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Abstract: Recently, indoor positioning systems have attracted a great deal of research attention,
as they have a variety of applications in the fields of science and industry. In this study, we propose
an innovative and easily implemented solution for indoor positioning. The solution is based on
an indoor visible light positioning system and dual-function machine learning (ML) algorithms.
Our solution increases positioning accuracy under the negative effect of multipath reflections and
decreases the computational time for ML algorithms. Initially, we perform a noise reduction process
to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of
the room into two separate areas using the ML classification function. This significantly reduces
the computational time and partially improves the positioning accuracy of our system. Finally,
the regression function of those ML algorithms is applied to predict the location of the optical receiver.
By using extensive computer simulations, we have demonstrated that the execution time required by
certain dual-function algorithms to determine indoor positioning is decreased after area division and
noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and
provided a 52.55% improvement in positioning accuracy.

Keywords: indoor positioning system; visible light; machine learning classification; machine learning
regression; multipath reflections; signal pre-processing

1. Introduction

In 2007, the Visible Light Communication (VLC) standards CP-1221 (VLC system) and CP-1222
(Visible Light ID system) were established by the Japan Electronics and Information Technology
Industries Association (JEITA). CP-1222 is a standard concerned with the field of visible light
positioning (VLP) [1]. In addition to the standards that came from Japan, the IEEE Standards
Association has published IEEE 802.15.7: Visible Light Communication: Modulation Schemes and
Dimming Support [2], and IEEE 802.15.7-2018—IEEE Draft Standard for Local and Metropolitan Area
Networks—Part 15.7: Short-Range Optical Wireless Communications [3]. Standardization in VLC may
be the catalyst for technological innovation and product commercialization in the near future.

VLC-based indoor positioning provides opportunities to develop highly reliable, robust, and
inexpensive positioning technologies [4]. Philips, one of the largest electronics companies in the world,
has achieved some initial success in this field. Their solution is to embed Light Emitting Diode (LED)
luminaires with VLC technology, and utilize the store lighting to provide location data using the store’s
mobile app [5]. Additional VLP applications, such as mobile robots, assistive devices for patients with
impaired vision or other handicaps are being studied [6–8].

The Global Positioning System (GPS) is the perfect choice for outdoor applications because
of its coverage and cost [9]. For indoor positioning, there are several possible options, including
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WiFi [10,11], Zigbee-based internet of things (IoT) [12], Bluetooth [13], radio frequency identification
(RFID) [14], and camera-based solutions [15]. Depending on many factors, each option achieves a
different level of accuracy, but the applied algorithms can be considered a fundamental factor. In this
article, we examine some of the indoor positioning studies utilizing machine learning (ML) algorithms,
which play a key role in our proposed solution. First, indoor WiFi localization is always the preferred
choice, because of the universality of WiFi signals and the availability of many wearable devices
with WiFi signal receivers [10]. Akram et al. [11] proposed a novel hybrid indoor WiFi localization
that combined soft clustering with the random decision forest algorithm. Zan Li et al. [12] used
another ML approach that was applied to the ZigBee-based IoT network. These authors investigated a
narrow-band indoor positioning system (IPS) fusing time and received signal strength via ensemble
learning. Using a random forest regression model, their solution achieved a 36.1% improvement over
the traditional method based on received signal strengths (RSS). For RFID technology, the application
of ML to locate an object position in the indoor environment is also efficacious. In Reference [14],
to overcome the limitation of the mutual dependence of positioning accuracy and the density of
reference tags, an extreme ML algorithm was adopted. The results showed that their solution created a
better performance than existing solutions. In addition to using device-based localization systems,
there is also the option of using device-free localization (DFL) in a wireless sensor network field to
locate a person. In this innovative approach, the application of ML to optimize positioning quality
is an inevitable trend. The logistic regression classifier has been used to improve the localization
accuracy of a fingerprint-based DFL in a changing environment [16], and an extreme ML algorithm
with parameterized geometrical feature extraction for DFL is also suggested in Reference [17].

Several recent studies in the field of VLC-based IPS have applied traditional methods as well as
improved ML algorithms for better positioning efficiency [18–21]. Xiansheng Guo et al. [18] proposed
an indoor localization solution based on the fusion of multiple classifiers (grid-independent least
squares and grid-dependent least squares). This solution produced remarkable results, and obtained
93.03% and 93.15% improvement, respectively, over the RSS ratio and RSS matching methods. Besides
reducing positioning errors, the analysis and optimization of other parameters, such as the receiver
angle [19] and the LED-ID detection accuracy [20], also contribute significantly to the quality of the
system, especially when carried out with the support of ML. However, the influence of reflected waves
and noises has not been deeply concerned in these articles. In our previous work [21], the detrimental
effects of reflected waves on the VLC-based positioning accuracy as well as incomplete solutions in
recent studies have been analyzed in great detail. From this constraint, we proposed a novel method
(using kNN-RF) to decrease positioning error in the areas outside the center in the multipath reflection
environment without signal pre-processing. We also utilized the importance rate function to reduce
computational time, but we found that if we removed too many features in an effort to minimize
execution time, the positioning accuracy was reduced.

In this article, to achieve a much higher positioning accuracy and faster computational time
under the negative influence of multipath reflection and noises, we suggest an innovative indoor
positioning solution. This solution is based on the signal pre-processing technique and dual-function
ML algorithms that contain machine learning classification (MLC) and machine learning regression
(MLR) functions. The algorithms used were support vector machine (SVM), decision tree (DT), random
forest (RF), and k-nearest neighbors (kNN). The obtained results proved that the proposed technique
can produce the mean positioning accuracy of 8.75 cm with SVM compared to 19.3 cm with kNN-RF in
our previous work [21]. Depending on the selected algorithm, the CPU time also showed a significant
improvement with 78.26% in the best case. The encouraging results can be applied to many different
indoor environments, from public places (such as supermarkets, theaters, museums, and shopping
centers) to private places (such as factories and warehouses). In addition, VLC-based positioning
systems can be used for smart home applications and can be used in conjunction with smart canes and
smart wheelchairs [8,21]. VLC-based positioning systems can be used to locate the current position of
a person carrying an optical sensor, and to help them determine the route to their destination inside a
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building. Obviously, applications with VLP using the proposed method are very diverse and useful in
the world today.

The main features of our solution can be summarized as follows:

• We first performed noise reduction by using outlier and average filtering. These processes include
noise filtering and elimination of low-intensity reflected signals. This type of signal pre-processing
improves the accuracy of the later position estimation process.

• Then these data were classified using the classification function of ML algorithms. Data points
were assigned to one of two areas: the center area or the edge area. The area division was based
on the correlation between the actual location of the receiver on the floor and the RSS from four
groups of LED lights suspended from the ceiling. Data division by region is a unique idea that
not only significantly reduces total execution time but also contributes to the improvement in
positioning accuracy, due to the signal integrity within each individual area.

• After noise reduction and area division, the regression function of the ML algorithms was used to
predict the location of the receiver. The results show that the proposed solution greatly improved
the execution time and positioning accuracy, despite being influenced by many adverse factors,
including noises and reflected waves.

• To evaluate the effectiveness of each ML algorithm, we compared their accuracy in both in the
classification process and the regression process after the Cross-Validation (CV) technique was
employed to verify the reliability of the algorithm and avoid overfitting. The comparison of
positioning accuracy and computational time for all the methods provides a basis for selecting
the optimal algorithm for future research.

In the remainder of the article, the proposed system is presented in Section 2. Then, our proposed
solution including noise reduction, area division, and location prediction using dual-function ML
algorithms are shown in Section 3. In Section 4, we find the optimal parameters for each algorithm.
Section 5 offers the simulation performance, some discussions and the comparisons of some popular
ML algorithms in terms of computational time and the positioning accuracy. Finally, the conclusion is
considered in Section 6.

2. Proposed System

2.1. Simulation Configuration

To analyze the performance of the proposed solution, a typical empty room (5 m × 5 m × 2.5 m)
was assumed, as depicted in Figure 1 [22]. We assumed that there were four LED bulbs suspended
from the ceiling at a height of 2.5 m. The total transmitted optical power per LED bulb was fixed at
25 W. The semi-angle of each LED group and the field-of-view (FOV) angle of the photo-detector (PD)
were both set at 70◦. The four walls were made from plaster that had a reflective rate of 0.7–0.85 [23].
Other important parameters are represented in detail in Table 1.
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Table 1. Visible Light Communication (VLC) parameters.

Object Parameter Value

Simulation space
Room dimension (Length × Width

× Height) 5 m × 5 m × 2.5 m

Reflective rate 0.8

Optical transmitter

LED power 25 W
Number of LED bulbs 4

LED bandwidth 3 MHz
Data rate 2 Mbps

LED position (x, y, z) (m)

LED 1 (−1.25, −1.25, 2.5)
LED 2 (1.25, −1.25, 2.5)
LED 3 (1.25, 1.25, 2.5)

LED 4 (−1.25, 1.25, 2.5)

Half power semi-angle 70◦

Optical receiver

PD active area 1 cm2

Field-of-view 70◦

Sensitivity −30 dBm
Gain of optical filter 1

Refractive index of optical
concentrator 1.5

PD responsivity 0.54 A/W

The technique of RSS-based positioning is often used for indoor positioning because of its
simplicity [24]. For this work, we develop our solution based on the RSS and fingerprints. We gathered
the input data from each reference fingerprint. The distance between adjacent fingerprints was 20 cm,
and a 26 × 26 fingerprint grid was assigned to the floor surface corresponding to 676 reference points.
The original coordinates and the fingerprints distribution are shown in Figure 2.
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2.2. Simulation Configuration VLC Channel and Signal-To-Noise Ratio (SNR) Analysis

To locate the current position of the PD, the intensity of the light source from each LED was
modulated, then multiplexing protocol was used to correctly transmit this data from all LED lights to
the PD. Finally, demodulating process was executed at the optical receiver [8]. In this paper, an On-Off
keying (OOK) modulation using Manchester encoding and Time-division multiplexing (TDM) protocol
were used as shown in Figure 3. By using OOK modulation, the logic ‘1’ corresponds to the light ‘ON’
state, and the logic ‘0’ corresponds to the light ‘OFF’ state. To send an equal number of positive and
negative pulses, Manchester encoding was proposed. After encoding the data, each LED signal was
sent to the PD at each time slot by TDM protocol, which divided the overall time into many slots [8].
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Depending on the structure of the VLC channel, the RSS and SNR values can be changed.
In this work, we analyzed both the line-of-sight (LOS) channel and the diffuse channel. In addition,
the influence of multiple noises of the system, including shot noise and thermal noise, was considered
in detail. For the direct channel, the DC channel gain is given by the following equation [25]:

HLOS =

{ (
n+1
2π

)(
A
l2

)
cosn(φ)Ts(Ψd)g(Ψd) cos(Ψ), 0 ≤ Ψd ≤ FOV

0, Ψd > FOV
, (1)

where n is the Lambertian order; A is the active detector area of the PD; l is the distance between the
LED and the PD; φ is the irradiance angle; Ψd is the incidence angle of the directed channel; Ts(Ψd) is
the gain of the optical filter; g(Ψd) is the gain of the optical concentrator; and FOV is the field of view
of the PD.

For simplicity, we focus on the effect of the first reflection signal, because other reflected waves
have a negligible effect [21]. Thus, the DC channel gain of the first reflection is computed as follows [25]:

HNLOS =


(

n+1
2π

)(
A

l2
1 l2

2

)
ρ cosn(φ)dAre f cos(λ) cos(γ) cos(Ψr)Ts(Ψr)g(Ψr), 0 ≤ Ψr ≤ FOV

0, Ψr > FOV
, (2)

where l1 is the distance between an LED and a reflective point; l2 is the distance from a reflective
point to the PD; ρ is the reflectance factor; dAref is the reflective element on the wall; λ is the angle of
irradiance from an LED group to the reflective point; γ is the angle between a reflective point and the
PD; and Ψr is the incidence angle from the wall.

After calculating the DC gain for both direct and diffuse channels, the total received optical power
at the PD is as follows [25]:

PTotal =
4

∑
1

PT

(
HLOS +

∫
HNLOS

)
, (3)

where PT is the total transmitting optical power.
To compute the SNR, we first determine the Gaussian noise from the output, which is the sum

of shot noise σ2
S , thermal noise σ2

T , and inter-symbol interference σ2
ISI . However, the σ2

ISI term can be
removed, due to short transmitting duration. The total noise can be expressed as [22]:

N2
total = σ2

S + σ2
T . (4)

Assumed that the dark current noise is small, the shot noise variance due to the received signal
and the background radiation is given by [22]:

σ2
S = 2qRPTotal B + 2qIB I2B, (5)

where q is the electronic charge; R is the PD responsibility; IB is the photocurrent due to background
radiation; I2 is the noise bandwidth factor; and B is the equivalent noise-bandwidth of the PD.
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The thermal noise variance is given by [22]:

σ2
T =

8πκTk
G

ηPD AI2B2 +
16π2κTkΓ

g
η2

PD A2 I3B3, (6)

where κ is the Boltzmann’s constant; Tk is the absolute temperature; G is the open-loop voltage
gain; ηPD is the fixed capacitance of PD per unit area; Γ is the FET channel noise factor, g is the FET
transconductance; and I3 is the noise-bandwidth factor.

Finally, the SNR for the LOS channel, diffuse channel, and overall channel are depicted in Figure 4,
and the SNR equation is as follows [25]:

SNR =
R2P2

Total
N2

total
. (7)
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3. Proposed Solution

In an optimal environment, traditional indoor positioning solutions can achieve very high
accuracy, particularly when the reflected channel is ignored. However, besides the noises due to
sunlight and other electric lights, reflection light always exists, and its intensity may vary according to
the current position of the receiver. These reflected signals produce a detrimental effect on positioning
accuracy [21]. This is clearly shown in Figure 5 when we use a Trilateration algorithm for indoor
positioning composed of two completely opposing environments, one side is the environment that only
exists as a directed channel (Figure 5a), and one side is the environment including the highest reflection
(Figure 5b). Under the negative impact of multipath reflections, the SNR decreases at the corners and
the edges, thus the positioning errors are substantially worse when the PD moves away from the
room’s center (see Figure 4) [26]. With the maximum error of approximately 1.5 m occurring at the
corners, Figure 5b is a vivid illustration of the negative impact of multipath reflections on positioning
accuracy. Therefore, VLC-based indoor positioning techniques must take into consideration all types
of noise and reflected signals.

In recent years, ML has made great leaps and has achieved outstanding successes in many fields
of science, especially in the field of image processing. However, the application of ML for VLC-based
IPS has been quite limited. Challenges when using ML for this application, including sensitivity to
noise and high computational times [27], can be considered underlying causes.
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From the above discussion, we propose an effective solution for VLC-based indoor positioning
that improves not only the positioning accuracy but also the execution time (Figure 6). To deal with
those two parameters, we combine signal pre-processing techniques and two popular functions of
ML-based algorithms (the classification function and the regression function). Signal pre-processing
helps filter the noise and eliminates low-intensity reflective signals, thereby reducing the sensitivity
to noise. This creates a basis for more accurate positioning later. Then, the two classification and
regression functions, in turn, are carried out. The classification process plays a key role in reducing the
computational time by dividing the floor surface into two isolated areas, and the regression process
helps determine the estimated location of the PD. The whole process is divided into two distinct
modes: offline mode and online mode. The main tasks of the offline mode are to collect the RSS from
all fingerprints, then in turn conduct noise reduction, area division, and training process. While the
online mode gathers online data from the current location of the PD, then the same processes of noise
reduction and area division are taken place. However, the difference happens in the final step, when
the online mode uses training data in the offline mode to predict the current location of the PD. Further
details are discussed in the following Sections.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 24 

 

In recent years, ML has made great leaps and has achieved outstanding successes in many fields 
of science, especially in the field of image processing. However, the application of ML for VLC-based 
IPS has been quite limited. Challenges when using ML for this application, including sensitivity to 
noise and high computational times [27], can be considered underlying causes. 

From the above discussion, we propose an effective solution for VLC-based indoor positioning 
that improves not only the positioning accuracy but also the execution time (Figure 6). To deal with 
those two parameters, we combine signal pre-processing techniques and two popular functions of 
ML-based algorithms (the classification function and the regression function). Signal pre-processing 
helps filter the noise and eliminates low-intensity reflective signals, thereby reducing the sensitivity 
to noise. This creates a basis for more accurate positioning later. Then, the two classification and 
regression functions, in turn, are carried out. The classification process plays a key role in reducing 
the computational time by dividing the floor surface into two isolated areas, and the regression 
process helps determine the estimated location of the PD. The whole process is divided into two 
distinct modes: offline mode and online mode. The main tasks of the offline mode are to collect the 
RSS from all fingerprints, then in turn conduct noise reduction, area division, and training process. 
While the online mode gathers online data from the current location of the PD, then the same 
processes of noise reduction and area division are taken place. However, the difference happens in 
the final step, when the online mode uses training data in the offline mode to predict the current 
location of the PD. Further details are discussed in the following Sections. 

 
Figure 6. Proposed study method. 

3.1. Low-Intensity Reflected Signal Elimination and Noise Reduction 

With the LOS channel, the time it takes for the PD to receive the optical signal depends on the 
distance between the LED light and the PD. With the diffuse channel, it depends on the position of 
the PD in relation to the reflective point on the wall. At any particular time, the signal received by the 
PD may be a directed signal from an LED, or a non-directed signal from one of the four walls. The 
intensity of the reflected signal depends on the position of the receiver as well as the reflective rate of 
the wall [23]. In Reference [28], to eliminate the diffuse signals, the strongest waves collection was 
conducted, which can help reduce the impact of multipath reflections. However, in some cases, a 

Figure 6. Proposed study method.



Appl. Sci. 2019, 9, 1048 8 of 25

3.1. Low-Intensity Reflected Signal Elimination and Noise Reduction

With the LOS channel, the time it takes for the PD to receive the optical signal depends on the
distance between the LED light and the PD. With the diffuse channel, it depends on the position of
the PD in relation to the reflective point on the wall. At any particular time, the signal received by
the PD may be a directed signal from an LED, or a non-directed signal from one of the four walls.
The intensity of the reflected signal depends on the position of the receiver as well as the reflective
rate of the wall [23]. In Reference [28], to eliminate the diffuse signals, the strongest waves collection
was conducted, which can help reduce the impact of multipath reflections. However, in some cases,
a combination of a very high reflective rate and other noise sources (i.e., thermal noise and shot
noise) can cause the highest signals received at some locations to be diffuse signals. We describe
some popular ML algorithms used for area division and location prediction in the next two Sections,
while noise sensitivity is a major weakness of ML. It is clear that noise reduction and the elimination of
low-intensity reflected signals are important signal pre-processing steps for improving positioning
quality. To accomplish this, the following steps were taken:

Step 1: Low Reflected Optical Power Elimination

The received signal from the LED light can be either an LOS signal or a diffuse signal, and this
happens randomly according to each sampling. As shown in Figure 7, there is a great difference
between the intensity of direct signals and reflected signals at a random point on the floor. If the
reflected signal has a very small power compared to direct signals, the training data is no longer
uniform. Therefore, eliminating these signal types an important step. To implement this, we calculated
the mean value of the RSS based on N sampling data using the following equation:

RSS =
∑N

i=1 RSSi

N
. (8)

Next, we used the outlier RSS filter to remove the signals whose power magnitudes are
significantly different from the other signals [12]:

RSSi > (1 + α)RSS, (9)

where α is the outlier ratio and is set to 0.2 in our work after evaluating many different values (α > 0).

Step 2: Noise Reduction with Moving Average Filter

After removing the low power reflected signals, we continued to optimize the signals by
eliminating the other noise types (i.e., thermal noise and shot noise), which are known as Gaussian
noises due to the sunlight from a window or an entrance door [29]. In this Section, we proposed a very
simple noise reduction technique called moving average filter [30]. In some cases, this method may
not achieve high efficiency if the signal and noise distribution are related to each other [31]. However,
in VLC case, the thermal noise and shot noise are signal-independent Gaussian noises [32] and the
sum of these random noises is zero in any phase of signal. This filter uses the current and previous K
− 1 samples to calculate the average RSS:

RSSnew[n] =
1
K

K−1

∑
l=0

RSS[n − l]. (10)

After performing this averaging process, the results were utilized as the training dataset for the
next steps. The effectiveness of this method is analyzed in detail in Section 5, by comparing cases
before and after noise removal.
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3.2. Area Division with MLC

As discussed in Section 1, computational time is a major constraint when using ML algorithms.
In this study, we utilized the classification function of ML to reduce the effect of run time on
system performance. This solution is based on the heterogeneous distribution of the SNR (Figure 4).
In Figure 4a, the shape of the signal is uniform across the entire floor thanks to the elimination of
reflected noise. This homogenous state, however, disappears when the received signal at the PD
is a combination of directed and non-directed optical signals (Figure 4c). To conduct area division,
we divided the floor of the room into two sections: a center area and an edge area (corners and
near-the-wall areas). To prepare for collecting the training dataset, the boundary between the two
areas can be determined by two important factors: the identity of the received optical power and the
amount of data used for the training process.

Figure 8 shows the average power distribution according to the vertical projection of the room
in three reflection level cases: 0.2, 0.5, and 0.8. These values depend directly on the surface material
used for the walls, which cause reflective noises [23]. There is a significant difference in the power
distribution between the central area (with red spots) and the edge area (with blue spots). It is clear that
the central area has a more uniform distribution and is more stable than the edge area, which shows
greater reflection intensity.



Appl. Sci. 2019, 9, 1048 10 of 25

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 24 

 

may not achieve high efficiency if the signal and noise distribution are related to each other [31]. 
However, in VLC case, the thermal noise and shot noise are signal-independent Gaussian noises [32] 
and the sum of these random noises is zero in any phase of signal. This filter uses the current and 
previous K-1 samples to calculate the average RSS: =  1 − . (10) 

After performing this averaging process, the results were utilized as the training dataset for the 
next steps. The effectiveness of this method is analyzed in detail in Section 5, by comparing cases 
before and after noise removal. 

3.2. Area Division with MLC 

As discussed in Section 1, computational time is a major constraint when using ML algorithms. 
In this study, we utilized the classification function of ML to reduce the effect of run time on system 
performance. This solution is based on the heterogeneous distribution of the SNR (Figure 4). In Figure 
4a, the shape of the signal is uniform across the entire floor thanks to the elimination of reflected 
noise. This homogenous state, however, disappears when the received signal at the PD is a 
combination of directed and non-directed optical signals (Figure 4c). To conduct area division, we 
divided the floor of the room into two sections: a center area and an edge area (corners and near-the-
wall areas). To prepare for collecting the training dataset, the boundary between the two areas can 
be determined by two important factors: the identity of the received optical power and the amount 
of data used for the training process. 

Figure 8 shows the average power distribution according to the vertical projection of the room 
in three reflection level cases: 0.2, 0.5, and 0.8. These values depend directly on the surface material 
used for the walls, which cause reflective noises [23]. There is a significant difference in the power 
distribution between the central area (with red spots) and the edge area (with blue spots). It is clear 
that the central area has a more uniform distribution and is more stable than the edge area, which 
shows greater reflection intensity. 

To ensure similarity in the amount of training data for the two areas, we set the boundary as 
shown in Figure 9. By using this division, the training data in the center area and the edge area 
accounted for 47.93% and 52.07%, respectively, of the total 676 reference points. This balance in the 
amount of training data helped to reliably assess the effectiveness of the classification process. 

In this study, we used the SVM, DT, kNN, and RF ML algorithms, due to their ability to both 
classify and regress. After the training and prediction process, we calculated the accuracy score and 
conducted K-fold CV to evaluate the robustness of each method. 

(a) (b) (c)  

Figure 8. Mean received optical power with different reflection rates by (a) 0.2, (b) 0.5, and (c) 0.8. 

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
R

ec
ei

ve
d 

op
tic

al
 p

ow
er

 (m
W

)

Room length (m)
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
ec

ei
ve

d 
op

tic
al

 p
ow

er
 (m

W
)

Room length (m)
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
ec

ei
ve

d 
op

tic
al

 p
ow

er
 (m

W
)

Room length (m)

Figure 8. Mean received optical power with different reflection rates by (a) 0.2, (b) 0.5, and (c) 0.8.

To ensure similarity in the amount of training data for the two areas, we set the boundary as
shown in Figure 9. By using this division, the training data in the center area and the edge area
accounted for 47.93% and 52.07%, respectively, of the total 676 reference points. This balance in the
amount of training data helped to reliably assess the effectiveness of the classification process.
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In this study, we used the SVM, DT, kNN, and RF ML algorithms, due to their ability to both
classify and regress. After the training and prediction process, we calculated the accuracy score and
conducted K-fold CV to evaluate the robustness of each method.

3.3. Location Prediction with MLR

After finishing the noise reduction and area division processes, we estimated the position of the
optical receiver as accurately as possible. As mentioned earlier, the ML algorithms used in this article
are dual-function, hence SVM, DT, RF, and kNN continue to be adopted with the regression function.
From the optimal parameters analysis in the next Section (Table 2), we have the basis to make the
final estimation step. This process helps to model a target value based on independent predictors.
In this work, the root mean square error (RMSE) was calculated to estimate the skill of the regression
predictive model. The results of the location prediction process, as well as the positioning quality
comparison of each method, are fully presented and thoroughly explained in Section 5.
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Table 2. Optimal parameters.

Algorithm
(Optimized Parameter) Classification

Regression

Whole Floor Center Area Edge Area

kNN (k) 5 3 3 3
SVM (Gamma and C) 16 and 8 128 and 16 128 and 16 128 and 16

DT (Max-depth) 8 8 6 8
RF (Tree) 16 12 16 12

4. Tuning Parameters and Results Assessment

Each algorithm has different influential parameters. Optimizing these parameters improves the
performance of the algorithms. In this Section, we evaluate algorithm performance by using the CV
method and find the optimal parameters for each algorithm [33].

4.1. Algorithms Performance Assessment via K-Fold CV

Two undesirable phenomena that may appear after predicting unseen datasets using ML
algorithms are underfitting or overfitting. Underfitting occurs when the model cannot account for the
data, and this leads to inaccuracy in the estimated results. Overfitting occurs when there is excellent
performance with the available training data, but poor performance with an unknown dataset [34].
To identify these problems, the K-fold CV model evaluation method is a simple and effective approach.
In this method, the dataset is divided into K groups and each group is a test set one time, to check and
evaluate the performance of the executing algorithm (Figure 10). In this study, K = 10 was used.

CVK−Fold =
1
K

K

∑
j=1

MSEj (11)
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4.2. Parameter Optimization and Accuracy Assessment

4.2.1. The kNN Algorithm

The kNN algorithm is a non-parametric method based on the idea that k nearest samples to the
current sample will be determined, then the Euclidean distance is computed. The chosen k value has a
profound impact on the performance of the kNN algorithm [21]. Depending on the specific function
(classification or regression), the analysis for selecting the k value has certain differences. However,
the simplest way to find the k value is to check the average precision score using different k values.



Appl. Sci. 2019, 9, 1048 12 of 25

The best overall value of k is chosen, based on the highest precision scores and the highest values of
the corresponding CV score. In our case, k was in the range of 2 to 20.

• Classification Function

To optimize the k value for the classification process using the kNN algorithm, the mean of
the precision score and CV score was compared for each k value. As depicted in Figure 11, when k
increased from 8 to 20, the mean score gradually decreased for both CV and precision. The highest
precision score, 0.92, appeared at k = 5. At k = 5, the CV score was 0.96, which ranks second of all the
cases. Therefore, we adopted k = 5 as an optimal value for the classification function.
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• Regression Function

To maximize the positioning accuracy in the regression process, we conducted a detailed survey of
the relationship between the average positioning accuracy, standard deviation, and different k values.
In Figure 12a, the best mean of positioning error was obtained when k = 2. However, the standard
deviation for k = 2 was worse than that of k = 3, in which the error increased, but not significantly
(3.6%). From these considerations, k = 3 was used to estimate the position for the whole floor before
area division. Similarly, the same values of k were also selected for the center area and the edge area
(see Figure 12b,c)
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(a) whole floor, (b) center area, and (c) edge area.
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4.2.2. The SVM Algorithm

SVM is a supervised ML algorithm that can be used to resolve the classification and regression
problems, based on a separating hyperplane [34]. In this study, the radial basis function (RBF) kernel
was used. Two parameters that need to be optimized for the RBF kernel SVM are Cost and Gamma.
When the Cost is small, low bias but high variance may occur, and vice versa. Gamma affects the
smoothing of the hyperplane shape [35]. Therefore, optimizing these parameters is a critical procedure.
This optimization can be done by the CV method [36]. In this study, a very wide range of Cost values
was proposed: from 2−5 to 24. Similarly, the Gamma range was from 2−2 to 27.

• Classification Function

To evaluate the classification ability of SVM, we used the CV technique to assess how accurately
this method can perform in practice. The final mean scores corresponding to the values of Cost and
Gamma after 10-fold CV are illustrated in Figure 13. The highest mean score appeared when Cost = 23

and Gamma = 24. These values were used throughout this study when the area division process with
SVM was employed.
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Figure 13. Mean score after CV.

• Regression Function

In a process similar to the classification process above, we first searched for the best positioning
accuracy according to Gamma and Cost parameters, and then we verified the robustness of the SVM
algorithm corresponding to the values found by 10-fold CV. On the whole floor and edge area, the
best positioning accuracy occurred when Cost = 24 and Gamma = 27 (Figures 14 and 15). There was a
minor problem occurring in the remaining case (Figure 16), in that the best tuning parameters were not
the choice when reassessed by CV. For instant, the best choice in Figure 16b appeared when Gamma =
25 and Cost = 24 (orange text), while the best value of Gamma and Cost, in Figure 16a, were 27, and
24, respectively (red text). However, in Figure 16b, the mean CV score in both cases: Gamma = 25,
Cost = 24 (orange text) and Gamma = 27, Cost = 24 (red text) are nearly the same. We, therefore choose
Gamma = 27 and Cost = 24 for our work.
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Figure 14. The mean score in the whole area of: (a) positioning accuracy and (b) CV. 
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4.2.3. The DT Algorithm

DT is one of the most useful and simple ML algorithms for classification and regression [36].
However, irrelevant attributes within the training data can result in overfitting. This problem can be
resolved using the CV method [37]. To optimize the accuracy of DT, the maximum depth of the tree
(max-depth) needs to be attained. In the next step, we analyzed the optimal values for the two cases of
classification and regression. The max-depth values were manually chosen using the precision score
and CV score shown in Figures 17 and 18.
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Figure 18. Mean and standard deviation of positioning errors vs. max-depth by: (a) whole floor,
(b) center area, and (c) edge area.

• Classification Function

As can be seen in Figure 17, the mean precision score and CV score gradually improve as the
max-depth value increases. However, both these scores are nearly stable when max-depth ≥ 8. To avoid
time-consuming computer processing, the smallest possible value is chosen. In this case, max-depth = 8
was the best choice.

• Regression Function

In Figure 18a, the mean and standard deviation of the positioning error were inversely
proportional to the max-depth of the tree when the max-depth was in the range of 2 to 8. Then the
errors remained almost unchanged as we continued to increase the max-depth. As mentioned earlier,
higher values of max-depth result in longer execution times. We therefore chose max-depth = 8 for the
whole floor. Similarly, we chose max-depth = 6 for the center area (Figure 18b), and max-depth = 8 for
the edge area (Figure 18c).

4.2.4. The RF Algorithm

Like the DT algorithm, the RF algorithm is capable of operating under classification and regression
functions. RF is made of a bunch of decision trees using a random subset of data [34]. The number of
trees is the most important parameter to optimize with RF algorithms [38]. Based on the data shown
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in Figures 19 and 20, the selected trees for both cases (i.e., classification and regression) are shown in
Table 2.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 24 

 

 Regression Function 

In Figure 18a, the mean and standard deviation of the positioning error were inversely 
proportional to the max-depth of the tree when the max-depth was in the range of 2 to 8. Then the 
errors remained almost unchanged as we continued to increase the max-depth. As mentioned earlier, 
higher values of max-depth result in longer execution times. We therefore chose max-depth = 8 for 
the whole floor. Similarly, we chose max-depth = 6 for the center area (Figure 18b), and max-depth = 
8 for the edge area (Figure 18c). 

 
(a) 

 
(b) 

 
(c) 

Figure 18. Mean and standard deviation of positioning errors vs. max-depth by: (a) whole floor, (b) 
center area, and (c) edge area. 

4.2.4. The RF Algorithm 

Like the DT algorithm, the RF algorithm is capable of operating under classification and 
regression functions. RF is made of a bunch of decision trees using a random subset of data [34]. The 
number of trees is the most important parameter to optimize with RF algorithms [38]. Based on the 
data shown in Figures 19 and 20, the selected trees for both cases (i.e., classification and regression) 
are shown in Table 2. 

 
Figure 19. Mean score vs. number of trees. 

4 8 12 16 20 24 28 32 36 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
ea

n 
an

d 
St

an
da

rd
 d

ev
ia

tio
n

 o
f P

os
iti

on
in

g 
Er

ro
rs

 (m
)

Max-depth value 4 8 12 16 20 24 28 32 36 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Max-depth value
4 8 12 16 20 24 28 32 36 40

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Max-depth value

5 10 15 20 25 30 35 40
0.90

0.92

0.94

0.96

0.98

1.00
 Cross validation score   Precision score

M
ea

n 
sc

or
e

Number of Trees

Figure 19. Mean score vs. number of trees.
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Figure 20. Mean and standard deviation of positioning errors vs. number of trees by: (a) whole floor,
(b) center area, and (c) edge area.

5. Simulation and Results

5.1. Computational Time Comparison

As depicted in Figure 21, in all four algorithms, there was a significant decrease in the
computational time required after applying area division, although each algorithm showed distinct
levels of improvement. To compare them with each other, the specific parameters of each algorithm
were first optimized. After finding the optimal parameters, the execution time for each method was
calculated. The total execution time includes the time spent on the data classification process (for area
division) and the location prediction process. In Figure 21, the red column shows the total CPU time
before area division, while the orange and yellow columns show the total execution time for unseen
data that belong to the edge area and the center area, respectively, after area division. An unknown
data can only belong to either the center area or the edge area. Once this data is in the center area,
the total CPU time will not include the location estimation time for the edge area data, and vice versa.
Table 3 presents the exact time of each method, while the level of improvement in CPU time for each
proposed algorithm is shown in Table 4.
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Figure 21. Computational time comparison before and after area division.

Table 3. Computational time (ms).

Algorithms Position of Data Area Division
Time

Location
Prediction Time TOTAL TIME

SVM
Whole floor No classification 195.00 195.00
Center Area 6.90 20.00 26.90
Edge Area 6.90 51.00 57.90

RF
Whole floor No classification 96.00 96.00
Center Area 11.00 54.00 65.00
Edge Area 11.00 60.00 71.00

kNN
Whole floor No classification 7.50 7.50
Center Area 0.59 4.70 5.29
Edge Area 0.59 5.30 5.89

DT
Whole floor No classification 7.19 7.19
Center Area 1.10 5.31 6.41
Edge Area 1.10 5.63 6.73

Table 4. CPU time level of improvement after area division (%).

Position of Data SVM RF kNN DT

Center 86.21 32.29 29.47 10.85
Edge 70.31 26.04 21.47 6.40

Average 78.26 29.17 25.47 9.63

It is clear that the system with SVM suffers from the heaviest computation burden but also
presents the greatest improvement in execution time after area division. The improvement was 86.21%
for the center area and 70.31% for the edge area (see Table 4). The kNN and DT algorithms execute
much faster than RF and SVM, with total times of 7.5 ms, and 7.19 ms, respectively. Furthermore,
unlike SVM, the time improvement in DT is the lowest of the four suggested methods, with 10.85% for
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the center area and 6.4% for the edge area. In summary, all four methods show a significant reduction
in computation cost after area division is performed using classification.

5.2. Positioning Accuracy Assessment

We performed simulations to evaluate the effectiveness of each algorithm. As shown in Figure 22,
all four methods exhibited a significant decrease in positioning error after noise reduction and area
division, although improvement levels varied. As seen in Table 5, DT demonstrated the most positive
change, with 59.21% improvement for the center area, and 45.89% improvement for the edge area.
The least improved method was kNN, which showed 32.54% improvement and 10.06% improvement
for the center area and edge area, respectively. The RF and SVM algorithms also showed a very positive
improvement when the average RMSE percentage was approximately the same and around 37%.Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 24 
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Figure 22. RMSE comparison.

Table 5. Root mean square error (RMSE) comparison (%).

Position of Data DT kNN RF SVM

Center 59.21 32.54 46.18 42.75
Edge 45.89 10.06 28.90 30.43

Average 52.55 21.30 37.54 36.59

To acquire a more accurate assessment of the degree of influence of each process (i.e., noise
reduction and area division) on the final positioning accuracy, the RMSEs of each algorithm (i.e., DT,
kNN, RF, and SVM) are surveyed under four cases (Figure 23):

• (I): Without noise reduction and without area division
• (II): Without noise reduction and with area division
• (III): With noise reduction and without area division
• (IV): With noise reduction and with area division
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Case II (incorporating area division) showed a relatively small improvement in the RMSE, with the
kNN and SVM algorithms showing 2.13% and 6.54% improvement, respectively. This means that area
division has a negligible effect on these two algorithms in term of accuracy. In contrast, the DT and RF
algorithms were strongly influenced by the area division process, showing an improvement of 33.73%
and 26.54%, respectively.

Case III, with noise reduction and no area division, showed a very promising decline in positioning
errors compared to Case I. SVM achieved the best improvement, followed by RF. The DT algorithm
continued to show the lowest level of accuracy.

It is clear that the mean positioning errors tended to gradually improve progressing from Case I
to Case IV. The highest accuracy (8.6 cm) occurs with SVM in Case IV. The worst accuracy (16.8 cm)
occurs with DT. It is interesting to note, however, that the DT algorithm had the highest improvement,
showing an RSME reduction of nearly 60% (from 48.1 cm in Case I to 16.8 cm in Case IV). Also,
RF showed the same improvement level as DT but RF has a much better positioning accuracy of
10.2 cm. This result is only slightly worse than SVM. Of the four algorithms, kNN shows the least
improvement at 30.85%.

In summary, all four methods achieve better positioning accuracy after noise reduction and area
division, in the following ascending order of accuracy: DT, kNN, RF, and SVM. The area division
technique had a relatively small impact on the accuracy of kNN and SVM, although it did provide
significant savings in execution time, as was discussed in the previous Section.

Next, we analyzed the positioning errors, based on the hypothetical roadmap of a mobile robot.
On this route, the robot started from the left upper corner, as shown in Figure 24, then went to the
opposite position with LED 1 (see Figure 1), then proceeded through the center of the floor and the
area near the wall. Finally, the robot went to the corner opposite the start point. Since the effects of
multipath reflections and noises varied greatly from location to location in the room, this route helped
us to evaluate the efficiency of the proposed solution under varying conditions.
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Figure 24. Estimated route before noise reduction and area division.

Before applying our proposed solution, the positioning errors in the two corners were very bad
(Figure 24). A contrasting image, however, is shown in Figure 25, which shows the results after our
solution is deployed. The errors significantly decreased, although the corner area still showed the
least accuracy, due to multipath reflections and noises. Furthermore, positioning quality is also better
expressed in the remaining areas in which the SVM and RF algorithms provided the best results.
Although each method has its own advantages and disadvantages, they all showed a significant
improvement in positioning accuracy after applying both area division and noise reduction.Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 24 
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6. Conclusions

In summary, the simulation results showed that after applying the proposed solution, the SVM and
RF methods obtained the highest positioning accuracy, at 8.6 cm and 10.2 cm, respectively. The SVM
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algorithm had the best improvement in execution time (approximately 78%). Our results indicated that
if practical applications need a low positioning error, SVM is the optimal option. For applications that
need fast execution time but moderate accuracy, we suggest kNN, which demonstrated a positioning
accuracy of 13 cm and an average computational time of 5.6 ms.

In this article, we proposed an enhanced ML-based indoor positioning solution using LED
lights. Our solution not only improved positioning accuracy, but also reduced computational time.
In addition to using signal pre-processing to achieve more accurate positioning, the novel adoption
of dual-function ML was employed. The classification function saved execution time and provided
a slight improvement in positioning accuracy, while the regression function helped determine the
exact location of the object in the final step. In particular, this study compared four popular ML
algorithms: SVM, DT, RF, and kNN. The results from this comparison gave us a comprehensive view
of the advantages and disadvantages of each algorithm in positioning applications using VLC.

Because developing VLC-based indoor mobile robot applications is our main pursuit,
the optimization of ML algorithms to improve positioning accuracy and execution time in a real
environment is our highest priority. In our future work, we continue to optimize positioning accuracy
using deep machine learning.
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