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Abstract: Low frequency impact sound insulation is a challenging task in wooden buildings.
Low frequency prediction tools are needed to access the dynamic behavior of a wooden floor
in an early design phase to ultimately reduce the low frequency impact noise. However, due to
the complexity of wood and different structural details, accurate vibration predictions of wood
structures are difficult to attain. Meanwhile, a deterministic model cannot properly represent the
real case due to the uncertainties coming from the material properties and geometrical changes.
The stochastic approach introduced in this paper aims at quantifying the uncertainties induced by
material properties and proposing an alternative calibration method to obtain a relative accurate
result instead of the conventional manual calibration. In addition, 100 simulations were calculated
in different excitation positions to assess the uncertainties induced by material properties of
cross-laminated-timber A comparison between the simulated and measured results was made in
order to extract the best combination of Young’s moduli and shear moduli in different directions of
the CLT panel.
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1. Introduction

Multi-story wooden constructions have increased in the market during the last two decades.
However, this kind of constructions still face the challenge coming from low-frequency sound
insulation. Although these types of buildings comply with the present regulations, subjective ratings
of inhabitants have shown complaints [1–6] due to low-frequency impact noise. One of the important
reasons resulting in this discrepancy between the subjective and objective evaluations is that the current
standards are initially designed for heavy constructions, i.e., concrete constructions, but without an
appropriate modification, they are directly applied to the wooden constructions. On the other hand,
the low frequency impact noise is neglected in the standardized impact sound insulation evaluations.
From recent research [3], it was shown that the subjective ratings are correlated better with the objective
ratings with the help of the adaptation term CI, 50−3000 following the standard ISO 717-2 [7]. But the
correlation between the inhabitants’ satisfaction (reported by means of questionnaires) and objective
ratings can be further improved by taking the measurement from 20 Hz in comparison with the
measurements performed from 50 Hz instead. Furthermore, the dynamic behavior of wood (as a
natural material) is hard to predict due to its inhomogeneity. As a consequence, product development
in the wooden industry is still based on empirical models and experimental tests, which could lead
to an over-designed and expensive acoustical improvement solution. To end that, more knowledge
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about wooden construction is needed and accurate and handy prediction tools are called for in order
to enable acoustic comfort in wooden constructions, especially in a low-frequency range.

The finite element (FE) method is a widely employed approach to develop numerical prediction
models in wooden industry. By performing numerical simulations, experimental acoustical tests can
be reduced, and parametric studies can also be carried out to investigate the influence of specific
geometrical changes in construction as well as the influence of the variations/uncertainties in material
properties, which always have a markable influence on the results. In Reference [8], experimental
tests were conducted on a full-scale cross-laminated timber (CLT) floor. The material properties of
the CLT were collected from the literature and then put into the established FE model to compare the
simulation results with the measured ones. A better correlation between the testing results and the
modelling results was attained after tuning the collected material properties of CLT. The latter points
out the importance of knowing the material properties if a proper calculation of dynamic properties
needs to be achieved. A similar conclusion was drawn in References [9–11].

However, one should know that the variety of the wood species, the variation in theoretical
identical wood structure, as well as the lack of material properties data base, make the reliable material
properties of wood difficult to obtain. Consequently, the calibration of a model is always tedious
and time-consuming. Moreover, even with the calibrated model to predict the theoretical identical
wooden structure, the prediction results may be different from the realistic case due to the uncertainties
induced by wooden material properties, workmanship and geometrical details in structures. As a
result, the deterministic model may not be representative enough in a realistic situation. Therefore,
it is a necessary step to quantify the variations in the model’s outputs in order to ultimately establish
an accurate prediction tool. To achieve that, uncertainties of the wood material properties can be
addressed in a model by introducing probabilistic parameters [6]. In Reference [12], a generalized
probabilistic model was constructed to take into account the statistical fluctuation associated with the
elastic properties in the model. The uncertainties of the mechanical constants of a wooden structure
were also investigated in Reference [13]. A small data base of the Young’s modulus in the longitudinal
direction was established by means of vibration measurements. Then, by sampling the Young’s
modulus distribution established by the obtained data base, Monte Carlo simulations were performed
in the FE model development to quantify the uncertainties induced by the elastic constants in modelling
the vibro-acoustic behavior of wooden buildings in a low-frequency range. However, not only does
the Young’s modulus in the longitudinal direction have a great impact on the dynamic response of
a wooden structure, but the Young’s moduli in the other two directions as well as the shear moduli
play an important role in its vibroacoustic performance. Regarding the uncertainties in structural
dynamics, Shannon’s maximum entropy principle [14] is an optimal choice to model the random data
and the uncertainties [15]. In Reference [16,17], a probabilistic model was proposed to construct the
probability distribution in high-dimension of a vector-valued random variable using the maximum
entropy principle. This proposed probabilistic model was then extended to a tensor-valued coefficient
(stiffness tensor) with different symmetric levels [15,18,19].

The research reported in this case aims at developing a stochastic FE prediction tool of a
CLT slab in order to quantify the uncertainties induced by material properties and, subsequently,
acquire the reliable material properties of the under investigated structure to accurately predict the
vibroacoustic behavior of CLT in a low-frequency range. To achieve that, different mechanical constant
distributions without available material property data base are constructed by means of the maximum
entropy principle. The random elastic constants generated following the established distributions are
considered as the inputs for the FE model to calibrate CLT in a low frequency range by comparing
the simulated results with its dynamic responses obtained from experimental modal analysis (EMA)
method. The best combination of the material properties of CLT panel is selected by minimizing
different error metrics. The ultimate objective is to acquire the knowledge about the modeling method
of CLT and to propose a generalized method to quantify the uncertainties coming from the orthotropic
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level material properties and to accurately calibrate the corresponding model by avoiding the repetitive
manual calibration and, subsequently, to increase the prediction accuracy.

2. Measurements

2.1. Experimental Structure

The test structure was a 4 × 1.5 m2 5-ply 175 mm thick CLT panel made of Canadian black spruce
of machine stress rated grade 1950f-1.7E in parallel layers and visual grade No. 3 in perpendicular
layers with density of 520 kg/m3. At the initial stage, two CLT slabs were nailed together by a thin
wooden panel (c.f. Figure 1a) and they were placed on a standardized sound insulation measurement
console. However, this weak connection between two CLT panels resulted in a low stiffness coupling
between two slabs and the imperfect simply supported boundary conditions of the measurement
console makes the CLT floor easily “jump up” when there is an external excitation. In a real building
construction, these problems can be resolved by adding a top layer on the CLT bare floor, which can
add mass on CLT and, subsequently, enforce the connection between two CLT leaves. Consequently,
due to the weak connection between two assembled CLT panels and the imperfect boundary conditions
in the sound insulation laboratory, only the first eigen-mode can be extracted from the measurements,
which cannot provide enough information to calibrate the established FE model. As a result, in order
to easily extract more meaningful information, only one leaf of CLT floor was under investigation.
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Figure 1. (a) Two CLT panels connected by a thin wooden lath. (b) One CLT panel simply supported
on two I-steel beams.

2.2. Measurement Procedure

2.2.1. Measurement Setup

EMA was performed on the CLT slab to characterize the dynamic properties of the CLT slab.
The CLT panel was set free at two opposite long sides and simply supported (SFSF boundary condition)
with two steel I-beams at two shorter edges (shown in Figure 1b) in order to simplify the boundary
conditions. A predefined mesh was drawn on the CLT surface to determine the excitation positions
and the measurement positions. In that way, the CLT was divided into five parts in the long direction
and three parts in the short direction, which gives a total number of 16 excitation points (the nodes on
the short edges were not excited). The size of mesh was decided based upon the highest frequency of
interest, i.e., 200 Hz, to avoid the hammer exciting on the nodes of the eigen-modes.

A single input multiple output system (SIMO) can provide redundant data to better identify the
eigen-frequencies and the local modes of complex structures based on different frequency response
function (FRF) matrices [20,21]. Meanwhile, these different FRFs can be used as references to validate
the FE model by comparing different simulated FRFs with different measured FRFs. Concerning
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the complexity and the inhomogeneity of CLT, the SIMO system was employed to characterize the
dynamic properties of the CLT panel via different FRF matrices at different measurement positions.
Five uni-axial accelerometers (Brüel & Kjær Accelerometer Type 4507 001, Brüel & Kjær Sound &
Vibration Measurement A/S, Nærum, Denmark) were attached on the different nodes (red dots
in Figure 2) with the help of Faber-Castell Tack-It Multipurpose Adhesive. An impact roving
hammer (Brüel & Kjær Impact hammer Type 8208 serial No. 51994, Brüel & Kjær Sound & Vibration
Measurement A/S, Nærum, Denmark) was used as excitation.
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Figure 2. Mesh on the CLT panel. Five accelerometers (red dots) were placed at points 10, 11, 13, 17,
and 24), whereas the hammer was moved around all nodes, except on the short edges.

Depending on the impulse shape and the force spectrum of the impact hammer shown in Figure 3,
the medium hard hammer tip was selected for this measurement to ensure most of the input energy
localizing within the frequency range of interest (up to 200 Hz). The roving hammer approach was
employed. The accelerometers were kept fixing on the selected positions and the hammer were roved
over the predefined mesh grid except for the points on boundaries. The accelerometers and the
impact hammer were connected to Brüel & Kjær multi-channel front-end LAN-XI Type 3050. Then,
the acceleration signals and the impact force signals were recorded by using the software Brüel & Kjær
PULSE Labshop. There were three averages for each excitation position. The resolution of the FRF was
0.625 Hz.
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2.2.2. Modal Parameters Extraction

The eigen-frequencies, the mode shapes, and the damping ratios were extracted by applying
rational fraction polynomial—Z algorithm in Brüel & Kjær PULSE Connect. The frequency band
of FRFs was divided into several parts, which means that identification of poles was restricted in a
narrow frequency band each time in order to easily select the stable poles (eigen-frequencies) from the
FRFs in each divided frequency range. An example of the stabilization diagram is shown in Figure 4.
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Iteration times of rational fraction polynomial—Z algorithm was 40. The synthesized FRF is
shown in Figure 5. The corresponding eigen-frequencies and the corresponding damping ratios are
shown in Table 1.
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Table 1. Measured and simulated Eigen frequencies of the bending modes and the measured
corresponding damping ratios.

Mode Measured Eigen-Frequency/Simulated Eigen-Frequency Damping Ratio

1 19.8 Hz/19 Hz 4.9%
2 32.2 Hz/33.2 Hz 3.6%
3 56.7 Hz/58.3 Hz 3.2%
4 73.8 Hz/72.5 Hz 3.2%
5 91.0 Hz/100.8 Hz 3.3%
6 125.5 Hz/117 Hz 2.8%
- -/131 Hz -
- -/150 Hz -
7 170.4 Hz/173.9 Hz 1.2%

Since the measurement system is the SIMO system. Different FRFs (measurement point
11/excitation point 11, measurement point 13/excitation point 13, measurement point 17/excitation
point 17, measurement point 24/excitation point 24) can also be saved as references to calibrate the
FE model.

3. Finite-Element Model

3.1. Model Description

A numerical model of the CLT slab was created in the commercial FE software Abaqus [23].
Five different layers were modelled by assigning different oriented material properties in different
layers of the model. Therefore, there is no relative displacement between different layers in this model,
which means that the CLT model is a complete model and each layer is fully tied together. The same
material was assigned to each layer, except that the in-plan material orientation assignments were
90◦ oriented from the adjacent layer to mimic the cross-laminate layers of CLT panel. The material
properties of CLT were gathered from the literature [24,25], reported in Table 2. The meshes of 20-node
quadratic brick, reduced integration (C3D20R) quadratic type were assigned to the entire model.
Since the shape of each layer is a simple rectangular so that there is no discontinuity between different
layers. Details of mesh are shown in Figure 6. The mesh size was 0.1 to ensure the accuracy of
the highest frequency interest. The eigen-frequencies and the eigen-modes were calculated by the
linear perturbation frequency step. The FRF of the CLT was obtained by the Steady-state dynamics,
Modal step. The damping extracted from the measurement was included in the model by means of
the direct modal damping (c.f. Table 1). In this framework, the FRFs of CLT were first calculated
to quantify the uncertainties of material properties. Afterward, the best FRF justified by different
criterions was selected to extract the material properties of this under investigated CLT.

Table 2. Material Properties of CLT collected from the literature. Stiffness parameters have the unit of
MPa, Poisson ratios are dimensionless, and the density is given in kg/m3.

E1 E2 E3 G12 G13 G23 v12 v13 v23 ρ

9200 4000 4000 900 90 63 0.3 0.3 0.4 520

In general, it is a challenge task to create appropriate constraints to describe the boundary
conditions. Since dynamic responses of the structure are sensitive to the boundary conditions, slight
changes in the FE model can lead to a big variation of eigen-frequencies and mode order. In order
to mimic the simply supported boundary condition, all the displacements in three directions at
one shorter edge were constrained and, at the other shorter edge, all the displacements were also
constrained except the displacement in a vertical direction (U1 in Abaqus). This boundary set-up of
the FE model was kept throughout the entire modelling process. More explanations about the choice
of the boundary condition can be found in Section 3.3.
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3.2. Model Validation Criterion

The established model needs to be validated by two different metrics. One is the normalized
relative frequency difference (NRFD), which characterizes the discrepancies between the simulated
and the measured eigen-frequencies, defined by the equation below.

NRFDi =

∣∣∣ fre fi
− fi

∣∣∣
fre fi

, (1)

where fre fi
is the measured resonance frequency and fi is the simulated resonance frequency.

The other one is the modal assurance criterion (MAC), which quantifies the similarity of simulated
and measured mode shapes, defined by the formula below.

MAC =
|(Φsim

i )
T
(Φexp

j )|2(
Φsim

i

)T(
Φsim

i

)(
Φexp

j

)T(
Φexp

j

) (2)

where Φsim
i is the i-th simulated mode shape and Φexp

j is the j-th measured mode shape. The range of
the MAC number is from 0 to 1. When the MAC number equals 1, the simulated eigen-mode perfectly
correlates to the measured one. However, MAC equals 0, which implies irrelevant simulated and
measured eigen-modes. Different from the conventional calibration procedure, stochastic process
calibration begins with comparing eigen-frequencies (NRFDs) between the simulated FRFs and
measured FRFs. Therefore, several FRFs of different positions are needed to make sure the calibrated
model validating at different positions, which can increase the credibility of the model. However,
the FRFs calibration can only ensure consistency of simulated and measured eigen-frequency but not
the mode order. The simulated eigen-frequency may be the same as the measured eigen-frequency,
but they could have different mode shapes. Therefore, both indictors are needed to ensure the
simulated eigen-frequencies correlated with the measured ones to keep the simulated mode order
corresponding to the measured one.

3.3. Preliminary Sensitivity Analysis

Wood as a kind of orthotropic material has nine different variables (three Young’s moduli,
three shear moduli, and three Poisson’s ratios) to be calibrated. In order to decrease the complexity
of calibration, a sensitivity analysis should be performed to investigate the effect of different elastic
constants on simulated eigen-frequencies before the stochastic process is introduced to the FE model.
In this section, Young’s moduli in different directions were increased or decreased 25% when compared
to the Young’s moduli given by Table 2. Shear moduli in different directions were increased or
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decreased 15% when compared to the shear moduli given by Table 2. The Poisson ratios, ν12, ν13,
ν23 were set to be 0.25, 0.25, and 0.35, whereas the initial values were 0.3, 0.3, and 0.4. The reference
eigen-frequencies employed in NRFDs were calculated, according to the elastic constants reported
in Table 2. The measured eigen-frequencies were not selected as a reference since the objective of
sensitivity analysis aims to investigate how different elastic constants affect the eigen-frequencies of an
FE model.

From the NRFDs shown in Figures 7 and 8, it can be seen that the influence of Young’s moduli
and shear moduli on eigen-frequencies cannot be ignored. Among all the elastic constants, Young’s
modulus in the longitudinal direction has the most important influence on eigen-frequency changes.
However, Young’s modulus in a vertical direction barely changes the eigen-frequencies. Therefore,
the variation of Young’s modulus in the vertical direction was not reported in Figure 7. When looking
at Figure 9, we could find that all the NRFDs are lower than 0.5%, which indicates that the influences of
Poisson’s ratios on eigen-frequencies are negligible. From this sensitivity analysis, it can be concluded
that the Young’s moduli and shear moduli have a more significant influence on eigen-frequency
calculations than Poisson’s ratios. As a result, the calibration of material properties can be reduced to
six variables.
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However, from this sensitivity analysis, it was also noticed that the first four simulated
eigen-frequencies are always higher than the first four measured eigen-frequencies even decreasing
different elastic constants. This may be caused by the over-stiffened boundary condition. Since the
tested CLT is only placed on the top two steel I beams. It is difficult to have a perfect simply supported
boundary conditions in reality. Therefore, restricting all the displacements at the boundaries of the FE
model can create over stiffened boundary conditions, which results in over-estimated eigen-frequencies.
Consequently, the displacement in a vertical direction at one boundary of the FE model is released to
try to mimic the real boundary conditions.

4. Stochastic Process

Uncertainties of material properties are always assumed to follow the Gaussian distribution
because of its simplicity and the lack of relevant experimental data, even though most material
property distributions are non-Gaussian in nature [26,27]. The theory introduced in this case is
about the probabilistic modeling of a random elasticity tensor in an orthotropic symmetric level
within the framework of the maximum entropy principle under the constraint of the available
information [18,19,28]. The established random elasticity tensor is considered as the inputs in the
FE model to quantify the uncertainties induced by the CLT material properties and to seek the best
combination of CLT material properties to calibrate the CLT model.

In this section, the elastic tensor is first decomposed in terms of random coefficients and
tensor basis so that the fluctuation of different elastic constants can be characterized by the
probability distribution functions (PDF). Next, construction of PDFs of different elastic constants
in high-dimension [16] is shortly introduced. Lagrange multipliers associated with the explicit PDFs
of random variables in high dimensions is estimated with the help of the Itô differential equation.
The established PDFs is sampled by Metropolis-Hastings algorithm to obtain the random data to
construct a random elasticity matrix [18,19] in order to derive the corresponding random combinations
of elasticity constants to quantify the uncertainties of material properties and to calibrate the CLT
model. A flow chart of the application of the stochastic procedure is shown in Figure 10.
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4.1. Decomposition of the Random Elastic Tensor

Construction of PDF of a random value in a high-dimension approach can be applied to
any arbitrary material symmetry class [15,18,19], such as isotropic symmetry, cubic symmetry,
and transversely isotropic symmetry. In this work, this stochastic approach aims to seek a reasonable
probability distribution of the random elastic tensor of the target material (CLT). Therefore, only the
orthotropic symmetry case is considered in this section. The dimension of the random variable N is
limited to 9.

Let C be a fourth-order random elastic tensor, which could be decomposed by using the
equation below.

C =
N

∑
i=1

ciEi, (3)

where ci is a set of random coefficients that can be described by its PDFs and Ei is the tensor basis of the
random elastic tensor C, based on Walpole’s derivation [29]. The CLT slab is modelled as orthotropic
material in Abaqus so that the tensor basis Ei of the orthotropic symmetric elastic tensor are defined in
the following form [18].
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

E11 = a⊗ a⊗ a⊗ a, E12 = a⊗ a⊗ b⊗ b, E13 = a⊗ a⊗ c⊗ c,
E21 = b⊗ b⊗ a⊗ a, E22 = b⊗ b⊗ b⊗ b, E23 = b⊗ b⊗ c⊗ c,
E31 = c⊗ c⊗ a⊗ a, E32 = c⊗ c⊗ b⊗ b, E33 = c⊗ c⊗ c⊗ c,

E4
ijkl =

(
aibj + biaj

)
(akbl + bkal)/2,

E5
ijkl =

(
bicj + cibj

)
(bkcl + ckbl)/2,

E6
ijkl =

(
ciaj + aicj

)
(ckal + akcl)/2,

(4)

where a, b, and c are the unit orthogonal vectors, ⊗ is the Kronecker product.
The fourth-order elastic tensor C is decomposed as:

C = c1E11 + c2E22 + c3E33 + c4
(
E12 + E21)+ c5

(
E23 + E32)+ c6

(
E31 + E13)

+c7E4 + c8E5 + c9E6.
(5)

4.2. Construction of Probability Distribution Function in High-Dimension Using the Maximum
Entropy Principle

The objective of this section is to establish the PDFs of the random coefficients ci, which control
the statistical fluctuation of the fourth-order random elastic tensor. Let c = (c1, . . . , cN) be a vector
in RN-valued second order random variable, which obeys certain unknown probability distribution
Pc(dc) with the Lebesgue measure dc = dc1 . . . dcN . The element in vector c = (c1, . . . , cN) represent the
random coefficient of the random elasticity matrix in the previous section (Equation (3)). The unknown
probability distribution Pc(dc) of the vector c can be presented by a probability density function pc(c),
which satisfies the following normalization condition.∫

pc(c)dc = 1. (6)

The Maximum Entropy Principle applied here aims to construct the unknown probability
distribution Pc(dc) with the help of the available information. In this case, the probability density
function (PDF) pc could be written using the equation below.

pc = arg maxS(p), (7)

where the entropy S(p) is defined by the equation below.

S(p) = −
∫

p(c) log(p(c))dc. (8)

In order to find an explicit probability density function pc(c), several constraints should be
set as available information: (1) the mean values of the variables, (2) the log condition, and (3) the
normalization condition.

E{C} = c, with c = (c1, . . . , c9) (9)

E

{
log

(
det

(
N

∑
i=1

ciE

))}
= νC, with |νC| < +∞ (10)

and ∫
pc(c)dc = 1. (11)

Equation (9) indicates that the mean values of variables are supposed to be known and Equation
(10) ensures that both the C and C−1 are second-order random variables. This equation also creates the
statistical dependence between the different random variables.

To optimize the problem defined by Equation (7), Lagrange multipliers associated with Equations
(9)–(11) are introduced. Let λ0 ∈ R+, λ1 ∈ Aλ1 , and λ2 ∈ Aλ2 be Lagrange multipliers associated with
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the constraints defined by Equations (9)–(11). It could be proven that the optimized Equation (7) could
be written as [28]:

pC(c) = k0exp{− < λsol , g(c) >RN+1}, ∀c ∈ RN , (12)

where k0 = exp
(
−λ0) is the normalizing constant, the operator 〈, 〉 is the Euclidean inner product,

the c→ g(c) is the mapping defined on S × R, with the values in RN+1. g(c) is defined by
Equation (13) below.

g(c) = (c, ϕ(c)), with ϕ(c) = log

(
det

(
N

∑
i=1

ciE

))
, (13)

where det(∑N
i=1 ciE) > 0 is the support of Equation (13).

An RN-valued random variable Bλ parameterized by λ should be introduced to identify the
Lagrange multipliers. Supposing the probability density function b→ pBλ

(b, λ) of the random
variable Bλ is written as:

pBλ
(b, λ) = kλ exp{− < λ, g(b) >RN+1}, ∀b ∈ RN , (14)

where kλ is the normalization constant parameterized by λ. Taking k0 = kλ, from Equations (12) and
(14), it can be deduced that:

pC(c) = pBλ
(b, λ). (15)

According to Equations (9), (10), (13), and (15), the calculation of Lagrange multipliers can be
derived by evaluating the expectation of g(bλ):

E{g(bλ)} = (c, νC). (16)

As a result, the problem of the calculation of the Lagrange multipliers converts into generating the
independent realizations of the random variable Bλ defined over RN and then evaluating the left-hand
side of Equation (16).

4.2.1. Calculation of Lagrange Multipliers

To derive Lagrange multipliers introduced in the previous section, there are several different
methods to generate the independent the random variable Bλ with respect to the corresponding
probability density function (Equation (15)), such as the Metropolis-Hastings method [30,31],
Gibbs method [32]. However, it should be noticed that the Metropolis-Hastings method demands
an appropriate proposal distribution, which is sometimes difficult to choose, and the Gibbs method
requires us to know the conditional distributions. As a consequence, it could be intricate to give a
robust calculation without an adequate initial guess, especially for a high-dimension case. Therefore,
another alternative algorithm is introduced in Reference [16] to generate the independent random
variable Bλ.

Random Number Generator

Let u→ Φ(u, λ) be the potential function defined as:

Φ(u, λ) =< λ, g(u) >RN+1 . (17)

Let {(U(r), V(r))}, r ∈ R+ be the Markov stochastic process defined on the probability space
(Θ, T, P) indexed by R+ with values in R+ × R+, for r > 0, satisfying the following Itô stochastic
differential equation (ISDE).{

dU(r) = V(r)dr,
dV(r) = −∇uΦ(U(r), λ)dr− 1

2 f0V(r)dr +
√

f0dW(r),
(18)
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where W(r) is the normalized Wiener process defined on (Θ, T,) indexed by R+ and with values in
RN . The probability distribution of the initial condition U(0) and V(0) are supposed to be known.
The parameter f0 is a real positive number, which could dissipate the transition part of the response
generated by the initial condition and ensures a reasonable fast convergence of the stationary solution
corresponding to the invariant measure.

When r tends to infinity, the solution U(r) of ISDE converges to the probability distribution of the
random variable Bλ.

lim
r→∞

(U(r)) = Bλ. (19)

ns independent realization of Bλ is denoted as Bλ(θ1), . . . , Bλ(θns ). Let ro be the iteration step that
the solution of ISDE converge. When rk ≥ r0, the ISDE could be written as the equation below.{

dU(rk) = V(rk)drk,
dV(rk) = −∇uΦ(U(rk), λ)drk − 1

2 f0V(rk)drk +
√

f0dW(rk).
(20)

Therefore, the independent realizations Bλ(θl) can be presented by the stationary solution of ISDE.

Bλ(θl) = U(rk, θl). (21)

It is worthwhile to mention that the Itô stochastic differential equation defined by Equation (18)
can be discretized by the Explicit Euler scheme to obtain an approximate solution.

k = 1, . . . , M− 1,

{
Uk+1 = Uk + ∆rVk,

Vk+1 =
(

1− f0
2 ∆r

)
Vk + ∆rLk +

√
f0∆Wk+1,

(22)

with the initial conditions:
U1 = u0, V1 = v0, (23)

where ∆r is the iteration step and ∆Wk+1 = Wk+1−Wk is a second-order Gaussian centered RN-valued

random variable with a covariance matrix E
{

∆Wk+1
(

∆Wk+1
)T
}

= ∆r{IN}, where W1 = 0N .

In Equation (22), Lk is an RN-valued random variable, which is the partial derivative of Φ(u, λ)

defined by the equation below.

Lk
j
∼= −

Φ
(

∆Uk,j, λ
)
−Φ

(
Uk, λ

)
Uk+1

j −Uk
j

, (24)

with
∆Uk,j =

(
Uk

1 , . . . , Uk
j−1, Uk

j + ∆Uk+1
j , Uk

j+1, . . . , Uk
N

)
, ∆Uk+1

j = Uk+1
j −Uk

j . (25)

Mathematical Expectation Estimation

After the random number generator has been established and the ISDE has been discretized
to obtain the random numbers, the expectation of these independent random numbers should be
calculated to derive Lagrange multipliers. The mathematical expectation of the random variable Bλ

can be estimated by using the Monte Carlo method. The evaluation of the mathematical expectation of
the random variable Bλ is given by the equation below.

E{g(Bλ)} ∼=
1
ns

ns

∑
=1

g(Bλ(θl)). (26)

After Lagrange multipliers are derived by evaluating the mathematical expectation of the random
variable Bλ, the explicit PDFs of different elastic elements in the random elasticity matrix can be
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established. Depending on Equation (12), the PDF of the elastic tensor for the orthotropic symmetric
class material could be defined by using the equation below.

pC(c) = pC1,...,C6(c1, . . . , c6)pC7(c7)pC8(c8)pC9(c9), (27)

with

pC1,...,C6(c1, . . . , c6) = k det(Mat(c1, . . . , c6))exp

(
−

6

∑
i=1

λ
(1)
i ci

)
, (28)

with

Mat(c1, . . . , c6) =

 c1 c4 c6

c4 c2 c5

c6 c5 c3

, (29)

and
pCj

(
cj
)
= k j exp

(
−λ

(1)
i ci

)
c−λ(2)

i , j = 7, 8, 9. (30)

Remarks 1. The random variables (C1, . . . , C6), C7, C8, and C9 are mutually independent of each other. C7,
C8, and C9 are Gamma-distributed and the k and k j are the normalization constants.

4.3. Numerical Application of the Orthotropic Symmetric Material (CLT)

The material properties of CLT gathered from the literature (c.f. Table 2) are regarded as an initial
starting point (mean value) to procced with the stochastic approach presented in the previous sections.

In Abaqus, the orthotropic materials compliance matrix can be defined by the engineering constants:



ε11

ε22

ε33

γ12

γ13

γ23


=



1
E1

− ν21
E2
− ν31

E3
0 0 0

− ν12
E1

1
E2

− ν32
E3

0 0 0
− ν13

E1
− ν23

E2
1

E3
0 0 0

0 0 0 1
G12

0 0
0 0 0 0 1

G13
0

0 0 0 0 0 1
G23





σ11

σ22

σ33

σ12

σ13

σ23


. (31)

The compliance matrix of the CLT panel can be derived depending on the elastic constants
reported in Table 2 and Equation (31). The stiffness matrix is the inverse of the compliance matrix.

C =



10.58 2.3 2.3 0 0 0
2.3 5.2619 2.4028 0 0 0
2.3 2.4028 5.2619 0 0 0
0 0 0 0.9 0 0
0 0 0 0 0.09 0
0 0 0 0 0 0.063


× 109. (32)

From Equation (32) and the corresponding orthotropic symmetric matrix basis (Equation (4)),
the mean value of ci defined in Equation (5) can be deduced by using the formulas below.

(c1, . . . , c9) = (10.58, 5.2619, 5.2619, 2.3, 2.4048, 2.3, 0.9, 0.09, 0.063)× 109. (33)

Let f target = (c, νC) be the target vector to compute the Lagrange multipliers.

f target = (10.58, 5.2619, 5.2619, 2.3, 2.4048, 2.3, 0.9, 0.09, 0.063, 5.3059). (34)



Appl. Sci. 2019, 9, 1106 15 of 25

And let f est(λ) = (c(λ), νC(λ)) be the estimated vector to compare with the target vector so that
the optimal solution of λ can be obtained by solving the following optimization function.

J
(
λopt) = argmin

(
(1− α)(c− c(λ))2 + α(νC − νC(λ))

2
)

, (35)

where α ∈ [0, 1] is a free parameter. In this scenario, α is set to be 0.5 to give a robust estimation.
Lagrange multipliers associated with λ(1) can be further expressed by means of λ(2) [15].

λ
(1)
1 = −λ2 c2c3−c2

5
4 , λ

(1)
2 = −λ(2) c1c3−c2

6
4 , λ

(1)
3 = −λ(2) c1c2−c2

4
4 ,

λ
(1)
4 = −λ(2) (c5c6−c3c4)

4 , λ
(1)
5 = −λ(2) (c4c6−c1c5)

4 , λ
(1)
6 = −λ(2) (c4c5−c2c6)

4 ,

λ
(1)
7 = −λ(2) 1

c7
, λ

(1)
8 = −λ(2) 1

c8
, λ

(1)
9 = −λ(2) 1

c9
,

(36)

with
4 = c1c2c3 + 2c4c5c6 − c1c2

5 − c2c2
6 − c3c2

4. (37)

From the sensitivity analysis, the initial guess of λ(2) is set to be −2. The target optimization
function (Equation (35)) is evaluated by using the interior-point method (fmincon function) in
Matlab [33].

From Figure 11, it could be observed that the optimization algorithm converges fast to a small
value and the corresponding optimal values of the Lagrange multipliers are found to be:

λ(1) = (0.1263, 0.2904, 0.2905, −0.0758,−0.2324,−0.0758, 12.9089, 18.4413, 1.2909),
λ(2) = −1.1618.

(38)
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The estimated vector f est(λ) is evaluated by the Monte Carlo method.

conMC(ns) =

∣∣∣∣∣n−1
s

ns

∑
i=1

g(C(θi))

∣∣∣∣∣. (39)

Therefore, the estimated vector f est(λ) yields the following.

f est = (10.5882, 5.2677, 5.2675, 2.3035, 2.4121, 2.2860, 0.8997, 0.0904, 0.0636, 5.3088). (40)
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The cost function of the target vector J
(
λopt) is 1.048211× 10−3, which implies good agreement

of the estimated values with the reference values.

4.4. Sampling the Defined Probability Distribution Function by Metropolis-Hastings Alforithm

Following the process introduced in the previous section, the PDFs of the random elasticity
tensor of the CLT were constructed. The objective of this section is to generate the random numbers
that obey the defined PDFs. The corresponding random stiffness matrix of CLT can be constructed
following the generated data. Subsequently, the compliance matrix of CLT can be derived by inversing
the stiffness matrix. The random elastic constants (engineer constants in Abaqus) of CLT can be
determined according to Equation (31). Lastly, the generated elastic constants should be imported into
Abaqus to analyze the dynamic response of the CLT panel. The Markov Chain Monte Carlo method is
wildly used to sample the high-dimension PDFs. A specific algorithm, called the Metropolis-Hastings
algorithm (MHA), is used in this case to sample the target the function. The proposed distribution is a
conventional multivariate Gaussian distribution. The mathematical support of pC1,...,C6(c1, . . . , c6) is

det(
N
∑

i=1
ciE) > 0 and the mathematical support of pCj

(
cj
)

is cj > 0, j = 7, 8, 9. When sampling the target

function, the generated data should stay in the supports of the sampled function. A total of 50,000
combinations of (C1, . . . , C9) are realized by performing the MHA and by obeying the mathematical
constraints (supports) of the target functions. The marginal distributions of the different mechanical
constants reconstructed by ksdensity function in Matlab are shown in Figure 12.
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5. Implementation of Stochastic Data in Abaqus

A total of 50,000 generated random numbers (C1, . . . , C9) have been generated. The corresponding
random stiffness tensor could be determined. The random compliance tensor can also be derived
by inversing the random stiffness tensor. Since Poisson’s ratios have a very slight influence on the
eigen-frequencies and the mode shape order of the CLT numerical model, the variation of the Poisson
ratios will not be taken into account in the FE model. 50,000 generated random elastic constants are
only satisfied with the mathematical constraints. The constraints associated with the physical meaning
are not considered when generating the random numbers. In order to ensure the date implemented
in the FE model has physical meanings, several physical constraints are set: (1) Variation of Young’s
moduli and shear moduli should be in a reasonable range of wood. The ranges of Young’s modulus
and the Shear modulus are assumed in ±50% of the respective mean values.
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E1 ∈ [4600MPa, 13800MPa], E2 ∈ [2000MPa, 6000MPa], E3 ∈ [2000MPa, 6000MPa], (41)

G12 ∈ [450MPa, 1350MPa], G13 ∈ [45MPa, 135MPa], G23 ∈ [45MPa, 135MPa]. (42)

(2) Young’s modulus (Shear modulus) in a principle direction should be larger than the Young’s
moduli (Shear moduli) in the other two directions.

E1 > E2; E1 > E3; (43)

G12 > G13; G12 > G23. (44)

(3) Young’s modulus (Shear modulus) in direction 2 should be larger or equal to Young’s modulus
(Shear modulus) in direction 3.

E2 ≥ E3; G13 ≥ G23. (45)

Only the generated random elastic constants fulfilled with the above requirements (from Equation
(41) to Equation (45)) could be imported in Abaqus. In the work reported in this case, due to limited
time and limited computer calculation capacity, only 100 different combinations of elastic constants
were selected to calibrate the model and to investigate the influence of material properties on the
dynamic response of CLT. This large sum of Abaqus input files with different input mechanical
constants were realized with the help of Python scripts.

6. Results and Discussion

6.1. Quantification of Uncertainties

One of the objectives of this article is to investigate the effects of uncertainties induced by material
properties on the model output and to ultimately obtain a reliable model to predict the vibro-acoustic
behavior of different designs. To achieve that, 100 steady-state simulations with different combinations
of material properties were carried out in Abaqus.

In Figure 13, each subfigure has 100 FRF simulations and the measurement results are shown in
blue. Figure 13 shows that there is an obvious envelope overlapped around the first four peaks lower
than 100 Hz. The large variation envelope range is due to varying five mechanical constants in one
time since five elastic constants variations have a larger impact on the dynamic response of CLT than
only changing one elastic constant in one time.

On the contrary of the frequency range lower than 100 Hz, the simulated FRFs begin to scatter
above 100 Hz. No clear envelope peaks can be found around the measured resonances higher than
100 Hz. One possible reason of these scattering curves in a relative higher frequency range is the
complexity of the mode shapes. It is known that the lower the eigen-frequency is, the simpler the
mode shape is and the longer the wave length is. Long wavelength are not sensitive to the small
details in the CLT panel, such as the non-uniform air gaps throughout the laminas and the edge
bonding (c.f. Figure 14). It implies that the dynamic behavior of CLT in a low frequency range can be
mimicked by a simplified homogeneous orthotropic laminated FE model. However, when the mode
shapes become more complex in a higher frequency range, the wavelength becomes smaller. As a
consequence, small details of the CLT panel begin to affect the vibration of the CLT panel. In this
case, the homogeneous orthotropic laminated FE model could not properly describe the dynamic
response of the CLT panel in the higher frequency range. In order to increase the accuracy of the FE
in a high frequency range, non-homogeneous laminate layer, such as an account for the irregular air
gap in laminas, should be modeled. Nevertheless, it should be aware that the calculation time will
become longer, when more details are taken into account in the model. The stochastic method needs a
large number of calculations to quantify the uncertainties induced by the material properties so that a
compromise should be carefully made between the accuracy of the model and the calculation time.
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6.2. Calibration of the CLT Panel

In this section, the best combination of elastic constants of CLT should be identified by selecting the
best NRFDs and MACs among 100 simulations. To select the best combination of mechanical constants,
the NRFDs of the first four resonances at point 11, point 13, point 17, and point 24 were calculated.
The simulations with the smallest NRFDs of the first four resonances at each point were selected from
100 simulations at each point. The NRFDs of the simulated and measured eigen-frequencies at four
excitation positions are shown in Figure 15. It can be seen from the NRFDs of each excitation position
that the NRFDs of the first four resonances are lower than 5%. However, the NRFDs of the 5th and
6th resonances are relatively high when compared to the first four resonances. This result emphasizes
that more structural details should be involved in the FE model to calibrate the dynamic behavior
of CLT in the frequency range higher than 100 Hz. However, only NRFD values are not enough to
justify the best combination of elastic constants. Since the NRFDs can only represent the simulated
eigen-frequency shifts when compared with the experimental results, the mode order can be different
even with a low NRFD. Therefore, MAC numbers are needed to validate the model by ensuring the
modes in the same order with reference even if there are low NRFDs. The simulated eigen-frequencies
and mode shape are reported in Table 1 and Figure 17. The corresponding material properties of CLT
are reported in Table 3. Figure 18 shows that the first six simulated modes are in the same order with
the measured ones. However, there exist two extra modes in the simulation results.
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Table 3. Material Properties of CLT used in the calibrated FE model. Stiffness parameters have the unit
of MPa and the density is given in kg/m3.

E1 E2 E3 G12 G13 G23 v12 v13 v23 ρ

13,396 4712.5 4681.6 974.6 63.64 60.46 0.4 0.4 0.3 520

The same results can also be seen in the mobility of different excitation points of the lowest
NRFD values (c.f. Figure 19). The simulated FRFs at these four different excitation points correlate
better with the measured ones, while there are extra peaks and eigen-frequency shifts in the simulated
FRFs in the frequency range from 110 Hz to 170 Hz. We suspect that these discrepancies are higher
than the 110 Hz result from the over-simplified homogenous laminated FE model, which ignores the
geometrical details contained in the real CLT panel. Yet, the boundary condition set-up in the model
could not describe the real measurement boundary conditions.
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The dynamic properties of wooden structures highly depend on the material properties of the
structure, the geometry details, and the workmanship. Consequently, the deterministic model may not
be able to represent the dynamic response of the wooden structures in a realistic way. A calibrated
model may not be able to accurately predict the dynamic behavior of the theoretical identical wooden
structure due to the uncertainties. The stochastic method is applied in this case to quantify the
uncertainties induced by material properties so that this model can estimate the dynamic response of a
class of wooden structures, instead of only one structure. Moreover, the influence of material properties
on the vibration of CLT is the coupling effect of Young’s moduli and shear moduli in all directions,
so that calibration is always time consuming and tedious work to find the appropriate combination
of elastic constants in different directions. The calibration employing the stochastic approach could
start from the material properties collected from the literature and set the mathematical and physical
constraints to generate the input data to find the best combination of the mechanical constants of the
under investigated structure. This method could automate the calibration step to avoid the repetitive
manual calibrations. However, we should pay attention to the mathematical and physical constraints
before generating the input elastic constant data. Because the generated elastic constants should be in
a reasonable range of the under investigated material. Otherwise, the input elastic constants may not
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have a physical meaning, even though the calibration results fit well with the reference. The stochastic
method uses a large amount of data to describe an unknown problem (the data base of CLT in our
case). More calculations are made and more accurate calibration can be achieved. However, a trade-off
between the calculation time and the accuracy of the result should be made in order to keep the
calculation time in a reasonable range. This method can not only be applied to CLT but also can be
employed to calibrate the other wooden structures whose stiffness constants are difficult to obtain.

Furthermore, one of the objectives of this stochastic approach is to calibrate the material properties
of the target structure. It would be better to decrease the influence of other influence factors, such as
boundary conditions. Therefore, it is suggested to hang up the under investigated structure (free-free
boundary condition) or fix the structure boundary to the ground (perfect simply supported condition)
to eliminate the influence of boundary conditions as far as possible. In the work reported in this
case, due to a lack of support materials, the CLT panel just laid on top of the I-steel beam and it was
not screwed into the ground. Consequently, when the CLT is excited, the deformation of the I-steel
beam can affect the vibration of the CLT slab. Furthermore, the laboratory boundary conditions are
always different from the in-situ boundary conditions [34]. Thus, it would be necessary to investigate
the dynamic response of CLT in a real building. To achieve that, the FRFs could be first measured
from a CLT bare floor in real mounting conditions. Then, the same CLT bare floor could be set in the
simplified laboratory conditions to compare the relative differences between different FRFs under
different boundary conditions.

From the FE CLT modelling perspective, the model validation criterions (NRFD and MAC) and the
simulated FRFs suggest that dynamic behavior of the CLT panel can be modelled by the homogenous
orthotropic laminated FE model in the frequency range lower than 100 Hz. In a higher frequency
range, as the inhomogeneity of the laminated layers of CLT slab begins to pronounce in the vibration
of CLT panel, more geometrical details in the CLT panel should be taken into account in the FE CLT
model to obtain more accurate results.

7. Conclusions

Low frequency sound insulation is always a challenge for the wooden constructions, especially
for the multi-family dwellings. Even though the wooden constructions are satisfied with the standards
in force, acoustic comfort is not always met. Since the evaluation frequency range even with the
adaptation term of the current standards is from 50 Hz to 3150 Hz, however, the first few resonance
frequencies of the wooden floor, which are believed to cause most annoyances, are left out of the
evaluation scope. Low frequency prediction tools are needed to access the vibratory performance of
wooden buildings at the early design stage due to complaints coming from the inhabitants in wooden
buildings. Accessing an accurate low frequency prediction tool requires involving the structure
details in the model. Moreover, material properties are another important factor, which can induce a
remarkable change in the modelling output.

In this paper, we introduced the stochastic process into the FE model to quantify the uncertainties
generated by the material properties. By performing Monte Carlo simulations, variation of Young’s
moduli and shear moduli in different directions were taken into account in FE model to investigate
the coupling effect of different elastic moduli on the dynamic response of structure. Furthermore,
100 simulations were calculated at four different driving points. Clear envelopes can be observed
from the simulations lower than 100 Hz. However, the simulations begin to scatter in the frequency
range higher than 100 Hz. The best combination of material properties is selected from 100 different
combinations of elastic constants to calibrate the FE CLT model. It was noticed that the simulated
dynamic response that was lower than 100 Hz was correlated better with the measured dynamic
response of CLT. From the promising results, it was concluded that the stochastic method can be applied
to a deterministic model (FE model) to quantify the uncertainties of the structures. Furthermore,
this method can be employed to calibrate the FE model to acquire the material properties of the
under-investigated structure.
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