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Abstract: Lung cancer is the most common cause of cancer-related deaths worldwide. Hence, the
survival rate of patients can be increased by early diagnosis. Recently, machine learning methods on
Computed Tomography (CT) images have been used in the diagnosis of lung cancer to accelerate
the diagnosis process and assist physicians. However, in conventional machine learning techniques,
using handcrafted feature extraction methods on CT images are complicated processes. Hence, deep
learning as an effective area of machine learning methods by using automatic feature extraction
methods could minimize the process of feature extraction. In this study, two Convolutional Neural
Network (CNN)-based models were proposed as deep learning methods to diagnose lung cancer on
lung CT images. To investigate the performance of the two proposed models (Straight 3D-CNN with
conventional softmax and hybrid 3D-CNN with Radial Basis Function (RBF)-based SVM), the altered
models of two-well known CNN architectures (3D-AlexNet and 3D-GoogleNet) were considered.
Experimental results showed that the performance of the two proposed models surpassed 3D-AlexNet
and 3D-GoogleNet. Furthermore, the proposed hybrid 3D-CNN with SVM achieved more satisfying
results (91.81%, 88.53% and 91.91% for accuracy rate, sensitivity and precision respectively) compared
to straight 3D-CNN with softmax in the diagnosis of lung cancer.

Keywords: computed tomography; convolutional neural network; deep learning; lung cancer
diagnosis; medical imaging; SVM classifier

1. Introduction

Cancer is an emotive subject of our age, millions of people worldwide are struggling with it and
there is still no final cure. However, taking it under control by early detection can be a way to at least
increase the survival rate. After prostate and breast cancer, lung cancer is the second most observed
cancer type in both men and women. With a death toll of over 70%, the American Cancer Society put
lung cancer among the most aggressive cancers in 2016 [1]. Consequently, the probability of survival
will be increased to 49% if the cancer is detected in the early stage when it is limited to the lung and
has not spread out to the lymph [2,3].

The main purpose is to provide tools for early diagnose and increase care services.
Using Computer Aided Diagnosis (CAD) in the medical workflow, which helps physicians to make
precise decisions, as well as rising up the accuracy of the diagnosis. Machine learning methods create
a model of training for medical images and they are able to handle all objects of data in the computer
assistance structure. Generally, in traditional CAD diagnosis systems, to classify tumors, different
and complicated image processing techniques and segmentation methods are applied to images.
Therefore, the extraction of low-level features from images is a complicated process [4]. However, there
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are noteworthy studies that have used conventional machine learning methods in CAD in order to
diagnose lung cancer. Since deep learning methods are independent of complicated handcraft feature
extraction methods and additionally are able to extract low-level to high-level features from a large
amount of datasets, in recent years, they have become more successful compared to conventional
machine learning methods in CAD. Therefore, deep learning methods in CAD systems help physicians
in the diagnosis of cancer by improving the accuracy of diagnosis and cost efficiency in a short time [5].

However, there is no deep learning model that is sufficient in terms of classification or detection
of all kinds of real-life problems. Therefore, in recent papers, hybrid architectures of deep learning
models using Support Vector Machine (S§VM) as a well-known classification algorithm were proposed
and achieved significant results in various classification problems [6,7].

In this study, by considering the advantage of deep learning methods as one of the state-of-the-art
machine learning methods in terms of automatic feature extraction and the promising results of
hybrid architectures in diagnosing lung cancer in early stages, different architectures of Convolutional
Neural Network (CNN), as one of the significant models of deep learning methods, were investigated.
In this regard, in order to classify Data Science Bowl and Kaggle lung Computed Tomography (CT)
scan images, two 3D-CNN architectures were proposed. Straight 3D-CNN was the proposed CNN
architecture which used softmax as its conventional classifier and additionally hybrid 3D-CNN was
the second proposed CNN architecture which utilized Radial Basis Function (RBF)-based SVM as its
classifier instead of softmax. It is noticeable that this method is the first applied method in terms of the
classification of lung cancer. Moreover, the altered 3D architectures of AlexNet and GoogleNet, the two
well-known architectures of Convolutional Neural Network (CNN), were used for the classification
of lung CT scan images as well. The performance of both proposed 3D-CNN, 3D-AlexNet and
3D-GgoogleNet architectures have been evaluated in lung cancer diagnosis.

The rest of the paper is organized as follows: An overview of the other studies which have
used Deep learning methods on different lung datasets are presented in Section 2; a brief description
of Convolutional Neural Network and its related concepts and also RBF-based SVM classifier are
presented in Section 3 as well. Section 4 presents the description of the used dataset and all proposed
3D-CNN architectures in order to diagnose lung cancer. Eventually, experimental results, a discussion
and the conclusion are presented in Sections 5 and 6 as well.

2. Related Works

Since large image datasets of lung cancers are rare and deep learning methods are novel in the
diagnosis of diseases, there are few researches in the diagnosis of lung cancer [8].

Ginneken et al. compared overfeat CNN and Food and Drug Administration as a commercial
method of CAD for the detection of lung cancer nodules. CT scan images of Lung Image Database
Consortium (LIDC) were used for the detection of nodules. Features of lung nodules were extracted
by overfeat CNN, and an SVM algorithm was used for classification of the nodules. Furthermore, the
nodules were detected by commercial CAD systems. Results showed that each method could detect
nodules by over 70% sensitivity [9].

Anthimopoulos et al. proposed CNN to classify and characterize different lung tissues of lung
diseases. CT scan images of University Hospital of Geneva and Bern University Hospital were used
as Interstitial Lung Disease (ILD) datasets. Their proposed CNN contained five convolutional layers,
one pooling layer, and three fully connected layers. The proposed algorithm was compared to other
CNN architecture e.g., LeNet, AlexNet and VGG Net. Results showed that the proposed CNN for
classification and detection of tissues was superior compared to the other algorithms. The proposed
CNN achieved a 85.61% accuracy rate [10].

Gruetzemacher and Gupta used DNN for classification of lung cancer nodules. CT scan images of
LIDC and Image Database Resource Initiative (IDRI) were used as a dataset. Four different topologies
with different numbers of convolutional layers were compared. Results demonstrated that the accuracy
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rate of all used methods by different convolutional layers was close to each other, and the network by
five convolutional layers achieved the highest accuracy rate (82.10%) [11].

Sun et al. compared three algorithms of deep learning and a traditional CAD system to diagnose
lung cancer nodules on CT scan images. They used LIDC and IDRI datasets for the diagnosis of lung
cancer. Deep Belief Network (DBN), CNN and Stacked Denoising Auto Encoder (SDAE) were used as
three algorithms of deep learning. The results of the accuracy rates demonstrated that CNN and DBN
were superior compared to the SDAE and traditional CAD methods Furthermore, DBN achieved the
highest accuracy rate of nodules classification (81.19%) [8].

Ciompi et al. applied Multi-scale CNN with multi-stream architecture as a deep learning method
for the classification of lung cancer nodules on CT scan images. In order to characterize lung cancer
nodules, Multicentric Italian Lung Detection (MID) and Danish Lung Cancer Screening (DLCS) datasets
were used. Automatic nodules classification in six types was done without using any segmentation
methods. All scales of CNN were combined in a fully connected layer of CNN. Results of proposed
multi-scale CNN were compared with radiologists” diagnosis and the average accuracy rate of CNN
(69.6%) is close to the average accuracy rate of radiologists (72.9%). Moreover, the accuracy of
CNN with three scales was compared with SVM-based pixel intensity of patches and SVM-based
unsupervised learning of features. Results show that CNN with three scales achieved a higher accuracy
rate (79.5%) than the other two SVM-based methods [12].

Li et al. proposed a CNN algorithm with a single convolutional layer for the classification
of patches on high-resolution computed tomography images. ILD lung dataset was used for this
purpose. Furthermore, a combination of SVM classifier with three feature extraction methods (i.e.,
Scale Invariant Feature Transform (SIFT), Local Binary Pattern and Restricted Boltzmann Machine
(RBM)) was used to extract features and classify images. Their proposed CNN was compared with
the combination of a three feature extraction method and SVM classifier. Results showed that their
proposed CNN achieved higher Sensitivity or Recall (about 0.88) and Precision values (about 0.93)
than the other methods [13].

Shen et al. proposed a multiscale CNN for classification of malignant and benign lung nodules.
CT scan images of LIDC and IDRI datasets were used. SVM and Random Forest were used as
classification algorithms of CNN. Their proposed CNN algorithm with Random Forest classifier
achieved 86.84% accuracy rate in the classification of lung nodules without using any segmentation
methods [14].

Rao et al. proposed CanNet as a CNN model to classify lung CT scan images of the LIDC
dataset. Their proposed CanNet contained two convolutional layers, one max pooling and one fully
connected layer. In comparison with traditional Artificial Neural Networks (ANN) and LeNet, their
proposed CanNet model achieved the highest accuracy rate in the classification of lung CT scan images.
The accuracy rate of each LeNet, ANN and CanNet was 56%, 72.5% and 76% respectively [15].

Song et al. compared the performance of Deep Neural Network (DNN), CNN and Stacked Auto
Encoder (SAE) algorithms in the classification of CT scan images of LIDC-IDRI datasets. The results
showed that the CNN algorithm surpassed the other two algorithms in the classification of lung CT
scan images. CNN, DNN and SAE achieved 84.15%, 82.37% and 82.59% accuracy rate. CNN and SAE
achieved the same sensitivity (83.96%) and DNN achieved 80.66% sensitivity [16].

Bondfale and Banait used CNN for the classification of an ILD dataset of lung CT scan images.
They reported results of CNN for classification of healthy, ground-glass opacity, micro-nodules,
reticulation, honeycombing and consolidation classes of ILDs being favorable [17].

Alakwaa et al. proposed the CNN architecture to classify lung CT scan images of Data Science
Bowl and Kaggle [18]. For nodule detection, they used U-Net as a detection architecture on a Lung
Nodule Analysis (LUNA) dataset as an assistant dataset. Results showed that CNN classification
architecture achieved 86.6% accuracy rate. The False Positive (FP) rate and False Negative (FN) rate of
CNN were 11.9% and 14.7% respectively [19].
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Kuan et al. used the modified version of ResNet-18 as classification architecture to classify the
Data Science Bowl and Kaggle lung CT scan images [18]. Moreover, Luna dataset was used for nodule
detection. Results showed that their modified ResNet-18 achieved better results than the original
ResNet-18 in terms of sensitivity, specificity and F1. Their achieved sensitivity, specificity, F1, and log
loss values were 0.538, 0.648, 0.33, and 0.52712 respectively [20].

Liao et al. used modified 3D U-Net with Region Proposal Networks (RPN) for nodule detection of
Data Science Bowl and Kaggle lung CT scan images. Moreover, to evaluate the probability of detected
nodule Leaky Noisy-OR method have been integrated into their used classification method. Their used
method achieved 0.3998 of log-loss [21].

Serj et al. proposed a CNN architecture in order to classify the Data Science Bowl and Kaggle
lung CT scan images. Results showed that their proposed classification architecture was 0.87, 0.991,
0.95, and 0.20 for sensitivity, specificity, F1, and log-loss, respectively [22].

Jin et al. used a 3D-AlexNet architecture to classify the Data Science Bowl and Kaggle lung CT
scan images [18]. They compared their used 3D-AlexNet architecture with different input sizes and
epoch sizes. Experimental results showed that their highest achieved accuracy rate was 87.5% [23].

3. Material and Method

3.1. Convolutional Neural Network

In conventional machine learning methods, to acquire features from the dataset, manual feature
extraction methods are applied on the dataset and extracted low-level features are fed to a particular
machine learning algorithm, whereas deep learning methods are able to extract features from a raw
dataset automatically. Detection or classification will be applied to the dataset by extracted low, middle
and high-level features [24]. Hence, the main characteristic of deep learning methods is applying
nonlinear functions on raw data as inputs to produce abstracted outputs [24]. Nowadays, it is easy to
access large datasets and computers by powerful processing systems which are the main requirements
of deep learning methods. As a result, in the last decades, deep learning methods have taken advantage
of powerful GPUs to minimize training time and improve the accuracy of classifications [25].

CNN, DBN, Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM), and Deep
Stacking Networks (DSN) are deep learning architectures which are used in computer vision, automatic
audio classification and natural language processing fields to solve problems of large datasets.

Like ANN, CNN is inspired by the system of interconnected biological neurons. Both algorithms
include neurons which contain weights and biases [26,27]. Although the structures of both CNN and
ANN include layers, there are big differences between the structures of both networks. The structure
of layers in an ordinary ANN algorithm is one-dimensional and connections of all layers are fully
connected. CNN, however, has three-dimensional neurons in a layer which include width, height,
and depth. Furthermore, in CNN, each neuron of one layer is connected to only one region of the
previous layer without any full connection between middle layers. In CNN, kernels (filter banks)
are used as a unit to connect to the part of the previous layer, and it is called weight connection.
In CNN layers, by using local connections, local features are detected, and by pooling operations,
identical features are merged to be one feature. The architecture of CNN contains three main layers
as convolutional layers, pooling layers and fully connected layers; [28] LeNet, AlexNet, GoogleNet,
VGG-Net, Res-Net, ZF-Net, and SqueezNet are the most used architectures of CNN in classification
and pattern recognition fields [29,30].

Backpropagation algorithm [31] is one of the best learning algorithms of CNN, due to its ease
of use in computation and function. During training, backpropagation differentiates between the
prediction of labels which are achieved by the algorithm and ground truth labels which are calculated
by a loss function. Consequently, in classification and probabilistic problems, the most popular loss
function is the cross-entropy error function. The formula of cross-entropy is given by Equation (1).
In this equation, x values are denoted as inputs and all, alz, ...and a]1 are denoted as real values of all
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output neurons (j) in the output layer; y indicates the desired output values; and n is the number of all
training samples. In order to minimize the loss function, the gradient descent optimization algorithm
tries to find a local minimum by updating the weights (parameters) through training. In this study;
Stochastic Gradient Descent (SGD) is used as a gradient descent algorithm.

== Z Z iInaj) + (1 +y;) In(1 —aj)) ey

3.1.1. Convolutional Layer

The convolutional layer includes feature maps (depth slices) and each feature map includes sets
of neurons. The output of the convolutional operation in a convolutional layer is given by Equation (2).
In this equation, F is denoted as the kernel (filter) size, m is denoted as the feature maps, B is denoted
as the bias, and the weight of a kernel is denoted as Wj. The output of a convolutional layer is denoted
as y! where i indicates the ith feature map in a layer that it denoted by 1[32].

1 o L (1-1)
yi = Bi + Zl Fi,jl X W] (2)
]:

3.1.2. Pooling Layer (Subsampling)

To decrease the number of parameters and network calculation, generally the pooling layer is used
among convolutional layers; consequently, through the subsampling operation, input size is decreased
in all depth parts and this prevents overfitting through network training. Since the spatial size of input
is decreased by the pooling operation, the depth dimension is not changed. Max pooling and average
pooling are the two most commonly used types of pooling operations (Figure 1). The width and height
of the output in the pooling layer are achieved by Equations (3) and (4). In both equations, W1, Hy, Dg
are the width, height and the depth size of input respectively. S is denoted as the stride size (the step
of shifting by kernels on the input image), and F is denoted as the kernel size [32].

Wi +F
Wa = (—g—)+1 3)
H; +F
Hy=(—g—)+1 4)
Max pooling
o
12 | 20 |30 | O
0 37
4 .
Avg Pooling
12 8
20

Figure 1. Examples of max and average pooling.
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3.1.3. Fully Connected Layer

The last layer of CNN architecture is a fully connected layer. Similar to ordinary ANN, in the
fully connected layer, all neurons of a layer are connected to all neurons of the previous layer. Through
training, the score of a class between all classes of the dataset is presented in the fully connected
layer. Fully connected operations are given by Equation (5), in which 1 and (1 — 1) are denoted as fully
connected layers. The output of the last fully connected is y!, which is indicated by the ith unit in

layer 1. In layer 1, feature maps of mg 1 by m(1 D x mg*l) size are denoted as inputs. W1 jrs i the
weights connections of the ith unit in layer | and y; which is denoted as the jth unit of layer (I1—1)in
(r, s) location [32].

D) 1) 1D

y% =1{(z w1thz Z Z Z Wl],rs y] )rs (5)

3.1.4. Relu Activation Function

Although the connection between neurons in CNN are a local connection type, similar to ANN,
the output of a neuron in CNN is calculated by a nonlinear activation function. Based on the advantage
of Relu (Rectified linear unit) activation function (Figure 2) in terms of the high performance, fast
learning, and a simple structure it is preferred to logistic sigmoid and hyperbolic tangent functions.
The formula of the Relu function and its derivative are shown by Equations (6) and (7). For z < 0, the
gradient of the Relu function is 0; otherwise, the gradient of Relu is 1 [33].

f(z) = max(0, x) (6)

/ if
rw-{ oheZ6 | g

~

X
-4 -2 2 4

Figure 2. Relu activation function.

3.1.5. Softmax Layer

Generally, in the last layer of CNN architecture, the softmax function is used to calculate the
probability of each ground truth label of outputs between 0 and 1, and output values convert to
perceptible values [34]. The formula of the softmax function is given by Equation (8). In this equation,
k is denoted as the dimension of random values (z) which are converted to the meaningful values
between 0 and 1 by the softmax function f(z) [35].

e
f(z); = < forj=1,...,K 8)
L e

k=1
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3.2. Radial Basis Function (RBF) Kernel-Based SVM Classifier

SVM that has been proposed for binary classification achieved noteworthy results in real life
problems. Additionally, SVM classifier by using RBF kernel makes a nonlinear classifier which can map
the original dataset to the higher dimensional space by producing linear data. This is illustrated by
Equation (9), where feature vectors of input are presented by x and y; the squared Euclidean distance
between x and y vectors is indicated by ||x — y||* and the kernel parameter are presented by o2 [36].

. 2
K y) = exp(— X3 ©)

3.3. Performance Metrics

Generally, for performance evaluation of the classification algorithm, Sensitivity (Recall),
Specificity and Accuracy are used [7]. Performance metrics of this study and assistant measurements
(FP, EN, True Positive (TP) and True Negative (TN)) are used to calculate the performance metrics and
are given below.

e  TP—positive samples which are predicted accurately as a positive label.
e  FN—positive samples which are predicted incorrectly as a negative label.
e  FP—negative samples which are incorrectly predicted as a positive label.
e TN—negative samples which are correctly predicted as a negative label.
e  Accuracy—performance evaluation of the classification algorithm.

Accuracy = TP+ TN
Y= TP {FP+ IN + FN

(10)

e  Sensitivity (Recall)—indicates what proportion of classified classes as a positive label have positive

class labels. P
Sensitivity = TP+ FN (11)

e  Precision—indicates the proportion of classified classes as positive on all positive predicted labels.

TP

P .. _
recision TP + FP

(12)
e  Specificity—indicates what proportion of classified classes as a negative label have negative

class labels. N
Specificity = TN £ FP (13)

4. Classification of Lung CT Images

4.1. Dataset and Preparing

In this study, CT scan images of Data Science Bowl and Kaggle [18] are used. This dataset consists
of 2101 high-risk patients with CT scans of chest cavity which includes multiple 2D slices (Figure 3) in
an Imaging and Communications in Medicine (DICOM) format. DICOM format is a standard format
of medical imagery (i.e., Xray, PET, CT scan) [37]. Moreover, each CT scan is labeled as with cancer or
without cancer by pathology diagnosis which contains a different number of images.
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Figure 3. Example of without cancer samples (left) and with cancer samples (right) of the dataset [18].

Since the main purpose of this study is to apply 3D-CNN architecture in order to classify lung CT
scan images, the essential stage is preparing a 3D dataset.

Each CT scan consists of slices by 512 x 512 sizes with a variable number of slices (z dimension)
based on the resolution of the scanner machine. Hence, in order to use the 3D dataset, reconstruction
of the data by reading all slices of each CT scan is necessary. Therefore, the first integer pixel values of
each slice are converted to Hounsfield Units, which are standard for radio density measurement; [38]
afterwards each slice is normalized to the (0,1) range. Eventually, 2D slices are stacked into 3D volume
in the appropriate sequence to produce 3D inputs. To have the same input, 3D images in terms of
dimensions, zero padding is applied on all 3D scans along each dimension to prepare a dataset of
512 x 512 x 512 volume. According to the memory usage of GPU, the input has been rescaled to a
227 x 227 x 227 volume.

By applying and comparing the state-of-the-art architectures on lung CT scan datasets, it has
been proved that the appropriate architecture can be the customized architecture of CNN. Hence, in
this study, the most significant purpose was to propose appropriate 3D-CNN models. Furthermore,
in order to evaluate the performance of proposed 3D-CNN models (straight 3D-CNN and hybrid
3D-CNN), AlexNet and GoogleNet, two well-known architectures of CNN, are applied on the prepared
CT scan images. Since the prepared CT scan image dataset contains 3D images, both AlexNet and
GoogleNet architectures have been altered to 3D architectures to be suitable architectures in order
to classify the 3D images. In this section, the proposed 3D-CNN architectures and both 3D-AlexNet
and 3D-GoogleNet architectures are explained as well. Furthermore, Python was used to prepare
the dataset and open-source python-friendly library Tensorflow was used to create the 3D learning
architectures. The models ran over a computer with Nvidia GeForce Titan X Pascal 12 GB GPU.

4.2. Proposed 3D-CNN Architectures for Classification of Lung CT

The main structures of both proposed 3D-CNN architectures, which are used for automatic
feature extraction, contain six convolutional layers, four max pooling layers, and two fully connected
layers. The kernel size in all convolutional layers and pooling layers is considered 3 x 3 x 3 and
2 x 2 x 2 respectively. Moreover, the number of applied kernels on feature maps in convolutional
layers is 96, 128, 256, 324 and 512 respectively. For non-linearity, the Relu activation function with
less computation cost is applied to the output of each convolutional layer and fully connected layers.
In the first convolutional layer, 96 filters by 3 x 3 x 3 filter size are applied on the input images
of 227 x 227 x 227 size. The max pooling layer is used to reduce the output size of the previous
convolutional layer by applying 2 x 2 x 2 filters. Consequently, the downsampled feature maps
go through the second and third convolutional layers. In order to operate downsampling on the
output feature maps of the third convolutional layer, the second pooling layer is applied. Afterwards,
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the fourth and fifth convolutional layers are applied on the downsampled feature maps. The model
continues by the rest of layers until two fully connected layers where all neurons are connected to all
neurons of the previous layer. Consequently, the difference between the two 3D-CNN architectures
is in their classification layers. Accordingly, in straight 3D-CNN architecture as commonplace CNN,
Softmax classifier is used to classify with cancer and without cancer classes of CT scan images and,
additionally, the RBF-based SVM classifier is used as a classification layer of hybrid 3D-CNN. Thus,
SVM through RBF kernel can map the data to a high dimensional feature space which is considered
as separable data. Furthermore, in both proposed architectures, outputs of the last fully connected
layer after applying Relu activation function are fed to the classification layer as the input of classifiers.
The architecture of both proposed 3D-CNN s is illustrated in Figure 4, where the classification layers
are separated as two softmax and RBF-based SVM classifiers to depict both proposed architectures.
Moreover, the summary of the layers is illustrated in Table 1. In addition, in this study, batch size
(number of samples through one training cycle) and the learning rate of the network are determined to
be 32 and 0.01, respectively, in both proposed 3D-CNN architectures. Furthermore, both proposed
architectures are trained in 30 epochs as well.

Output

¢ Softmax
‘ classifier

FC FC

-

@ RBF based
SVM
classifier

Input Convelutional Layer Pooling Layer Convelutional Layer Fully Connected Output
Layer

Figure 4. Architecture of the two proposed 3D-CNN.

Table 1. Summary of two proposed 3D-CNN architectures in the classification of lung CT scan images.

Layer Type Number of Kernels Kernel Size Output Size
Convolutional 96 3 x3x3 96 x 114 x 114 x 114
Max pooling 2x2x2 96 x 113 x 113 x 113
Convolutional 128 3x3x3 128 x 111 x 111 x 111
Convolutional 256 3x3x3 256 x 109 x 109 x 109
Max pooling 2x2x2 256 x 54 x 54 x 54
Convolutional 324 3x3x3 324 x 51 x 51 x 51
Convolutional 324 3x3x3 324 x 49 x 49 x 49
Max pooling 2x2x2 324 x 24 x 24 x 24
Convolutional 512 3 x3x3 512 x 12 x 12 x 12
Max pooling 2x2x2 512 x 6 x 6 X6
Fully connected 1000 x 1 x 1 x1
Fully connected 1000 x 1 x 1 x 1
Softmax/RBF-based SVM 2x1x1x1

4.3. AlexNet Architecture for Classification of Lung CT Images

Krizhevsky et al. won ILSVRC-2012 (ImageNet Large Scale Visual Recognition challenge) by
proposing the AlexNet architecture for the first time [39]. AlexNet contains five convolutional layers,
five pooling layers and three fully-connected layers.

Since in original AlexNet architecture, 2D images are used, in this study, in order to classify a
3D CT scan dataset, 3D-AlexNet architecture is implemented. For non-linearity, the Relu activation
function is applied to the output of each convolutional layer and fully connected layers. Softmax
classifier is used as AlexNet’s default classifier as well. Moreover, in this study, batch size and the
learning rate of the network are determined to be 32 and 0.01, respectively, and it is trained in 30 epochs.
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Additionally, a summary of the layers and output size of lung images through training by 3D-AlexNet
architecture is given in Table 2.

Table 2. Summary of AlexNet architecture in the classification of lung CT scan images.

Layer Type Number of Kernels Kernel Size Output Size

Convolutional 96 11 x 11 x 11 96 x 55 x 55 x 55
Max pooling 3x3x3 96 x 27 x 27 x 27
Convolutional 256 5x5x5 256 x 27 x 27 x 27
Max pooling 3x3x3 256 x 13 x 13 x 13
Convolutional 384 3x3x3 384 x 13 x 13 x 13
Convolutional 256 3x3x3 256 x 13 x 13 x 13
Max pooling 3x3x3 256 X 6 X 6 X 6

Fully connected
Fully connected
Fully connected with softmax

4096 x 1 x 1 x 1
4096 x 1 x1x1
2x1x1x1

4.4. GoogleNet Architecture for Classification of Lung CT Images

The winners of ILSVRC14 proposed a CNN architecture that was called GoogleNet.
This architecture consists of three convolutional, two max pooling and nine inception modules.
Moreover, each inception module includes convolutional layers and a max pooling layer [29].
In this study, standard 2D-GoogleNet architecture is modified to create a compatible 3D-GoogleNet
architecture with 3D CT scan images. Moreover, in this study, default softmax is used as a classifier of
3D-GoogleNet. In addition, the batch size and learning rate of the 3D-GoogleNet are determined to be
32 and 0.01 as well, and the training of CNN in 3D-GoogleNet architecture for lung CT scan images is
applied in 30 epochs. A summary of the layers and output size of lung images through training by
3D-GoogleNet architecture is illustrated in Table 3.

Table 3. Summary of GoogleNet architecture in the classification of lung CT scan images.

Layer Type Number of Kernels Kernel Size Output Size
Convolutional 64 7x7x7 64 x 112 x 112 x 112
Max pooling 3x3x3 64 x 56 x 56 x 56
Convolutional 192 3x3x3 192 x 56 x 56 x 56
Max pooling 3x3x3 192 x 28 x 28 x 28
Inception 3(a) 256 x 28 x 28 x 28
Inception 3(b) 480 x 28 x 28 x 28
Max pooling 3x3x3 480 x 14 x 14 x 14
Inception 4(a) 512 x 14 x 14 x 14
Inception 4(b) 512 x 14 x 14 x 14
Inception 4(c) 512 x 14 x 14 x 14
Inception 4(d) 528 x 14 x 14 x 14
Inception 4(e) 832 x 14 x 14 x 14
Max pooling 3x3x3 832 x7x7x7
Inception 5(a) 832 x7xX7x7
Inception 5(b) 1024 X 7 x 7 x 7
Avg pooling 7X7x7 1024 x 1 x1x1

Fully connected
Fully connected with softmax

1024 x 1 x1x1
2x1x1x1

5. Experimental Results and Discussion

In this section, the output results of two proposed 3D-CNN architectures and both 3D-AlexNet
and 3D-GoogleNet architectures on lung CT scan images are presented. Furthermore, the achieved
results of proposed architectures are compared with the 3D-AlexNet and 3D-GoogleNet as well.
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To evaluate the performance of 3D-CNN proposed architectures (straight 3D-CNN and hybrid
3D-CNN) and two 3D-AlexNet and 3D-GoogleNet architectures, 75% of the dataset is considered as a
train set and 25% is considered as a test set. A summary of the accuracy rate, sensitivity, precision,
and specificity of all four architectures is presented in Table 4. Moreover, the accuracy of all four
architectures with epochs is depicted in Figure 5.

By considering the achieved results (Table 4 and Figure 5), it can be demonstrated that
both proposed 3D-CNN architectures (straight 3D-CNN and hybrid 3D-CNN) have achieved a
higher accuracy rate in the classification of lung CT scan images compared to the 3D-Alexnet and
3D-GoogleNet. As a result, the proposed hybrid 3D-CNN using RBF-based SVM classifier surpassed
all other architectures by 91.81% accuracy rate and the second best accuracy rate belongs to the
proposed straight 3D-CNN (90.23%) which used softmax classifier in the classification of lung CT
scan images. However, in comparison with 3D-Alexnet having 85.79% accuracy rate, 3D-GoogleNet
achieved a higher accuracy rate (87.95%). Consequently, by considering the structure of all four
architectures, it will be demonstrated that more convolutional layers can help to produce more features
that lead to the satisfying accuracy rate, for example, 3D-GoogleNet obtained a higher accuracy
rate than 3D-AlexNet. More convolutional layers, however, can make a more complicated model to
extract features. Therefore, the complex model of 3D-GoogleNet achieved a lower accuracy rate than
the proposed straight 3D-CNN and hybrid 3D-CNN architectures. Hence, creating balanced CNN
layers is the most significant issue in classification problems. Although 3D-GoogleNet achieved a
higher sensitivity (prediction of samples with cancer) of 83.17%, specificity (prediction of samples
without cancer) of 91.61% and precision (prediction of samples with cancer among all samples with
the cancer label) of 88.36% compared to 3D-AlexNet (82.74% sensitivity, 88.04% specificity and 83.66%
precision), the proposed two 3D-CNN architectures have obtained higher sensitivity, specificity and
precision in the diagnosis of lung cancer. Therefore, according to the sensitivity, hybrid 3D-CNN
using RBF-based SVM classifier and straight 3D-CNN by using softmax classifier could classify 88.53%
and 86.40% samples with cancer among all samples respectively. However, 11.47% and 13.60% of
samples with cancer among all samples were misclassified and are determined as without cancer
samples by hybrid 3D-CNN and straight 3D-CNN as well. Furthermore, according to the specificity
of both proposed architectures, only 5.77% and 6.91% of samples without cancer among all samples
have been misclassified by hybrid 3D-CNN and straight 3D-CNN respectively. Both two proposed
3D-CNN architectures have surpassed the other two architectures in terms of classifying samples with
cancer among all samples with the cancer label (specificity) and, additionally, hybrid 3D-CNN has
obtained the highest specificity (94.23%). Figure 6 illustrates Roc curves of all four architectures based
on sensitivity and 1-specificity. According to the results, it can be proved that not only did hybrid
3D-CNN by using RBF-based SVM achieve the highest results among all three architectures, but it
also could acquire satisfying results by using the RBF-based SVM classifier than softmax classifier
in straight 3D-CNN. Thus, the RBF-based SVM classifier could improve the performance of CNN
architecture in the classification of 3D lung CT scan images.
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Table 4. Comparative results of the proposed and other used models.

Architecture Classifier (%) Sensitivity (%) Precision (%)  Specificity (%)  Accuracy (%)
3D-AlexNet Softmax 82.74 83.66 88.04 85.79
3D-GoogleNet Softmax 83.17 88.36 91.61 87.95
Straight 3D-CNN Softmax 86.40 90.37 93.09 90.23
Hybrid 3D-CNN RBF-based SVM 88.53 91.91 94.23 91.81

6. Conclusions

Since lung cancer is one of the most common cancer types in men and women around the
world, CAD systems based on machine learning techniques designed to assist physicians have been
developed extensively. However, machine learning techniques using handcrafted methods to feature
extraction can take a long time and lack the precise diagnosis process. Therefore, deep learning
methods could alleviate the feature extraction process by automatic methods in order to extract more
useful low-level to high-level features. Due to the satisfying results of deep learning methods, in
this study, in order to diagnose lung cancer on CT scan images of the Data Science Bowl and Kaggle
dataset, CNN architecture, one of the successful models of deep learning in medical researches, was
considered. Therefore, before applying the model, an image dataset was prepared to form a 3D dataset
of CT scan images. Furthermore, in order to classify lung CT scan images, two straight 3D-CNN
and hybrid 3D-CNN architectures were proposed, in which the architecture of the feature extraction
section of both models was the same. However, each proposed model uses different classifiers; straight
3D-CNN uses softmax as the common classifier of standard CNN and hybrid 3D-CNN uses RBF-based
SVM classifier instead of the softmax. Furthermore, in order to evaluate both proposed architectures,
two-well known architectures of CNN were considered which were modified to be compatible with the
3D images as 3D-AlexNet and 3D-GoogleNet. Experimental results show that both straight and hybrid
3D-CNN models surpassed the two others in the diagnosis of lung cancer. However, the proposed
hybrid 3D-CNN by using RBF-based SVM achieved significant results: an accuracy rate of 91.81%,
sensitivity of 88.53%, precision of 91.91%, and specificity of 94.23% compared to the straight 3D-CNN
which used softmax. It has been demonstrated that SVM classifier could enhance the performance
of the architecture. Our next objective will be to use deep learning-based methods for the detection
of nodules on a more complicated CT scan image to classify the various types of nodules for our
proposed models.
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