · A · d. (3)

In the test, the solar tracker efficiency was enhanced by 23%. The results and details regarding the
instrumentation and recording of the PV efficiency measurements are provided in the Results section.

3. Results

The energy measurement was performed by recording the power delivered by the fixed PV
module and the tracking PV module, i.e., model ERDM250. The voltage and current measurements
were performed using an electric circuit with a resistance of 7.5 Ohms and a load of 200 W, as shown
in Figure 12. The weather conditions were recorded using an Ambient Weather WS-1001 weather
station. The voltmeters are accurate to ±0.5%, the ammeter is accurate to ±2.5%, and the solar
radiation recorded by the weather station is accurate to ±15%, according to the manufacturer’s
specifications [33,34].
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The measured solar irradiation ranged from 0 to 700 W/m2, and the current values ranged from 0
to 5 amperes based on the PV manufacturer’s current–voltage curves (Figure 13). According to the
characteristics of the resistance used as the load, the voltage ranged from 0 to 30 volts. These conditions
imply that the cells were operating at approximately 50% of their maximum capacity according to the
manufacturer’s operating curves. Additional important specifications of the PV are as follows: panel
dimensions of 1640 × 990 × 50 mm, maximum power (Pmax) of 250 W, voltage at maximum power
(Vmp) of 31 V, current at maximum power (Imp) of 8.08 A, short circuit current (Isc) of 8.8 A, open
circuit voltage (Voc) of 37.8 V, polycrystalline type of panel, operating temperature from 40 ◦C to 90 ◦C,
module conversion efficiency (hTref) of 15.39%, power temperature coefficient (bref) of −0.5%/◦C,
and standard testing condition of 1000 W/mˆ2 at 25 ◦C [35].
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Measurements were taken on a specific date, which was selected based on a study by
Kacira et al. [36], who found that May, June, and July feature the largest drops in efficiency due
to orientation, and other studies [2,37] that evaluated the performance of a double-axis sun tracking
system in comparison to a fixed PV system. The delivered energy measurements were performed using
a fixed or tracking PV system of the prototype installed in Cd. Obregón, Mexico (27.5◦ latitude and
109◦ longitude) and were recorded hourly on July 12, 2018, as shown in Figure 14. These recordings
can be considered adequate and congruent measurements, because during the hours around solar
noon, the energy production curves of the fixed panel and the tracking panel are similar.
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Figure 15 shows the correlation and variance between the power measurements and incident
radiation for the ERDM250 PV. The measurements have a lineal performance with a variance
of ±10% of the maximum value. These values were determined based on the observations,
recording measurements, and responses to electric load.
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The EFO solar-tracking panel collected 24% more energy than the fixed PV panel. This increase in
efficiency is expected to be the average value for the range of increments of dual-axis tracking systems
that achieve 95–100% EFO. The increased efficiency is similar to the average increased efficiency
of 24.5% for the dual-axis solar trackers that use sensors and tracking mechanisms with greater
precision [5], as shown in Table 6. The increase in the technician feasibility of dual-axis PV tracking
systems for latitudes close to 30◦ is similar to that of single-axis solar trackers for latitudes lower than
15◦ [38].
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Table 6. Efficiencies of related trackers.

Register Type Latitude Test Date Efficiency
Increment

Al-Mohamad [7] Two photo sensors
with balance shades Damascus, Syria 33◦ N Summer of 2000 >20%

Serhan and
EL-Chaar [39] Four photo sensors Libya 33◦ N - 20–28%

F.M. Hoffmant [5] Four photo sensors Santa Cruz, Brazil 29.7◦ S From June to
November of 2016 17.2–31.1%

This work Open-loop EFO tracker Cd. Obregon, Mexico 27.5◦ N July of 2018 23.4%

4. Conclusions

This methodology enables the incorporation of a high-availability, low-accuracy. and low-cost
solar tracking mechanism. Based on the results, the feasibility of this type of solar tracker for latitudes
close to 30◦ is highlighted because this tracking system costs 27% less than the traditional commercial
systems that use slew drives, while it increases the collection efficiency by 24%.

The proposed methodology can be used for developing PV trackers for different conditions,
such as latitude or number of tracking points, and it enables research opportunities to apply an EFO
chart to different solar tracker technologies.

Author Contributions: All the authors worked on designing the experiment and developing the prototype
throughout the duration of the project. J.R. and F.M. created and designed the experiments. J.R. and B.L. analyzed
the data, and J.R. and J.P. analyzed the documents.

Funding: This research was financially supported by National Technology of Mexico (grant number 067-PD).

Acknowledgments: The authors extend their gratitude to CONACYT and TECNM for their support.
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